Measurability of a two variable function: a new proof

Medibilidad de una función de dos variables: una nueva demostración

René Erlin Castillo¹ and Héctor Camilo Chaparro Gutiérrez²

¹Universidad Nacional de Colombia, Colombia ²Universidad de Cartagena, Colombia

ABSTRACT. Given a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ which is continuous in each variable separately, in this paper we prove that f is measurable by using a different approach than the one which is normally used.

Key words: measurable functions, product spaces.

RESUMEN. Dada una función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la cual es continua en cada variable por separado, en este artículo demostramos que f es medible usando una técnica diferente a la que usualmente se utiliza.

Palabras clave: funciones medibles, espacios producto.

2020 AMS Mathematics Subject Classification. Primary 28A35, Secondary 28A20.

1 Introduction

Measurability (more precisely, Lebesgue-measurability) of a two variable function $f:\mathbb{R}^2\to\mathbb{R}$ is an interesting problem which has been studied extensively. For example, in their paper [6], J. H. Michael and B. C. Rennie proved that if a function (defined on on a Lebesgue measurable set in the plane) is continuous in one variable and measurable in the other, then it is Lebesgue measurable in the plane. In [1], R. O. Davies proved that if $f:\mathbb{R}^2\to\mathbb{R}$ is separately approximately continuous then it is Lebesgue measurable. J. Dravecký [2] recalled and generalized a sufficient condition for the measurability of a real-valued function on a product of two measure metric spaces. In [4], Z. Grande

generalized some results from Davies [1] by weakening the condition on the sections f_x . A decade ago, G. Kwiecińska [5] obtained similar results in the context of multifunctions (also called set-valued functions) of two variables.

It is a well known result that a real-value function f of two real variables which is continuous in each variable separately (i.e. the "sections" $g_x(y) = f(x,y)$ and $g_y(x) = f(x,y)$ are continuous functions) need not be continuous at $(x,y) \in \mathbb{R}^2$. It is also known that if f is continuous at x for each y and measurable at y for each x, then f is Lebesgue measurable. The question to find a direct proof of the main result of this paper was posed on the remark in [1].

In this paper we give a solution to this posed question.

We begin by recalling the definition of measurable function.

Definition 1. Let (X, \mathscr{A}) and (Y, \mathscr{A}_0) be two measurable spaces. A function $f: X \longrightarrow Y$ is called measurable with respect to \mathscr{A} and \mathscr{A}_0 if $f^{-1}(E) \in \mathscr{A}$ whenever $E \in \mathscr{A}_0$.

We state now a well-known result about conditions which are equivalent to measurability of a function $f: X \longrightarrow \mathbb{R}^*$.

Theorem 1. Let (X, \mathscr{A}) be a measurable space. Let $f: X \longrightarrow \mathbb{R}^*$ $(\mathbb{R}^* = \mathbb{R} \cup \{-\infty\} \cup \{\infty\})$. Then the following conditions are equivalent:

- (I) f is measurable.
- $\text{(II)}\ \ f^{-1}([a,\infty])=\{f(x)\geq a\}\in\mathscr{A}\text{, for all }a\in\mathbb{R}.$
- (III) $f^{-1}([-\infty, a]) = \{f(x) < a\} \in \mathcal{A}, \text{ for all } a \in \mathbb{R}.$
- (IV) $f^{-1}([-\infty, a]) = \{f(x) \le a\} \in \mathcal{A}, \text{ for all } a \in \mathbb{R}.$

The above is a standard result, and the interested reader might consult [3] and [7] for a proof.

2 Main Result

Our objective is to give a new proof of the measurability of a function f(x, y) which is continuous in each variable separately. To the best of our knowledge, its proof is performed by induction (see [3]). So, we will provide a new proof of the Theorem below.

Theorem 2. Let f(x,y) be a function defined on \mathbb{R}^2 that is continuous in each variable separately. Then f is Lebesgue measurable.

For the sake of clarity in exposition, our proof of Theorem 2 relies in three lemmas. From now on, we will be dealing with a function $f: \mathbb{R}^2 \to \mathbb{R}$, and the symbols Ω, Ω_k ,

 A_n and B(k,t) stand for the following sets

$$\begin{split} &\Omega:=f^{-1}((-\infty,a]),\\ &\Omega_k:=f^{-1}\left(\left(-\infty,a+\frac{1}{k}\right)\right),\\ &A_n:=\left\{(x,y)\in\mathbb{R}^2: \text{there exists } (x,Y)\in\Omega \text{ with } |Y-y|<\frac{1}{n}\right\}, \end{split}$$

 $B(k,t):=\left\{(x,y)\in\mathbb{R}^2: \text{ there exists } (x,Y)\in\Omega_k \text{ with } |Y-y|<\frac{1}{n}-\frac{1}{n+t}\right\}$, where t>0 is a fixed positive real number.

