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ABSTRACT. The lemniscate of Bernoulli was, in a sense, what paved the way for
modern Elliptic Function Theory. This curve can be generalized in the following way:
Ln = |(z − ζ1)(z − ζ2) · · · (z − ζn)| = rn, r ∈ R, ζi ∈ C. In this paper, this
generalized curve is meticulously studied when r = 1, and ζi is a nth-root of the unity,
which we call the nth-order lemniscate. In the first section, the historical background of
this curve is presented. In the second section, an analytic description of tangent lines
and the singularity (in real plane R2) is presented together with a study of curvature,
Schwarz function, and Joukowski maps applied to our curve. Finally, in the third section,
calculations of some topological and geometric invariants (in the complex-projective
plane CP2) are shown.

Key words: nth-order lemniscate, Schwarz function, Joukowski maps, ramification
points, genus.

RESUMEN. La lemniscata de Bernoulli abrió las puertas al desarrollo de la teoría
de funciones elípticas por propiedades geométricas elementales intrínsecas a la curva.
Esta curva se puede generalizar como: Ln = |(z − ζ1)(z − ζ2) · · · (z − ζn)| = rn,

r ∈ R, ζi ∈ C. En este artículo, esta curva es estudiada con detalle para el caso cuando
r = 1 y ζi es una raíz n-ésima de la unidad, a la cual llamamos la lemniscata de
orden n. En la primera sección, se presenta el contexto histórico de esta curva. En
la segunda sección, se presenta una descripción analítica de las rectas tangentes y la
singularidad de la curva (en el plano real R2) junto con un estudio de la curvatura, la
función de Schwarz y los mapas de Joukowski aplicados a nuestra curva. Finalmente,
en la tercera sección, se calculan algunos invariantes topológicos y geométricos (en el
plano proyectivo complejo CP2).
Palabras clave: lemniscata de orden n, función de Schwarz, mapas de Joukowski, punto
de ramificación, género.
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1 Introduction

Since antiquity, the notion of “infinity” has played a central role in the history of human
thought. Aristotle, in his famous book Physics, exhibits the necessity of investigating
whether infinity exists or not, and if it exists, what it is. Nevertheless, without a proper
understanding of it, according to Aristotle, the Pythagoreans and geometers started to use
this concept. It was not until the middle of the seventeenth century that the contemporary
symbol was introduced. The symbol ∞ was first used by John Wallis in De sectionibus
conics (Fig. 1). The choice of the symbol was unjustified, but very appropriate.

Figure 1. Cover of De sectionibus conics (1655) and first documented appearance of ∞.
Taken from archive.org.

The pertinence of the symbol lies in the fact that it resembles a curve known as the
lemniscate (Lemniscus) of Bernoulli. While Wallis was studying conic sections, the curve
was initially described by Perseus, a Greek geometer, as a toric section. Toric sections are
the intersections of a torus with a plane parallel to the rotation axis of the torus.

Figure 2. Lemniscate as toric section

https://archive.org/details/bub_gb_03M_AAAAcAAJ/page/n5/mode/2up
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One example of toric sections was proposed by the Italian astronomer Giovanni
Domenico Cassini (1625-1712) in 1680. In an effort to describe the Sun’s trajectory,
Cassini fixed two points in the plane: f1 and f2 –called focal points– and considered the
locus of all points p such that the product of its distance to these two points was constant,
i.e., points for which |pf1| · |pf2| = k, where k is a positive constant. Each value of k
determines a trajectory. Cassini believed that the Sun traveled around the Earth (located at
one of the focal points) through one of those trajectories. Considering a torus with minor
radius r and major radius R, the toric section corresponds to the lemniscate (Fig. 2) –as

one of the Cassini trajectories– exactly when r =
R

2
. In this case, the distance between

the focal points is 2R and the distance between the intersection plane and the rotation axis
is R− r (Fig. 3).

Figure 3. Lemniscate as Cassini’s trajectory

Later, Jacob Bernoulli (1654-1705) in 1694 took up this work, but with a more analyti-
cal perspective. Bernoulli proved that the arc length of the lemniscate was given by the
elliptic integral: ∫ x

0

1√
1− t4

dt.

This result inspired a series of arguments that allowed the rigorous advance of Elliptic
Function Theory. A remarkable case of this progress was the addition theorem by Leonhard
Euler (1707-1783). Those results were motivated by Giovanni Fagnano’s works in 1718
to double the arc length of the lemniscate. In fact, Carl G. J. Jacobi (1804-1851) named
December 23, 1751 –the day Euler received Fagnano’s work– as “the birthday of Elliptic
Function Theory” [22, p. 232].

As we have seen, the lemniscate can be ascribed to a broad family of curves (toric
sections, Cassini’s trajectories). However, the lemniscate can also be thought of as a curve
of two petals. In what follows, we denote it by L2. A naive generalization of L2 gives us
a curve with n petals denoted by Ln (we will formalize this shortly).

In this paper, we study some of the main results of [12] and [13] regarding L2 and
L3 in order to generalize some techniques and results to Ln. Our presentation is divided
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into two sections. Each section is dedicated to the study of geometric and topological
characteristics of Ln in the ambient space R2 and CP2, respectively. Both sections are
part of the author’s undergraduate thesis at Los Andes University. All results presented
here are, to our best knowledge, new contributions to the subject, unless explicitly stated
otherwise. The author would like to thank his advisor Alexander Getmanenko for his many
helpful insights and his friendly encouragement.

2 Real geometry of Ln

2.1 Analytic description of Ln

Definition 1. Let c ∈ (0,∞) be a positive number, and let f1 = (c, 0) and f2 = (−c, 0)

two points –which we call focal points1. If p = (x, y) and k > 0, then, by the Pythagorean
theorem, the locus such that |pf1| · |pf2| = k is given by

(y2 + (x+ c)2)(y2 + (x− c)2) = k2,

or equivalently by
(x2 + y2)2 − 2c2(x2 − y2) = k2 − c4. (1)

This family of curves (parametrized by k) is the Cassini’s curves.

Definition 2. The lemniscate of Bernoulli L2 is the Cassini’s curve when k2 − c4 = 0.

Hence, L2 has Cartesian equation:

(x2 + y2)2 − 2c2(x2 − y2) = 0. (2)

It can be shown that in the polar coordinates (r, θ) of R2 the equation (2) is equivalent to

r2 = 2c2 cos(2θ). (3)

Without loss of generality, we take c = 1. The equation (3) is convenient because it is
easily generalizable.

Definition 3. The lemniscate of nth-order Ln is the curve with polar and Cartesian
equations

rn = 2 cos(nθ), (4)

(x2 + y2)n = 2

n∑
k=0
k even

(−1)k/2
(
n

k

)
xn−kyk, (5)

respectively.

Note that Ln is a curve of degree 2n. This analytic description of Ln delineates
the object under investigation here because there are many n-petals shaped curves. For
instance, L3 is different from the well-known trifolium curve.
1In the next section we prove that the name corresponds to the classic definition. See Proposition 15



Lecturas Matemáticas, vol. 46 (1) (2025), pp. 5-43 9

Remark 1. The curve Ln is an example of the classic curves sinusoidal spirals (Fig. 4).
That name was given by Colin MacLaurin (1698-1746) in his book Geometria Organica:
Sive descriptio linearum curvarum universalis, to curves with equation rν = aν cos(νθ)

with ν ∈ Q (cf. [14, p. 184]).

(a) ν = 2 (b) ν = 2.3 (c) ν = 2.75 (d) ν = 3

Figure 4. Sinusoidal spirals for a = 1

Letting z = x + iy, where x, y ∈ R, it can be shown that an equivalent form of the
equation (5) is

|pn(z)|2 = |(z − ζ1)(z − ζ2) · · · (z − ζn)|2 = r, (6)

where ζi is a nth-root of the unity and r = 1. This equation shows that our algebraic
generalization (see equation 5) is indeed a generalization of Cassini’s curves with n focal
points at ζi ∈ C. We call this family of curves |pn(z)|2 = r, parametrized by r, generalized
lemniscates (Fig. 5).

