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ABSTRACT. Given a function f : R2 −→ R which is continuous in each variable
separately, in this paper we prove that f is measurable by using a different approach
than the one which is normally used.
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RESUMEN. Dada una función f : R2 −→ R la cual es continua en cada variable por
separado, en este artículo demostramos que f es medible usando una técnica diferente a
la que usualmente se utiliza.
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1 Introduction

Measurability (more precisely, Lebesgue-measurability) of a two variable function f :

R2 → R is an interesting problem which has been studied extensively. For example, in
their paper [6], J. H. Michael and B. C. Rennie proved that if a function (defined on on
a Lebesgue measurable set in the plane) is continuous in one variable and measurable in
the other, then it is Lebesgue measurable in the plane. In [1], R. O. Davies proved that
if f : R2 → R is separately approximately continuous then it is Lebesgue measurable.
J. Dravecký [2] recalled and generalized a sufficient condition for the measurability of
a real-valued function on a product of two measure metric spaces. In [4], Z. Grande
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generalized some results from Davies [1] by weakening the condition on the sections fx.
A decade ago, G. Kwiecińska [5] obtained similar results in the context of multifunctions
(also called set-valued functions) of two variables.

It is a well known result that a real-value function f of two real variables which is
continuous in each variable separately (i.e. the “sections” gx(y) = f(x, y) and gy(x) =

f(x, y) are continuous functions) need not be continuous at (x, y) ∈ R2. It is also known
that if f is continuous at x for each y and measurable at y for each x, then f is Lebesgue
measurable. The question to find a direct proof of the main result of this paper was posed
on the remark in [1].

In this paper we give a solution to this posed question.

We begin by recalling the definition of measurable function.

Definition 1. Let (X,A ) and (Y,A0) be two measurable spaces. A function f : X −→ Y

is called measurable with respect to A and A0 if f−1(E) ∈ A whenever E ∈ A0.

We state now a well-known result about conditions which are equivalent to measurabil-
ity of a function f : X −→ R∗.

Theorem 1. Let (X,A ) be a measurable space. Let f : X −→ R∗ (R∗ = R ∪ {−∞} ∪
{∞}). Then the following conditions are equivalent:

(I) f is measurable.

(II) f−1([a,∞]) = {f(x) ≥ a} ∈ A , for all a ∈ R.

(III) f−1([−∞, a]) = {f(x) < a} ∈ A , for all a ∈ R.

(IV) f−1([−∞, a]) = {f(x) ≤ a} ∈ A , for all a ∈ R.

The above is a standard result, and the interested reader might consult [3] and [7] for a
proof.

2 Main Result

Our objective is to give a new proof of the measurability of a function f(x, y) which is
continuous in each variable separately. To the best of our knowledge, its proof is performed
by induction (see [3]). So, we will provide a new proof of the Theorem below.

Theorem 2. Let f(x, y) be a function defined on R2 that is continuous in each variable
separately. Then f is Lebesgue measurable.

For the sake of clarity in exposition, our proof of Theorem 2 relies in three lemmas.
From now on, we will be dealing with a function f : R2 → R, and the symbols Ω, Ωk,
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An and B(k, t) stand for the following sets

Ω :=f−1((−∞, a]),

Ωk :=f−1

((
−∞, a+

1

k

))
,

An :=

{
(x, y) ∈ R2 : there exists (x, Y ) ∈ Ω with |Y − y| < 1

n

}
,

B(k, t) :=
{
(x, y) ∈ R2 : there exists (x, Y ) ∈ Ωk with |Y − y| < 1

n
− 1

n+ t

}
, where

t > 0 is a fixed positive real number.

Let us begin with our first lemma.

Lemma 1. Ω =
∞⋂

n=1
An.

Proof. Let (x, y) ∈
∞⋂

n=1
An then (x, y) ∈ An for all n ∈ N. Hence there exists (x, Yn) ∈

Ω with |Yn − y| < 1

n
. And so we have Yn → y as n → ∞. Since f(x, y) is continuous at

y we have
f(x, Yn) → f(x, y).

Note that f(x, Yn) ∈ (−∞, a]. Since (−∞, a] is a closed set, we get f(x, y) ∈ (−∞, a];
and thus, (x, y) ∈ f−1((−∞, a]), which means that (x, y) ∈ Ω. Therefore,

∞⋂
n=1

An ⊆ Ω. (1)

For the converse inclusion, we take Y = y. Clearly, Ω ⊆ An for each n ∈ N, so

Ω ⊆
∞⋂

n=1

An. (2)

From (1) and (2) we obtain Ω =
∞⋂

n=1
An.