Let us begin with our first lemma.

Lemma 1.
$$\Omega = \bigcap_{n=1}^{\infty} A_n$$
.

Proof. Let $(x,y)\in\bigcap_{n=1}^\infty A_n$ then $(x,y)\in A_n$ for all $n\in\mathbb{N}$. Hence there exists $(x,Y_n)\in\Omega$ with $|Y_n-y|<\frac{1}{n}$. And so we have $Y_n\to y$ as $n\to\infty$. Since f(x,y) is continuous at y we have

$$f(x, Y_n) \to f(x, y).$$

Note that $f(x, Y_n) \in (-\infty, a]$. Since $(-\infty, a]$ is a closed set, we get $f(x, y) \in (-\infty, a]$; and thus, $(x, y) \in f^{-1}((-\infty, a])$, which means that $(x, y) \in \Omega$. Therefore,

$$\bigcap_{n=1}^{\infty} A_n \subseteq \Omega. \tag{1}$$

For the converse inclusion, we take Y=y. Clearly, $\Omega\subseteq A_n$ for each $n\in\mathbb{N}$, so

$$\Omega \subseteq \bigcap_{n=1}^{\infty} A_n. \tag{2}$$

From (1) and (2) we obtain
$$\Omega = \bigcap_{n=1}^{\infty} A_n$$
.

Lemma 2. B(k,t) is an open set.

Proof. For $(x,y) \in B(k,t)$, we will show that there exists $\varepsilon > 0$ such that

$$B_{\epsilon}(x,y) \subseteq B(k,t).$$

In order to prove this, let $(x,y) \in B(k,t)$, then there exists $(x,Y) \in \Omega_k$ and

$$|Y-y|<\frac{1}{n}-\frac{1}{n+t}.$$

Thus, $(x, Y) \in f^{-1}((-\infty, a + 1/k)).$

Define $g_Y(x) = f(x, Y)$. Let $(x, Y) \in f^{-1}((-\infty, a + 1/k))$, then $f(x, Y) \in (-\infty, a + 1/k)$, so $g_Y(x) \in (-\infty, a + 1/k)$. Hence,

$$x \in g_Y^{-1}\left(\left(-\infty, a + \frac{1}{k}\right)\right),$$

and $g_Y^{-1}\left((-\infty,a+1/k)\right)$ is an open set because $g_Y(x)$ is continuous. So, given $\epsilon>0$, there exists an interval $(x-\epsilon,x+\epsilon)$ such that $(x-\epsilon,x+\epsilon)\subseteq g_Y^{-1}\left((-\infty,a+1/k)\right)$.

Since $g_Y(x) \in (-\infty, a+1/k)$, we may assume that

$$|Y-y|+\epsilon < \frac{1}{n}-\frac{1}{n+t}.$$

Let $(x_0,y_0) \in B_{\epsilon}(x,y)$, then $x_0 \in (x-\epsilon,x+\epsilon)$; so $x_0 \in g_Y^{-1}((-\infty,a+1/k))$. Then $f(x_0,Y) \in (-\infty,a+1/k)$ and $(x_0,Y) \in f^{-1}((-\infty,a+1/k))$. Thus, $(x_0,Y) \in \Omega$.

Now,

$$|Y - y_0| \le |Y - y| + |y - y_0|$$

 $<\epsilon + |Y - y|$
 $<\frac{1}{n} - \frac{1}{n+t}.$

Therefore, $(x_0, y_0) \in B(k, t)$, this means that $B_{\epsilon}(x, y) \subseteq B(k, t)$, that is, B(k, t) is an open set (therefore, B(k, t) is Lebesgue measurable).

Lemma 3. $A_n = \bigcup_{t=1}^{\infty} \bigcap_{k=1}^{\infty} B(k,t)$. In particular, A_n is Lebesgue measurable.