Figure 5. Family |p6(z)|2 = r

2.2 Singularity of Ln

Definition 4. Let C be a curve defined by the polynomial2 f(x, y) and L a line such that
C ∩ L ̸= ∅. Suppose the coordinate system on R2 is chosen such that o = (0, 0) ∈ C ∩ L

2Unless otherwise indicated, we will work only with polynomials.
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and L = {t(a1, a2) : t ∈ R; (a1, a2) ̸= (0, 0)}. Define the intersection multiplicity of L
and C at o as the multiplicity m of the root t = 0 of f(a1t, a2t) (cf. [21, pp. 15-16]).

Definition 5. Let C be a curve defined by f(x, y) = 0 and let p = (a, b) be a point of C.

i. The multiplicity multp(C) > 0 of C at p is the order of the lowest non-vanishing
term in the Taylor expansion of f at p.

ii. The tangents to C at p are the lines through p that cut C with multiplicity m >

multp(C). It is known that, counting multiplicities, C has at most multp(C) (real)
tangents to C at p.

iii. The point p is a regular point when multp(C) = 1. Otherwise, p is called a singular
point.

Remark 2. In the previous definition, we have used affine coordinates. However, it is well
known that it is independent of the choice of coordinates.

Remark 3. Our definition of singular points is different and, in fact, not equivalent to the
definition of parametric singular points found in –for example– [20, p. 13]. Parametric
singular points are those where the derivative of the parametrization of the curve is zero.
We know that, for example, a straight line –which has no singular points according to
Definition 5– has a parametrization with parametric singular points. The definition we
adopted here coincides with the more general definition of singular algebraic varieties, but,
because of the dimension we are working in, does not force us to introduce localization
rings and tangent spaces yet (cf. [21, p. 234], [7, p. 62], [8, p. 227]).

Proposition 1. The point o = (0, 0) is a singular point of Ln. Moreover, multo(Ln) = n.

Proof. This follows easily since equation (5) is the Taylor expansion of the curve.

Remark 4. Actually, Ln has no other singular point besides o. This is easy to see because
singular points are preserved under diffeomorphisms (in particular, under the change to
polar coordinates) (see Eq. (4)).

Proposition 2. The n tangent lines to Ln at o are

y = µjx,

where µj =
ωj − 1

i(1 + ωj)
with j = 1, · · · , n for each ωj , a nth-root of −1 different from −1.

For n odd, there exists k such that ωk = −1. This root corresponds to the tangent line
x = 0.

Proof. Following the method of [23, pp. 53-54], the tangents are given by

µx− λy = 0,

where the ratios µ : λ satisfy
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Figure 6. Tangent lines to L4 at o

n∑
i=0

(
n

i

)[
∂nf

∂xn−i∂yi

] ∣∣∣∣∣
(0,0)

λn−iµi = 0. (7)

For Ln we have that, as in Proposition 1,

∂nf

∂xn−i∂yi

∣∣∣∣∣
(0,0)

=

[
n∑

k=0

(
n

k

)
(2n− 2k)

n−i

(2k)
i

xn−2k+iy2k−i+

− 2
n∑

k=0
k even

(−1)k/2
(
n

k

)
(n− k)

n−i

(k)
i

xi−kyk−i

]∣∣∣∣∣
(0,0)

.

(8)

Here a
b

= a(a− 1) · · · (a− b+ 1) denotes the falling factorial3.

The first sum is a polynomial of degree 2n with no constant term. Therefore, when
evaluating at o it vanishes. Similarly, for i odd, the second sum is a constant-term free
polynomial. Because the powers of y in the equation (5) are even, for i even we have

∂nf

∂xn−i∂yi

∣∣∣∣∣
(0,0)

= (−1)i/2+12

(
n

i

)
(n− i)

n−i

= (−1)i/2+12(n!).

Thus, the equation (7) for Ln is

3Indices must be understood as a positive expression or 0 otherwise. Analogously in the sequel.
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n∑
i=0
i even

(−1)i/2+12

(
n

i

)
n!λn−iµi = 0. (9)

Case 1: λ ̸= 0. Without loss of generality, we take λ = 1. It is sufficient to find the
solution of

n∑
i=0
i par

(−1)i/2+1

(
n

i

)
µi = 0. (10)

It is straightforward to check that equation (10) is equivalent to

(1 + iµ)n + (1− iµ)n = 0. (11)

We find that
µj =

ωj − 1

i(1 + ωj)
, j = 1, · · · , n (12)

solves the equation (11), where ωj is a nth-root of −1 different from −1. Observe that
µj ∈ R since

Im(µj) =
1

2i
(µj − µj)

= − ωj − 1

2(1 + ωj)
− ωj − 1

2(1 + ωj)

=
−ωj − ωjωj + 1 + ωj − ωj − ωjωj + 1 + ωj

2(1 + ωj)(1 + ωj)

= − 2(ωjωj − 1)

2(1 + ωj)(1 + ωj)

= 0.

(13)

Case 2: λ = 0. If n is even, the equation (9) implies that µ = 0, but 0 : 0 is undefined.
For n odd, x = 0 is a tangent line (see below). Note that only for n odd ω1 = −1 is a
nth-root of −1. Consequently, µ1 = ∞ is undefined, but it is associated to x = 0.

Since the solutions to the equation (11) are simple, Ln has n different tangent lines at
o given by the equations:

y = µjx.

Now, we verify that the intersection multiplicity of L = {(1, µj)t : t ∈ R} and Ln at
o is greater than n. Because µj satisfies the equation (10), when we substitute x = t and
y = µjt in the equation of Ln we see that:

f(t, µjt) =
(
t2 + µ2

j t
2
)n −

2

n∑
k=0
k even

(−1)k/2
(
n

k

)
µk
j

 tn =
(
t2 + µ2

j t
2
)n

.
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Therefore, the multiplicity of the root t = 0 of f(t, µjt) is m = 2n > n. Analogously, for
L = {(0, 1)t : t ∈ R} when n is odd we have f(0, t) = (t2)n. Hence, m = 2n in this
case too.

2.3 Curvature

One of the main intrinsic characteristics of a curve is its curvature function. In classical
theory, curvature is defined using a parametrization of the curve. Since we are working over
R, Ln is the image of a regular parametrization (it is an immersion), so the curvature is
defined. However, curvature –in this classical sense– is not defined at parametric singular
points. In this subsection we derive a formula for the curvature of Ln using only its
algebraic description. Our approach is based on the presentation in [6]. We will show that
the curvature is well-defined at the singular point of Ln.

Definition 6. Let γ(s) be a unit-speed parametrization (and therefore, regular) of a curve

in R2, and let t⃗ =
dγ

ds
be the unit tangent vector. The signed normal vector n⃗s is the

anticlockwise rotation by
π

2
of t⃗. Since

dt⃗

ds
is parallel to n⃗s (because of the unit-speed

parametrization), there exists κ(s) ∈ R such that
dt⃗

ds
= κ(s)n⃗s. We define κ = |κ(s)| as

the curvature of the curve at s.

It is clear that t⃗ and n⃗ are perpendicular, so {t⃗, n⃗} is an (orthonormal) basis of R2.
This basis is called the Frenet-Serret frame. The natural implicit analogue of the preceding

definition for a curve given by f(x, y) = 0 is as follows: take Nf =
∇f

|∇f |
= (Nf

x , N
f
y )

as the normal vector and T f = (−Nf
y , N

f
x ) as the unitary tangent vector (which is a

π

2
-rotation of Nf ).

Figure 7. Frenet-Serret frame for L2 at p

In [6, p. 632, Proposition 3.1] it is proved that:
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Proposition 3. The curvature of a plane curve (at regular points) implicitly defined by
f(x, y) = 0 is

κ(x, y) =
|T f ·Hess(f) · (T f )t|

|∇F |

=

∣∣∣∣∣∣∣∣∣
(
∂f

∂y

)2
∂2f

∂x2
− 2

∂f

∂x

∂f

∂y

∂2f

∂yx
+

(
∂f

∂x

)2
∂2f

∂y2(
∂f

∂x

2

+
∂f

∂y

2)3/2

∣∣∣∣∣∣∣∣∣
(14)

Proof. From the definition,

κ(s) = −dn⃗

ds
t⃗.