Lemma 2. B(k, t) is an open set.

Proof. For (x, y) ∈ B(k, t), we will show that there exists ε > 0 such that

Bϵ(x, y) ⊆ B(k, t).

In order to prove this, let (x, y) ∈ B(k, t), then there exists (x, Y ) ∈ Ωk and

|Y − y| < 1

n
− 1

n+ t
.

Thus, (x, Y ) ∈ f−1 ((−∞, a+ 1/k)).
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Define gY (x) = f(x, Y ). Let (x, Y ) ∈ f−1 ((−∞, a+ 1/k)), then f(x, Y ) ∈
(−∞, a+ 1/k), so gY (x) ∈ (−∞, a+ 1/k). Hence,

x ∈ g−1
Y

((
−∞, a+

1

k

))
,

and g−1
Y ((−∞, a+ 1/k)) is an open set because gY (x) is continuous. So, given ϵ > 0,

there exists an interval (x− ϵ, x+ ϵ) such that (x− ϵ, x+ ϵ) ⊆ g−1
Y ((−∞, a+ 1/k)).

Since gY (x) ∈ (−∞, a+ 1/k), we may assume that

|Y − y|+ ϵ <
1

n
− 1

n+ t
.

Let (x0, y0) ∈ Bϵ(x, y), then x0 ∈ (x− ϵ, x+ ϵ); so x0 ∈ g−1
Y ((−∞, a+ 1/k)). Then

f(x0, Y ) ∈ (−∞, a+ 1/k) and (x0, Y ) ∈ f−1 ((−∞, a+ 1/k)). Thus, (x0, Y ) ∈ Ω.

Now,

|Y − y0| ≤|Y − y|+ |y − y0|
<ϵ+ |Y − y|

<
1

n
− 1

n+ t
.

Therefore, (x0, y0) ∈ B(k, t), this means that Bϵ(x, y) ⊆ B(k, t), that is, B(k, t) is an
open set (therefore, B(k, t) is Lebesgue measurable).

Lemma 3. An =
∞⋃
t=1

∞⋂
k=1

B(k, t). In particular, An is Lebesgue measurable.

Proof. Let (x, y) ∈
∞⋃
t=1

B(k, t). Then there exists t0 such that (x, y) ∈
∞⋂
k=1

B(k, t0).

Hence (x, y) ∈ B(k, t0) for all k ∈ N. Thus, there exists (x, Y ) ∈ Ωk such that

|Y − y| < 1

n
− 1

n+ t
<

1

n
,

which implies that

(x, Y ) ∈
∞⋂
k=1

f−1

((
−∞, a+

1

k

))
⇒ (x, Y ) ∈ f−1

( ∞⋂
k=1

(
−∞, a+

1

k

))
⇒ (x, Y ) ∈ f−1((−∞, a])

⇒ (x, Y ) ∈ Ω.

So (x, Y ) ∈ An and
∞⋃
t=1

∞⋂
k=1

B(k, t) ⊆ An. (3)

On the other hand, let (x, y) ∈ An. Then, there exists (x, Y ) ∈ Ω with |Y − y| < 1

n
.

Hence, for some t0 > 0, |Y − y| < 1

n
− 1

n+ t0
. Moreover, Ω ⊆ Ωk for all k ∈ N. So,
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(x, y) ∈ B(k, t0) for all k ∈ N, and (x, y) ∈
∞⋂
t=1

B(k, t0). Then (x, y) ∈
∞⋃
t=1

∞⋂
k=1

B(k, t),

which means that

An ⊆
∞⋃
t=1

∞⋂
k=1

B(k, t). (4)

From (3) and (4) we get

An =

∞⋃
t=1

∞⋂
k=1

B(k, t).

Therefore, An is Lebesgue measurable.

Now that we have proved the three lemmas, we are ready to prove our main result. Its
proof is as follows.

Proof of Theorem 2. From Lemma 1, we have

Ω =

∞⋂
n=1

An.

On the other hand, from Lemma 3, each An is measurable, which in turn implies that⋂∞
k=1 An is measurable. Finally,

f−1((−∞, a]) := Ω =

∞⋂
k=1

An,

is measurable for all a ∈ R. From Theorem 1, this implies the measurability of f .
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