Proof. Let $(x,y) \in \bigcup_{t=1}^{\infty} B(k,t)$. Then there exists t_0 such that $(x,y) \in \bigcap_{k=1}^{\infty} B(k,t_0)$. Hence $(x,y) \in B(k,t_0)$ for all $k \in \mathbb{N}$. Thus, there exists $(x,Y) \in \Omega_k$ such that

$$|Y - y| < \frac{1}{n} - \frac{1}{n+t} < \frac{1}{n},$$

which implies that

$$\begin{split} (x,Y) \in \bigcap_{k=1}^{\infty} f^{-1}\left(\left(-\infty, a + \frac{1}{k}\right)\right) & \Rightarrow (x,Y) \in f^{-1}\left(\bigcap_{k=1}^{\infty} \left(-\infty, a + \frac{1}{k}\right)\right) \\ & \Rightarrow (x,Y) \in f^{-1}((-\infty, a]) \\ & \Rightarrow (x,Y) \in \Omega. \end{split}$$

So $(x, Y) \in A_n$ and

$$\bigcup_{t=1}^{\infty} \bigcap_{k=1}^{\infty} B(k,t) \subseteq A_n. \tag{3}$$

On the other hand, let $(x,y) \in A_n$. Then, there exists $(x,Y) \in \Omega$ with $|Y-y| < \frac{1}{n}$. Hence, for some $t_0 > 0$, $|Y-y| < \frac{1}{n} - \frac{1}{n+t_0}$. Moreover, $\Omega \subseteq \Omega_k$ for all $k \in \mathbb{N}$. So,

 $(x,y)\in B(k,t_0)$ for all $k\in\mathbb{N}$, and $(x,y)\in\bigcap_{t=1}^\infty B(k,t_0)$. Then $(x,y)\in\bigcup_{t=1}^\infty\bigcap_{k=1}^\infty B(k,t)$, which means that

$$A_n \subseteq \bigcup_{t=1}^{\infty} \bigcap_{k=1}^{\infty} B(k,t). \tag{4}$$

From (3) and (4) we get

$$A_n = \bigcup_{t=1}^{\infty} \bigcap_{k=1}^{\infty} B(k, t).$$

Therefore, A_n is Lebesgue measurable.

Now that we have proved the three lemmas, we are ready to prove our main result. Its proof is as follows.

Proof of Theorem 2. From Lemma 1, we have

$$\Omega = \bigcap_{n=1}^{\infty} A_n.$$

On the other hand, from Lemma 3, each A_n is measurable, which in turn implies that $\bigcap_{k=1}^{\infty} A_n$ is measurable. Finally,

$$f^{-1}((-\infty, a]) := \Omega = \bigcap_{k=1}^{\infty} A_k,$$

is measurable for all $a \in \mathbb{R}$. From Theorem 1, this implies the measurability of f.

Acknowledgments

We would like to thank to the anonymous referee for his/her valuable suggestions. They improved the quality of the paper.

References

- [1] R.O. Davies. *Separate approximation continuity implies measurability*, Proc. Cambridge Philos. Soc, 73, 1988, 461-465.
- [2] J. Dravecky, *On the measurability of functions of two variables*, Acta Fac. Rerum Natur. Univ. Comenian. Math. 27 (1972), 11-18.
- [3] G. B. Folland, *Real Analysis. Modern Techniques and their Applications* (2nd), John Wiley & sons, 1999.
- [4] Z. Grande, *On the measurability of functions of two variables*, Math. Proc. Cambridge Philos. Soc. 77 (1975), 335-336.
- [5] G. Kwiecińska, Measurability of multifunctions with the (J) property, Traditional and present-day topics in real analysis, 265-279, Faculty of Mathematics and Computer Science. University of Lódź, Lódź, 2013.

- [6] J. H. Michael, B. C. Rennie, *Measurability of functions of two variables*, J. Austral. Math. Soc. 1 1959/1961 part 1, 21-26.
- [7] H. L. Royden Real Analysis., (third edition) New York, 1988.

Recibido en junio de 2023. Aceptado para publicación en junio de 2024.

RENÉ ERLIN CASTILLO
DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL DE COLOMBIA
BOGOTÁ, COLOMBIA
e-mail: recastillo@unal.edu.co

HÉCTOR CAMILO CHAPARRO
PROGRAMA DE MATEMÁTICAS
UNIVERSIDAD DE CARTAGENA
CARTAGENA DE INDIAS, COLOMBIA
e-mail: hchaparrog@unicartagena.edu.co