The implicit analogous of that is

κ(s) = −dNf

ds
T f .

By the chain rule,

κ(s) = −dNf

ds
T f = −

(
∂Nf

∂x

dx

ds
+

∂Nf

∂y

dy

ds

)
T f = −T f∇Nf (T f )t.

Applying the quotient rule (and the fact that ∇f · T f = 0) we obtain the desired formula.

For points where
dt⃗

ds
= 0, the Frenet-Serret basis degenerates and κ is undefined. The

same thing happens for singular points in the implicit Frenet-Serret basis. Nevertheless,
there exists a notion of curvature at singular points along the tangent lines of the curve at
those points. In general, this curvature depends on the tangent line chosen.

Definition 7. Let p = (a, b) be a singular point of the curve C with multp(C) = r.
Consider the parametric curve (conic) Γ defined by

r⃗ : R → R2; t 7→ r⃗(t) =
(
a+ a1t+

1

2
a2t

2, b+ b1t+
1

2
b2t

2
)
,

where
dr⃗

dt
(0) = (a1, b1) is the director vector of one of the tangent lines, say L, of C at

p. Since (a1, b1) ̸= (0, 0), p is a parametric regular point of Γ. Hence, the curvature κ at
p ∈ Γ is (cf. [20, p. 31, Proposition 2.1.2]):

κ =

∣∣∣det(dr⃗

dt
|d

2r⃗

dt2

) ∣∣∣∣∣∣dr⃗
dt

∣∣∣3 =
|a1b2 − a2b1|
(a21 + b21)

3/2
.

We define κ as the curvature of C at p along the tangent L.
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In [15, p. 5, Theorem 1], the authors proved that this definition coincides with the

curvature of the Proposition 3 when applied to points where
dt⃗

ds
̸= 0. Definition 7 allows

us to calculate the curvature at points where Nf = 0, by measuring it through an auxiliary
conic –this is the geometric meaning of curvature: the inverse of the radius of the best
circular approximation. The following proposition not only gives an explicit formula for
the curvature at regular points of Ln, but also shows that the curvature is unambiguously
determined at the singular point o. In [15, pp. 6-8] there are examples where, even though
the values of the curvature is the same along all the tangent lines, the value does not
continuously extend the curvature function around that point. For Ln, however, it is a
continuous extension.

Proposition 4. The curvature function of Ln at regular points is∣∣∣∣∣4n3
((
x2 + y2

)n − (x− iy)
n) ((

x2 + y2
)n

+ (x+ iy)
n)

(x2 + y2)
(3n−1)/2

×
(
2
(
x2 + y2

)n
+ (n− 1) ((x− iy)

n − (x+ iy)
n
)
)∣∣∣ ,

and it is 0 at o. Thus, the curvature function of Ln is continuously extended to o.

Proof. The general formula is obtained after some calculations and simplifications. To

calculate the curvature at o, substitute x = a1t +
1

2
a2t

2 and y = b1t +
1

2
b2t

2 into the
equation (5):

g(t) =

((
a1t+

1

2
a2t

2

)2

+

(
b1t+

1

2
b2t

2

)2
)2

+

− 2

n∑
k=0
k even

(−1)k/2
(
n

k

)(
n−k∑
i=0

(
n− k

i

)
an−k−i
1

(a2

2

)i
tn−k+i

)(
k∑

i=0

(
k

i

)
bk−i
1

(
b2
2

)i

tk−i

)

=

((
a1t+

1

2
a2t

2

)2

+

(
b1t+

1

2
b2t

2

)2
)2

+

− 2

n∑
k=0
k even

(−1)k/2
(
n

k

)(
2n−2k∑
α=n−k

(
n− k

α− n+ k

)
aα
1

(a2

2

)α−n+k

tα
)
×

×

 k∑
β=0

(
k

k − β

)
bβ1

(
b2
2

)k−β

tβ

 .

(15)

We are interested in the coefficients of the powers tn and tn+1 of this polynomial of
degree 4n. When we expand, we see that

Cn = −2

n∑
k=0
k par

(−1)k/2
(
n

k

)
an−k
1 bk1 , (16)
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and

Cn+1 = −2

n∑
k=0
k par

(−1)k/2
(
n

k

)[(
n− k

0

)(
k

1

)
an−k
1 bk−1

1

(
b2
2

)
+

+

(
n− k

0

)(
k

1

)
an−k−1
1 bk1

(a2
2

)] (17)

are such coefficients, respectively. When Cn = 0, a1 = µjb1, where µj is as in equation
(12) (as expected!). Fix j ∈ {1, · · · , n} and take b1 = 1. Then Cn+1 = 0 implies (after
straightforward calculations) that b2 =

a2
µj

. Thus κ = 0 for all j.

Figure 8 displays the curvature function of Ln for some values of n. We observe that
the curvature attains maximum values proportional to n at points that minimize the distance
from the focal points in each petal of the curve (e.g., for n = 2, the maximum curvature is
2.1213203, and for n = 5 it is 5.223303). It is not hard to see that the coordinates of those
points are pi =

(
Re( n

√
2), Im( n

√
2)
)
.

(a) Curvature of L3 (b) Curvature of L5

Figure 8. Curvature of Ln

2.4 Schwarz function

Despite its name, the Schwarz function does not, to the best of our knowledge, appear
explicitly in Schwarz’s work. The concept was introduced systematically by Philip J. Davis
(1923–2018) in [3]. In this subsection, we define the Schwarz function for Ln and describe
the sense in which Ln is the multiplicative inverse of the n-hyperbola. This was suggested
in [12] and [13], but we complete and generalize it.

Definition 8. Let z = x + iy and z = x − iy with x, y ∈ R. Since x =
z + z

2
and

y =
z − z

2i
, the coordinate system (z, z) is referred to as the conjugated coordinate system.
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Definition 9. Let C ⊂ C be a plane curve defined by f(x, y) = 0. In conjugated

coordinates, g(z, z) = f

(
z + z

2
,
z − z

2i

)
is analytic4. If, for z0 ∈ C, we have that

∂g

∂z

∣∣∣
z0

̸= 0, by the implicit function theorem, we can (locally) solve z from g(z, z) :

z = S(z).

The function
SC : C → C; z 7→ S(z). (18)

is called the Schwarz function associated to C.

A priori, the Schwarz function can be analytically extended to many other points of

C \ C. The condition
∂g

∂z

∣∣∣
z0

̸= 0 is only sufficient.

Remark 5. The uniqueness of the Schwarz function is evident, while its existence is
established a posteriori. Moreover, the Schwarz function associated to C fixes the curve if
it is symmetric with respect to the x-axis –just like Ln.

Part of the following proposition can be found in [3, p. 27]

Proposition 5. The Schwarz function associated to Ln is

SLn
: Ln → C; z 7→ n

√
zn

zn − 1
. (19)

Since it is a multivalued function, we choose the root such that SLn
(pi) = pi for every

point of maximum curvature pi, with i = 1, · · · , n. In fact, SLn
analytically extends to

D = C \ {ζi : ζni = 1}

Proof. In conjugated coordinates, Ln is given by

g(z, z) =

((
z + z

2

)2

+

(
z − z

2i

)2
)n

− 2

n∑
k=0
k even

(−1)k/2
(
n

k

)(
z + z

2

)n−k (
z − z

2i

)k

= 0.

When we expand we get

g(z, z) = (zz)
n − zn − zn = 0. (20)

Note that this elegant identity exposes the inherent symmetry of Ln, reducing the problem
of solving for z to a straightforward algebraic manipulation:

z = n

√
zn

zn − 1
.

4In general, that is the condition we impose when f is not a polynomial
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Nonetheless, n

√
zn

zn − 1
represents n different complex numbers. Because of that, we must

choose, for each petal (branch) of Ln, the number that satisfies SLn
(z) = z (that was our

geometric definition of SC). It suffices to impose one condition over pi =
n
√
2 ∈ C, with

i = 1, · · · , n, the points of maximum curvature, and analytically extend the function. This
uniquely associates each branch of Ln with an analytic branch of the complex function
n
√
z. Note that

∂g

∂z
= nznzn−1 − nzn−1 = 0 if and only if z = 0 o zn − 1 = 0. This

finishes the proof.

Figure 9 shows the action of SL2 in a region D ⊂ D from its domain, formed by
circles of different radii and L2. In panel (b), the image of each circle under SL2 retains
the color of its preimage shown in panel (a), providing visual coherence.

(a) Region D from the domain of SL2
(b) SL2

(D), with D as in (a)

Figure 9. Action of SLn

The previous figure shows, on the one hand, that SL2
(L2) = L2 as we mentioned

early (because of the symmetry). On the other hand, it hints that SLn
: D → D is, actually,

an involution. Finally, we can see that SL2
(S1) = H2, where S1 = {z : |z| = 1} y H2

is the hyperbola defined by the equation 2(x2 − y2)− 1 = 0. The following proposition
formalize these observations.

Proposition 6. The function SLn
, defined as in Proposition 5, is an involution.

Proof. When we calculate the composition, we find out that

(SLn
◦ SLn

) (z) = n

√√√√√√
zn

zn − 1
zn

zn − 1
− 1

= n
√
zn = ζiz,
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with ζi a nth-root of the unity. Since SLn ◦ SLn(pi) = pi, it follows that ζi = 1 for all i,
and thus SLn is indeed an involution: SLn ◦ SLn = id.

(a) Region E from the domain of SL2

(b) SL2
(E), with E as in (a)

Figure 10. Action of SLn on L λ
n

In fact5, SLn
preserves the whole family of re-escalated lemniscates L λ

n given by

λ(x2 + y2)n − 2

n∑
k=0
k even

(−1)k/2
(
n

k

)
xn−kyk = 0 (21)

according to the relation SLn(L
λ
n ) = L 2−λ

n . When 2− λ < 0, the lemniscate is just a
π

2
-rotation of the corresponding curve L

|2−λ|
n (Fig. 10).

Definition 10. When we generalize the equation of a hyperbola with two foci, we get that
the equation

2

n∑
k=0
k even

(−1)k/2
(
n

k

)
xn−kyk − 1 = 0 (22)

5This was a captivating remark by professor Getmanenko.
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describe a “hyperbola” with n foci. We call the curve determined by this equation the
n-hyperbola with foci at ζi –the nth-root of the unity– and we denote it by Hn.

We verify that the image of S1 under SLn
satisfies the defining equation of Hn in

conjugated coordinates.

Proposition 7. The image of S1 under SLn
is the n-hyperbola Hn.

Proof. In conjugated coordinates the equation (22) corresponds to

zn + zn − 1 = 0. (23)

Let z0 ∈ S1. Then SLn
(z0) =

n

√
zn0

zn0 − 1
satisfies the equation (23), since

SLn(z0)
n + SLn(z0)

n
=

zn0
zn0 − 1

+
z0

n

z0
n − 1

=

1︷ ︸︸ ︷
zn0 z0

n −zn0 +

1︷ ︸︸ ︷
z0

nzn0 −z0
n

zn0 z0
n︸ ︷︷ ︸

1

−zn0 − z0
n + 1

= 1.

This, together with the Proposition 6, completes the proof.

As a matter of fact, the relation between Ln and Hn is stronger.

Proposition 8. The image of S1 under SHn is Ln.

Proof. From the equation (23) is easy to see that

SHn
: C → C; z 7→ n

√
1− zn (24)

is the Schwarz function associated to Hn. As we did with SLn
, we must establish some

condition on SHn
to define it unambiguously. In this case, it is enough that SHn

(ai) = ai,
where ai are the vertices of Hn.

Let z0 ∈ S1. Then SHn(z0) =
n
√
1− zn0 satisfies the equation (20) because(

n
√
1− zn0

)n (
n
√

1− zn0

)n
= (1− zn0 )(1− z0

n) = 1− zn0 − z0
n + z0z0

n

= (1− z0
n) + (1− zn0 ) =

(
n
√
1− zn0

)n
+
(

n
√

1− zn0

)n
.

It is straightforward to check that SHn is also an involution, which completes the proof.

Definition 11. (informal)6 Let X be the space of algebraic plane curves. Given two curves
C1, C2 ∈ X with associated Schwarz function SC1

and SC2
, respectively, we define the

operation (whenever defined) InvC1
C2 = C where C is the curve with associated Schwarz

function SC1
◦ S−1

C2
◦ SC1

.

6The rigorous presentation of this definition requires the concept of Jordan arc, but the general idea is the same.
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(a) n = 3 (b) n = 7

Figure 11. Triad S1,Ln and Hn

With this informal definition, X can be understood with a non-associative operation in
which the identity (base) element varies in the space X. This product satisfies the axioms
of a symmetric space (cf. [16, p. 63, Definition 1 ]). Some of them are the following:

1. InvCC = C,

2. InvC1
(InvC1

C2) = C2, and

3. InvC1
(InvC2

C3) = InvInvC1
C2

(InvC1
C3).

Proposition 9. In the space X, the inverse curve of Ln, with base S1, is Hn and vice
versa. That is, InvLnHn = InvHnLn = S1.

Proof. The result follows from the two precedent propositions, and the following calcula-
tion:

n

√
zn

zn − 1
◦ n
√
1− zn ◦ n

√
zn

zn − 1
=

1

z

n
√
1− zn ◦ n

√
zn

zn − 1
◦ n
√
1− zn =

1

z
.

Note that
1

z
is the Schwarz function associated to S1 because z =

1

z
if and only if

zz = x2 + y2 = 1.

Remark 6. In section 1 we mentioned that Ln is an example of sinusoidal spiral with
ν = n and aν = 2. It is amusing to observe that Hn is so too, but with ν = −n and

aν =
1

2
.

To conclude this subsection, we present a compelling result from [3, pp. 41-45] that
connects the Schwarz function with the curvature function of a curve.
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Proposition 10. The curvature of the curve C with associated Schwarz function SC(z) is

κ =
1

2
|S′′(z)| (25)

Proof. Since z = S(z) along C,

S′(z) =
dz

dz
=

dx+ idy

dx− idy
=

1− i
dy

dx

1 + i
dy

dx

.

Solving
dy

dx
from the previous equation, we get that

dy

dx
= −i

1− S′(z)

1 + S′(z)
. (26)

Now, in [20, p. 38, Proposition 2.2.3] it is proved that the signed curvature is given by

κ(s) =
dφ

ds
,

where φ is the turning angle, i.e., the angle the tangent line to C at a given point makes
with the x-axis. Let z0 ∈ C. It is easily seen that the tangent line of C at z0 has equation

z = S′
C(z0)(z − z0) + z0.

Additionally, we have that

tanφ =
dy

dx
= −i

1− S′
C(z0)

1 + S′
C(z0)

.

Therefore,

dφ

ds
=

d tan−1

(
dy

dx

)
dx

dx

dz

dz

ds
. (27)

On the other hand, ds2 = dx2 + dy2 = dzdz = S′
C(z)(dz)

2. Thus,

dz

ds
=

1√
S′
C(z)

. (28)

Moreover,
dz

dx
=

dx+ idy

dx
= 1 + i

dy

dx
=

2

1 + S′
C(z)

and consequently,

d2y

dx2
=

d

(
dy

dx

)
dz

dz

dx
=

4iS′′
C(z)

(1 + S′
C(z))

3
. (29)

Substituting the equations (28) and (29) into the equation (27) we obtain
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κ(s) =
dφ

ds
=

iS′′
C(z)

2 (S′
C(z))

3/2
. (30)

Taking the absolute value, we get the curvature of C and the desired formula.

As a result, we have gotten a more compact expression for the curvature function of
Ln, namely,

κ =
n+ 1

2

∣∣∣∣∣∣∣∣
zn−2 n

√
zn

zn − 1

(zn − 1)2

∣∣∣∣∣∣∣∣ ,
where the choice of the root corresponds to the one made in the definition of SLn

(z).

2.5 Joukowski maps

In this subsection, we introduce the Joukowski maps. Joukowski maps play a crucial role
in the differential structure of Ln. Our goal, then, is to consolidate a solid understanding
of them in relation to Ln and other generalized lemniscates.

Definition 12. We define positive and negative Joukowski maps, respectively, as follows:

j+ : C∗ → C; z 7→ 1

2

(
z +

1

z

)
j− : C∗ → C; z 7→ 1

2

(
z − 1

z

) (31)

It is clear that these maps are not injective, but rather 2 : 1 since j+(z) = j+(1/z) and
j−(z) = j−(−1/z).

One of the visualization tools we have for complex-valued functions is the color domain
technique. This method was popularized at the end of the twentieth century (cf. [19]), but
Frank Farris was the one who named it. If we assign a color to each complex number, we
could link a number z ∈ C (in the domain) with the color assigned to w = f(z) ∈ C (in
the image). In the standard formulation of the color domain method, the assignment of
the color to the complex number z follows the HSL model. The color of z ∈ C is formed

by the Hue = Arg(z), the Saturation= 100% and the Lightness =
|z|a

|z|a + 1
· 100% (where

a > 0; here a =0.4). Thus, for example, the identity function f(z) = z on the domain
{z : −3 ≤ Re(z), Im(z) ≤ 3} would have the representation of Figure 12.

Thus, the graphic representation of Joukowski maps in {z : −3 ≤ Re(z), Im(z) ≤ 3}
are shown in Figure 12.

In fact, as observed in [12], Joukowski maps give us back the structure of L2,H2 and
S1 from a symmetric configuration displayed in Figure 14.
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Figure 12. Color domain of f(z) = z

(a) Color domain of j+(z) (b) Color domain of j−(z)

Figure 13. Color domain of Joukowski maps

The set L1
6 is formed by two circles centered at ±i with radius

√
2, two circles centered

at ±1 with radius
√
2 and the two lines y = ±x (which are the tangent lines to L2 at o).

This explains the number 6. Symmetric results are easily obtained using j−. It turns out
that there exists a sense in which L2, and more generally, the triad j+

(
L1
6

)
is already

contained in L2n. Let’s consider the generalized Joukowski maps:

jn+ : C∗ → C; z 7→ 1

2

(
zn +

1

zn

)
,

jn− : C∗ → C; z 7→ 1

2

(
zn − 1

zn

)
.

(32)
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(a) Symmetric configuration L1
6 (b) Triad j+

(
L1
6

)
Figure 14. Configuration L1

6

In subsection 2.1, we indicated that L2n is described by the equation |p2n(z)|2 = 1.
On the other hand, the 2nth roots of −1 can be split into two groups: z1j = { n

√
i} and

z2j = { n
√
−i}. With these two groups of roots, we can define two different curves in the

family of generalized lemniscates |pn(z)|2 = r:

C1 :
∣∣∣ n∏
j=1

(z − z1j )
∣∣∣2 = 2

C2 :
∣∣∣ n∏
j=1

(z − z2j )
∣∣∣2 = 2

Strictly speaking, these curves are rotations of the originally defined generalized lemnis-
cates |pn(z)|2 = r, to which Ln belongs. The 2n : 1 image under jn+ of C1 and C2 is
precisely S1. This new construction is, truly, a generalization of the case when n = 1.
This completely elucidates the notation L1

6.

Similarly, the 2nth roots of unity can be split into two groups: w1
j = { n

√
1} and

w2
j = { n

√
−1}. Once again, we define two curves, members of the family |pn(z)|2 = r of

generalized lemniscates:

C3 :
∣∣∣ n∏
j=1

(z − w1
j )
∣∣∣2 = 2

C4 :
∣∣∣ n∏
j=1

(z − w2
j )
∣∣∣2 = 2

As before, C4 is a rotation of the actual curve of |pn(z)|2 = r. The 2n : 1 image under
jn+ of C3 and C4 is L2. To complete the triad j+(L1

6), observe that jn+(T2n) = H2, where
T2n denotes the tangent lines of L2n at the origin o.
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Accordingly, we have generalized the configuration L1
6. Defining

Ln
6 = {C1, C2, C3, C4, T2n} ,

we conclude that:
jn+(Ln

6 ) = {L2,H2, S
1}.

(a) Symmetric configuration L2
6 (b) Symmetric configuration L3

6

Figure 15. Configuration Ln
6

3 Complex-projective geometry of Ln

Definition 13. Define the complex projective plane as the quotient CP2 = C3\{(0, 0, 0)}/∼,
where (z1, z2, z3) ∼ (w1, w2, w3) if and only if zj = λwj for some λ ∈ C \ {0} and
all j = 1, 2, 3. Thus, CP2 = {[X : Y : Z]∼ : X,Y, Z ∈ C, not all 0}. The coordinates
X,Y, Z of the complex projective plane are the homogeneous coordinates.

We henceforth denote by [X : Y : Z] the equivalence class [X : Y : Z]∼.

Definition 14. If C ⊆ C2 is an affine curve defined by f(x, y) = 0, the homogenization
of f represents the projectivization of C ⊆ CP2. In other words, the projectivization of C
is given by

F (X,Y, Z) = Zdf

(
X

Z
,
Y

Z

)
= 0,

where d is the degree of f. We say that C is a curve of degree d.

Therefore, by the equation (5), the complex projectivization of Ln is the locus of
[X : Y : Z] such that:
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(X2 + Y 2)n − 2Zn
n∑

k=0
k even

(−1)k/2
(
n

k

)
Xn−kY k = 0. (33)

Equation (33) is equivalent to

(X2 + Y 2)n − Zn(X + iY )n − Zn(X − iY )n = 0. (34)

Remark 7. When Z = 1, the curve C ⊆ CP2 determined by F can be sent onto C2. When
Z = 0, the points [X : Y : 0] that satisfy F (X,Y, Z) = 0 are called points at infinity.
It is simple to see that Ln has only two points at infinity, namely, I = [i : 1 : 0] and
J = [−i : 1 : 0], called circular points because every projective circle passes through
these points.

Figure 16 is a visualization of L2 in a restricted domain (see Fig. 12).

Figure 16. Projection of L2 ⊂ CP2 onto C2

Observe that the real part of L2 is split in two panels:

Definition 15. The coordinates x = X + iY,y = X − iY and z = Z are called isotropic
coordinates. In this new coordinate system, the points I, J,O become the coordinate
points or reference points A = [1 : 0 : 0] B = [0 : 1 : 0] and C = [0 : 0 : 1](= O),
respectively.
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Figure 18. Real part ofL2 ⊂ C2

In isotropic coordinates, the equation of Ln simplifies to

F = (xy)n − (zx)n − (zy)n = 0. (35)

Consistently with our definition of singular points from the previous section, we have
the following definition.

Definition 16. Let C be a curve defined by F (X,Y, Z) = 0 and let P be a point of C.

i. The multiplicity multp(C) > 0 of C at P is the order of the lowest non-vanishing
term in the Taylor expansion of F at P.

ii. P is called a regular point whenever multp(C) = 1. Otherwise, P is a singular
point. The finite set of singular points (cf., [10, p. 55, Corollary 3.10]) of C is
denoted by Sing(C).

Proposition 11. The points I = [i : 1 : 0], J = [−i : 1 : 0] and O = [0 : 0 : 1] are
singular points of Ln, each one with multiplicity n.

Proof. Straightforward using isotropic coordinates
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Remark 8. Due to the fact that the multiplicity of Ln at the circular points I and J is n,
Ln is known as a n-circular curve. This property is significant because the singular points
I and J are the most interesting points at infinity.

Definition 17. Let C ⊂ CP2 be a curve defined by F (X,Y, Z). The Hessian curve
associated to C, Hess(C), is the locus that satisfies

det
(

∂2F

∂Xi∂Xj

)
1≤i,j≤3

= 0,

where X1 = X,X2 = Y,X3 = Z. The regular points in C ∩Hess(C) are called inflection
points.

It is known that Hess(C) is a curve of degree 3(d−2), if d is the degree of C. Moreover,
if P is a singular point of C, P ∈ Hess(C). Indeed, by the Euler equation (cf. [4, p. 45])

applied to
∂F

∂Xi
= FXi

we get:

det
(

∂2F

∂Xi∂Xj

)
0≤i,j≤2

=
n− 1

Z2
det

 nF FX FY

(n− 1)FX FXX FY X

(n− 1)FY FXY FY Y


And, given that P is a singular point of C, the first row of this matrix vanishes. This

shows that P ∈ Hess(C).

Definition 18. Let C be a curve in CP2 determined by F . If F can be factorized into
homogeneous polynomials Fi of positive degree F = F1F2 · · ·Fk, the curves determined
by Fi are called components of C. When F does not admit such a factorization, C is said
to be irreducible.

We now turn to the structure of the Hessian curve Hess(Ln) and examine its compo-
nents.

For Ln the polynomial H that defines Hess(Ln) is

H =Z3n−2(X2 + Y 2)n−2 ((X + iY )n + (X − iY )n)+

Z2n−2(X2 + Y 2)n−2
[
a(X2 + Y 2)n −

(
(X + iY )2n + (X − iY )2n

)]
+

Zn−2(X2 + Y 2)2n−2 ((X + iY )n + (X − iY )n) ,

(36)

where a =
2n2 − 2n+ 2

n− 1
(remember that n > 1).

In particular, Z = 0 is an irreducible component of Hess(Ln) for n > 2. For n = 2

the only points at infinity of Hess(L2) are [1 : 1 : 0], [1 : −1 : 0], I, and J. Figure 19
shows the real part of the curve Hess(Ln) for some values of n.

In isotropic coordinates, Hess(Ln) is given by
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H = n3xn−2yn−2zn−2
[
a(n)xnynzn + b(n)x2nyn − b(n)x2nzn + b(n)y2nxn+

−b(n)y2nzn + b(n)z2nxn − b(n)z2nyn +
]
,(37)

where a(n) = 4n3 − 6n2 + 6n− 2 and b(n) = 2n2 − 3n+ 1.

(a) n = 2 (b) n = 3

(c) n = 4

Figure 19. Real part of Hess(Ln)

Proposition 12. Ln has no inflection points.

Proof. We want to find the intersection points C ∩ Hess(C). Given that I and J are
singular points, we can suppose Z = 1, then (X2 + Y 2) ̸= 0, and we can divide H by
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(X2 + Y 2)n−2. Substituting the relation (X2 + Y 2)n = (X + iY )n + (X − iY )n from
equation (34) into the equation (36) we get:

(X+ iY )n+(X− iY )n+a ((X + iY )n + (X − iY )n)− (X+ iY )2n− (X− iY )2n+

+((X + iY )n + (X − iY )n) ((X + iY )n + (X − iY )n) = 0.

This equation is equivalent to:

(a+ 1)(X + iY )n + (a+ 1)(X − iY )n + 2(X + iY )n(X − iY )n

= (a+ 1)(X + iY )n + (a+ 1)(X − iY )n + 2(X2 + Y 2)n

= (a+ 1)(X + iY )n + (a+ 1)(X − iY )n + 2 ((X + iY )n + (X − iY )n)

= (a+ 3)(X + iY )n + (a+ 3)(X − iY )n

= 0

(38)

Therefore, solving the resulting equation, we find that the solutions satisfy

Y = µjX.

with µj as in equation (12). Substituting in the equation of Ln we note that

X = n

√
(µji+ 1)n + (1− µji)

n

(µ2
j + 1)n

= 0,

because µj are the roots of the polynomial (1 + iX)n + (1− iX)n (see Eq. (11)). Thus,
the only affine point of intersection between Ln and Hess(Ln) is O, which completes the
proof.

Corollary 1. Except for I, J and O, Ln has no other singular points.

Definition 19. Let C and D be curves determined by P (X,Y, Z) and Q(X,Y, Z), respec-
tively, and P = [P1 : P2 : P3] be a point. Define IP (C,D), the intersection multiplicity of
C and D at P, as follows:

i. IP (C,D) = ∞, if P lies on a component that is common to both of C and D.

ii. IP (C,D) = 0, if p /∈ C ∩D.

iii. Assuming that C and D have no common components, and the coordinates are such
that [0 : 1 : 0] /∈ C ∪D and does not lie in any line joining two points of C ∩D, we
have that IP (C,D) = k, where k is the multiplicity of the root (P3, P1) of RP,Q[Y ],
the resultant of P and Q with respect to Y (see [10, p. 59, Theorem 3.18]).

Part (iii) of the previous definition is satisfied by making a change of coordinates, if
necessary. Nonetheless, computing these resultants can be algebraically intensive.

Definition 20. Let C be a curve in CP2. A line L is tangent of C at P if it passes through
P and IP (C,L) > multp(C). This definition is analogous to the Definition 5 for the affine
case.
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The following useful result is proved in [1].

Proposition 13. Let C and D two curves without common components and let P ∈ C∩D.
Then

i. Ip(C,D) ≥ multp(C)multp(D)

ii. Ip(C,D) = multp(C)multp(D) if and only if the tangent lines of C at P are pairwise
different to the tangent lines of D at P.

Proof. See [1, p. 235, Proposition 3].

Proposition 14. Let D the curve determined by the polynomial
∂F

∂Y
. Then we have that

II(Ln, D) = IJ(Ln, D) = n(n− 1). Moreover, for n even IO(Ln, D) = n(n− 1)

Proof. It is easily verified that {O, I, J} ⊂ Ln ∩D. It is known that the tangent lines of
Ln at P are given by

∑
l+j+k=m

1

l!j!k!

[
∂mF

∂X l∂Y j∂Zk

] ∣∣∣∣∣
P

X lY jZk = 0, (39)

where m = multp(Ln). For P = O, Proposition 2 shows that the tangents of Ln at O are

µjX − Y = 0, (40)

where µj is as in equation (12).

Now let’s consider the case P = I . If 0 < k < n, from equation (34) follows that[
∂mF

∂X l∂Y j∂Zk

] ∣∣∣∣∣
P

= 0, and if k = n we get
[

∂mF

∂X l∂Y j∂Zk

] ∣∣∣∣∣
P

= −n!2nin. Thus, let

k = 0. Then, by equation (8),

∂nF

∂xn−j∂yj

∣∣∣∣∣
P

=

n∑
k=0

(
n

k

)
(2n− 2k)

n−j

(2k)
j

(i)n−2k+j = n!2n(i)n−j . (41)

With these observations, it can be seen that the equation (39) is equivalent to

(X − iY )n − Zn = 0. (42)

Consequently, the tangent lines of Ln at I are

X − iY − ζjZ = 0, (43)

with ζj a nth-root of the unity. Similarly, the tangents of Ln at J are

X + iY − ζjZ = 0. (44)
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On the other hand, by Proposition 11, multo(D) = µI(D) = µJ(D) = n − 1. Now
we calculate the tangents of D at O, I and J . We find out that they are given by:

(iX + Y )n−1 − (iX − Y )n−1 = 0, (45)

(X − iY )n−1 = 0, and (46)

(Y − iX)n−1 = 0, (47)

respectively. Therefore, the tangent lines are:

(i− iζj)X + (1 + ζj)Y = 0, (48)

where ζj is a (n− 1)th-root of the unity7,

X − iY = 0, (49)

Y − iX = 0, (50)

respectively. The Proposition 13 implies that II(Ln, D) = IJ(Ln, D) = n(n− 1), since
it is clear that the tangents of Ln and D at I and J are pairwise different. Similarly, when
n is even, we have that IO(Ln, D) = n(n− 1). When n is odd, −1 is a (n− 1)th-root
of the unity, and then X = 0 is a common tangent line. Proposition 13 implies that
IO(Ln, D) > n(n− 1).

Definition 21. A point P ∈ CP2 is called focal of a curve C if the lines IP and JP are
tangents of the curve. Equivalently, P is focal if P = L1 ∩ L2, where L1 is any tangent of
C at I , and L2 one at J

Proposition 15. The points [ζj : 0 : 1] are n of the n2 focal points of Ln, where ζj is a
nth-root of the unity.

Proof. From equations (43)-(44) it is easy to see that [ζj : 0 : 1] lies in the intersection of
the jth tangent of Ln at I and J .

Remark 9. Note that these points can be projected onto the affine plane C2 to take the
form (ζj , 0) ∈ C2 which, at the same time, can be projected onto C as ζj . This justifies
the use of the term in the previous section.

Definition 22. Let C be a curve defined by F (X,Y, Z) = 0 of degree d > 1. Making a
change of coordinates, if necessary, the map

φ : C → CP1; [X : Y : Z] 7→ [X : Z]

is well-defined. Let P = [P1 : P2 : P3] be a point of C. We define the ramification index
νφP of φ at P as the multiplicity of the root Y = P2 of the polynomial F (P1, Y, P3). The
point P is said to be a ramification point if νφP > 1.

7According to our definition, giving a line L, the tangent to L at a point on L is the line L itself.
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Remark 10. The definition of ramification points is more general and depends on the map
between, generally, the two Riemann surfaces (cf. [18, p. 45, Definition 4.5], [7, p. 217]).
We are interested in the maps from the curve C to CP1 and the ramification points which,
up to change of coordinates, are the points determined by φ.

It is easy to see that νφP > 1 if and only if F (P1, P2, P3) =
∂F

∂Y
(P1, P2, P3) = 0.

Therefore, if P is a singular point, then νφP > 1, but the converse is not true in general.
In fact, it is easy to show that νφP ≥ multp(C).

The following proposition describes the ramification points of Ln. Its proof is simple
but tedious. For this reason, we omit it.

Proposition 16. Ln has exactly 2n2 + 5n ramification points if n is even, and exactly
2n2 + 4n if n is odd (counting multiplicities).

Knowing all the ramification points, we are in a position to use the definition to
complete Proposition 14. We omit the proof.

Proposition 17. For n odd, IO(Ln, D) = n2, where D is as in Proposition 14.

(a) n = 3 (b) n = 5

Figure 20. real ramification points of Ln

In what follows we make use of concepts of algebraic geometry following the termi-
nology of [7] and [21]. Temporarily, we work in a different ambient space, but we will
return to CP2.

Definition 23. A complex-valued function ϱ : X → C of an affine variety X ⊂ C2 is
regular if there exists a polynomial f ∈ C[x, y] such that ϱ(p) = f(p) for all p ∈ X.

Definition 24. Let G be a finite group of automorphisms of C2. It is weel-known that
A = C[x, y] is an algebra. Let AG = {f ∈ A : g∗(f) = f for all g ∈ G} the subalgebra
of invariants of G in A. It can be proved that there is a closed set (in the Zariski topology)
Y such that C[Y ] ∼= AG (here C[Y ] denotes the ring of regular functions of Y ) and a
regular map η : C2 → Y such that η∗(C[Y ]) = AG. The set Y is called the quotient
variety of C2 by the action of G and it is denoted by C2/G.
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Definition 25. Assume that G is a finite group of linear transformations of C2 such that
det(g) = 1 for every g ∈ G, that is, G ≤ SL(2,C). Define a du Val singularity as the
pair (C2/G, q), where q is the image under η of the origin 0 ∈ C2.

du Val singularities is a very important class of singularities that refine, to some
extent, the algebraic classification of singularities. In [5, p. 33], the singularities (or
singular points) are ordinary if all the tangent lines are different, and they are non-ordinary
otherwise. However, many singularities have a distinct geometric “origin” that is captured
by du Val singularities.

Fortunately, the finite subgroups G ≤ SL(2,C) are well-studied. It turns out that G is
one of the following form:

1. Cyclic group of order n: Zn = ⟨g⟩, where g =

(
ζ 0

0 ζ−1

)
with ζn = 1.

2. Binary dihedral group of order 4n: Dn = ⟨σ, τ⟩, where σ =

(
ζ 0

0 ζ−1

)
with

ζ2n = 1, and τ =

(
0 1

−1 0

)
.

3. Binary tetrahedral group of order 24: 2T = ⟨σ, τ, ρ⟩, where σ =

(
i 0

0 −i

)
,

τ =

(
0 −1

1 0

)
, and ρ =

1

2

(
1 + i −1 + i

1 + i 1− i

)
.

4. Binary octahedral group of order 48: 2O = ⟨σ, τ, ρ⟩, where σ =
1√
2

(
1 + i 0

0 1− i

)
,

τ =

(
0 −1

1 0

)
, and ρ =

1

2

(
1 + i −1 + i

1 + i 1− i

)
.

5. Binary icosahedral group of order 120: 2I = ⟨σ, τ, ρ⟩, where σ =

(
ζ3 0

0 ζ2

)
,

τ =

(
0 −1

1 0

)
, and ρ =

1√
5

(
−ζ + ζ4 −ζ2 + ζ 3

−ζ 2 + ζ 3 ζ − ζ 4

)
with ζ5 = 1.

Calculating the subalgebras of the invariants of each of these groups (we omit the
calculations for brevity) we find that the du Val singularities (Fig. 21) are given, up to
formal analytic automorphisms of C2, by the following equations, respectively:

1. An−1 : C[x, y]Zn = C[α, β, γ]/⟨αβ − γ⟩ ∼= C[x, y, z]/⟨x2 + y2 + zn⟩, where
α = xn, β = yn and γ = xy are the generators of the whole subalgebra of invariants.

Similarly, we get the singularities:

2. Dn+2 : x2 + yz2 + zn+1 = 0, n ≥ 2,

3. E6 : x2 + y3 + z4 = 0,

4. E7 : x2 + y3 + yz3 = 0,
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5. E8 : x2 + y3 + z5 = 0.

It can be proved that du Val singularities are precisely simple hypersurface singularities
A−D − E.

(a) A3 (b) A4 (c) A6

(d) D4 (e) D5 (f) E6

Figure 21. du Val singularities

Some singularities originate from others in a geometric (limit) way. They are known
as compound singularities; the others are usually called simple singularities. Particular
care must be taken here because all du Val singularities are called simple in other contexts,
as they are the singularities of the lowest multiplicity (2 and 3). When n increases, An

remains a singularity of multiplicity 2, but its geometric nature is much more complex. For
example, A5 is the composition of a tacnode (the degeneration of two nodes to only one
point) and a node. Similarly, it is possible to describe Dn, E6, E7, and E8, which are of
multiplicity 3. Suffice it to mention that D4 corresponds to the ordinary (simple) triple
point and E6 to the non-ordinary (simple) point with only one tangent.

Since this local description is invariant under analytic automorphisms, we can use
them in the projective plane within a local chart of a given point. Therefore, we close the
parentheses with a different ambient space and return to the projective plane.

Definition 26. A morphism π : X → Y between two algebraic varieties is birational if
there exists a proper algebraic subvariety Y ′ ⊂ Y such that π induces an isomorphism
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π|X\π−1(Y ′) : X \ π−1(Y ′) → Y \ Y ′. The map π is called proper if the preimage of
compact subsets is compact.

Definition 27. Let C be a singular curve. A resolution of singularities of C is a proper
birational morphism

π : C ′ → C

such that C ′ is a non-singular curve. C ′ is, in general, an abstract variety (not necessarily
embedded in CP2).

The resolution of singularities for curves has been known since Newton (1676) and
Riemann (1857), but a rigorous understanding was not achieved until 1944 with the works
of Oscar Zariski (1899-1986). In fact, in 1970 the Japanese mathematician Heisuke
Hironaka won the Fields medal for the proof of the following theorem:

Teorema 1. Every complex variety (more generally, a variety over a field of characteristic
zero) admits a resolution of singularities. Furthermore, the map can be taken to be a
projection from a higher dimensional space [9].

A resolution of the real singularity of Ln ⊂ R2 as a projection from a higher dimen-
sional space is displayed in Figure 22. There are many techniques to define the map π, but
to resolve the singularities in a way that we guarantee that C ′ is again a plane curve requires
a quadratic transformation (cf. [5, pp. 87-88]). Hereunder, we solve the singularities of
Ln. It is interesting to note that only one transformation is necessary to find a smooth
model of Ln, i.e., a resolution of its singularities. In general, the first transformation only
“improves” the singularities (reduces the multiplicity or makes them geometrically simpler).
Returning to the isotropic coordinates equation for Ln (see Eq. (35)), a simple calculation
shows that multp(Ln) = n for any P ∈ {A,B,C}. Now, let

F2 = F (yz,xz,xy) = −xnynzn(xn + yn − zn).

Thus, L ′
n is determined by F ′ = xn + yn − zn (cf. [5, p. 88]). This renowned curve is

the Fermat curve and we denote it by Fn. Therefore, the resolution of the singularities of
Ln is:

π : L ′
n = Fn → Ln; [x : y : z] 7→ [yz : xz : xy]. (51)

It is crystal clear that π is birational (π−1 = π). Since Ln is compact and Hausdorff, and
|π−1(P )| < ∞ we obtain that π is proper.

Remark 11. Surprisingly, when we return to homogeneous coordinates, the affine Fermat
curve, i.e., xn + yn − 1 = 0 is Hn.

Proposition 18. For P ∈ {A : B : C}, |π−1(P )| = n.
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(a) B = {(x, y, z) ∈ R3 : y = xz} (b) Projection of closure of L2 \ 0 in B

(c) Resolution L ′
2 of L2 as a projection map

Figure 22. Resolution of real singularity of L2

Proof. Let P = C = [0 : 0 : 1] ∈ Ln. Then z = 0 and y =
1

x
. It follows that

π−1(P ) =

{
[x : y : z] : z = 0,y =

1

x

}
.

But xn +
1

xn
= 0 if and only if x = 2n

√
−1. Thus,

π−1(P ) =

{[
2n
√
−1 :

1
2n
√
−1

: 0

]}
.

Nevertheless, these are only n points because

[ωj : ω
−1
j : 0] = [−ωj : −ω−1

j : 0] = [ωk : ω−1
k : 0]

with ωi 2n
th roots of −1. A similar argument shows that |π−1(P )| = n for P = A,B.
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Definition 28. Let C be a curve determined by F and P ∈ C be a point in a coordinate
system such that [0 : 1 : 0] lies neither in C nor in the tangents of the inflection points. We
define

δ(P ) =
1

2

(
IP

(
F,

∂F

∂Y

)
− νφP + |π−1(P )|

)
.

In [1, pp. 601-627], it is proved that δ(P ) ∈ N and in [10, p. 219], that, under the
mentioned hypothesis, δ(P ) is independent of the choice of the coordinate system.

Remark 12. This number δ(P ) has a variety of equivalent expressions in terms of the
Milnor number at P or the multiplicity (in different senses) at P (cf. [1, pp. 601-627], [2,
p. 111], [17, pp. 85-100])

It is well-known that every compact surface admits a triangulation (cf. [20, p. 350,
Theorem 13.4.3]). The notion of triangulation allows us to associate with each surface an
integer, defined below:

Definition 29. The Euler characteristic χ(S) of a compact surface S is

χ(S) = |V | − |E|+ |F |.

It can be shown that this definition is independent of the triangulation. For a proof, see
[20, p. 351, Corollary 13.4.6]

Definition 30. The (topological) genus of a compact surface S is the positive integer

g = 1− 1

2
χ(S),

where χ(S) is the Euler characteristic of S.

Proposition 19. Let C ⊂ CP2 be a non-singular curve determined by F (of degree d).
Then C has a holomorphic atlas, that is, C is a Riemann surface.

Proof. See [10, p. 127, Proposition 5.28].

Definition 31. Since a non-singular curve C ′ has the Riemann surface structure, we define
the genus of a singular curve C as the genus of its resolution of singularities.

Remark 13. As we mentioned, the non-singular model of C is not unique, but there is
minimal resolution, that is, a normalization. Any other resolution is equivalent, as a
Riemann surface, to this minimal resolution (cf. [11, p. 76, Theorem 2.16]). Therefore, the
genus of a singular curve is well-defined. Nevertheless, we have been preparing the way to
find the genus of Ln in a way that partially avoids the resolution.

Teorema 2. (Noether, M.) The genus g of a projective curve C of degree d in CP2 is

g =
1

2
(d− 1)(d− 2)−

∑
P∈Sin(C)

δ(P )
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Proof. We prove that χ(C ′) = d(3 − d) +
∑

P∈Sing(C)

2δ(P ), where C ′ is the resolution

of singularities of C. Let R = {P ∈ C : νφP > 1} be the set of ramification points of C
(with respect to φ) and {{V }, {E}, {F}} be a triangulation of CP1 such that φ(R) ⊂ V .
This triangulation induces a triangulation of C ′ such that V ′ = (φ◦π)−1(V ), |E′| = d|E|
and |F ′| = d|F |.

By the Riemann-Hurwitz formula applied to φ (see [18, p.52, Theorem 4.16]) the
preimage of any point Q ∈ CP1 under φ contains exactly d−

∑
P∈φ−1(Q)

(νφP − 1) points;

Now, if P /∈ R, νφP = 1, and since R ⊂ φ−1(V ),

|φ−1(V )| = d|V | −
∑
P∈R

(νφ(P )− 1).

Using the fact that φ−1(V ) contain all the singularities of C, we get

|V ′| = |π−1(φ−1(V ))| = d|V | −
∑
P∈R

(νφ(P )− 1) +
∑

P∈Sin(C)

(|π−1(P )| − 1).

Therefore,

χ(C ′) = |V ′| − |E′|+ |F ′|

= d(|V | − |E|+ |F |)−
∑

P∈π(R)

(νφ(P )− 1) +
∑

P∈Sin(C)

(|π−1(P )| − 1).

R ⊂ φ−1(V ) ⊂ C
φ−−−−−−−−−−→ CP1xπ

C ′

On the other hand, we know that |V | − |E|+ |F | = χ(CP1) = 2 and it is easy to see

that if P ∈ R \ Sing(C), νφP = 2 and IP

(
F,

∂F

∂Y

)
= 1. In particular,

∑
P∈R\Sing(C)

(νφ(P )− 1) =
∑

P∈R\Sin(C)

IP

(
F,

∂F

∂Y

)
.
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By definition, Sing(C) ⊂ R, and since the degree of
∂F

∂Y
is d − 1 –by Bezout’s

theorem– we obtain that:∑
P∈R\Sin(C)

IP

(
F,

∂F

∂Y

)
= d(d− 1)−

∑
P∈Sin(C)

IP

(
F,

∂F

∂Y

)
.

Therefore,

χ(C ′) =2d−
∑

P∈π(R)\Sin(C)

IP

(
F,

∂F

∂Y

)
+

∑
P∈Sin(C)

(|π−1(P )| − 1− νφP + 1)

=2d− d(d− 1) +
∑

P∈Sin(C)

(
IP

(
F,

∂F

∂Y

)
+ |π−1(P )| − νφP

)
= d(3− d) +

∑
P∈Sing(C)

2δ(P ).

which completes the proof, because

g(C) = g(C ′) = 1− 1

2
χ(C ′) = 1− 1

2

d(3− d) +
∑

P∈Sing(C)

2δ(P )


=

1

2
(d− 1)(d− 2)−

∑
P∈Sing(C)

δ(P ).

Proposition 20. The genus of Ln is
1

2
(n− 1)(n− 2).

Proof. It follows from Noether’s theorem and the Propositions 14, 16, 17 and 18.

Remark 14. Note that the genus of the Fermat curve, and therefore of Hn (by Clebsch’s

formula, see [4, p. 179]) is precisely
1

2
(n− 1)(n− 2). This is, therefore, the genus of any

smooth curve.
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