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Abstract. In this paper we develop a financial market model based on contin-
uous time random motions with alternating constant velocities and with jumps
occurring when the velocity switches. If jump directions are in the certain
correspondence with the velocity directions of the underlying random motion
with respect to the interest rate, the model is free of arbitrage and complete.
Memory effects of this model are discussed.
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Resumen. En este art́ıculo introducimos un modelo de mercado financiero
basado en movimientos aleatorios con la alternancia de velocidades y con saltos
que ocurren cuando la velocidad se cambia. Este modelo es libre del arbitraje
si las direcciones de saltos están en cierta correspondencia con las direcciones
de velocidades del movimiento subyacente. Suponemos que la tasa de interés
depende del estado de mercado. Las estrategias reproducibles para opciones
son construidas en detalles. Se obtienen las fórmulas de forma cerrada para los
precios de opción.

1. Introduction

Option pricing models based on the geometric Brownian motion have well
known limitations. These models have infinite propagation velocities, indepen-
dent log-returns increments on separated time intervals and others. Moreover
it is widely accepted that financial time series are not Gaussian.

Various authors proposed to apply random motions with finite velocities for
option pricing models (see e.g. [3], [4], [6]). These models exploit in various
aspects Markov processes with continuous time and few states.
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We discuss here the model, which was proposed in [6]. It is based on (in-
homogeneous) telegraph process [5], which is a continuous time random mo-
tion with constant velocities alternating at independent and exponentially dis-
tributed time intervals. We assume the log-price of risky asset follows this
process with jumps at the times of trend changes. As a basis for building the
model, we take a Markov process σ(t) with values ±1 and transition probability
intensities λ±. Using these, we define processes cσ(t) = c±, hσ(t) = h± > −1
and rσ(t) = r±, r± > 0. Let us introduce Xσ(t) =

∫ t

0
cσ(s)ds and a pure

jump process Jσ = Jσ(t) with alternating jumps of sizes h±. The evolution
of the risky asset Sσ(t) is determined by a stochastic exponent of the sum
Xσ + Jσ. The risk-free asset is given by the usual exponent of the process
Y σ = Y σ(t) =

∫ t

0
rσ(s)ds. Here and below the superscript σ indicates the

starting value σ = σ(0) of σ(t). If (r± − c±)/h± > 0, then this model is
complete and arbitrage-free.

Our model uses parameters c± to capture bullish and bearish trends in a
market evolution, and values h± to describe sizes of possible crashes and jumps.
Thus, we study a model that is both realistic and general enough to enable
us to incorporate different trends and extreme events. This approach looks
rather natural. It explains processes on overcashed and undercashed markets.
Moreover the underlying process converges to Brownian motion under suitable
rescaling [6].

The proposed model have some curious properties. For example, historical
volatility is nonconstant, that corresponds to memory effects of such kind of
models. We discuss here the historical volatility problem.

This paper is organized as follows. In the section 2 we describe the data
of the model. This section provides no-arbitrage criterium and fundamental
equation. Section 3 defines and discusses the notion of historical volatility in
the framework of this model.

2. Dynamics of the risky asset and the martingale measure

We assume the price of risky asset follows the equation

dSσ(t) = Sσ(t−)d (Xσ(t) + Jσ(t)) , t > 0. (2.1)

Here the process Sσ(t), t ≥ 0 is right-continuous, σ = ±1 indicates the ini-
tial state of the market. This equation can be solved in terms of stochastic
exponential Et (see [2]).

Integrating (2.1) we obtain

Sσ(t) = S0Et (Xσ + Jσ) = S0eXσ(t)κσ(t),

where S0 = Sσ(0) and

κσ(t) =
∏

s≤t

(
1 + ∆Jσ(s)

)
.
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The bond price changes by the form

B(t) = eY σ(t), Y σ(t) =

t∫

0

rσ(s)ds, r−, r+ > 0. (2.2)

It means that the current interest rate depends on a market state.
We assume the following restrictions to the parameters of the model

r− − c−
h−

> 0,
r+ − c+

h+
> 0. (2.3)

It could be demonstrated directly (see [6]) that Xσ + Jσ is a martingale if
and only if h− = −c−/λ−, h+ = −c+/λ+. Since the process σ is the unique
source of randomness, the market model (2.1)-(2.2) can not have more than
one martingale measure.

Theorem 2.1. ([6]) Let Z(t) = Et(X∗ + J∗), t ≥ 0 with h∗σ = −c∗σ/λσ be the
density of probability P∗ relative to P.

The process
(
B(t)−1S(t)

)
t≥0

is the P∗-martingale if and only if

c∗σ = λσ +
cσ − rσ

hσ
, σ = ±1.

Under the probability P∗ the Poisson process N is driven by the parameters

λ∗σ =
rσ − cσ

hσ
> 0, σ = ±1.

Consider the function

F (t, x, σ) = E∗
[
e−Y (T−t)f

(
xeX(T−t)κ(T − t)

)
|σ(0) = σ

]
,

σ = ±1, 0 ≤ t ≤ T,

where E∗ denotes the expectation with respect to martingale measure P∗, which
is defined in Theorem 2.1 by the density Z(t) = Et(X∗ + J∗). Function Ft =
F

(
t, S(t), σ(t)

)
= ϕtS(t)+ψtB(t) is the strategy value at time t of the option

with the claim f(ST ) at the maturity time T .
Function F solves the following difference-differential equation (see [6]),

which have a sense of fundamental Black-Scholes equation in the classic model
based on geometric Brownian motion:

∂F

∂t
(t, x, σ) + cσx

∂F

∂x
(t, x, σ)

=
(

rσ +
rσ − cσ

hσ

)
F (t, x, σ)− rσ − cσ

hσ
F

(
t, x

(
1 + hσ

)
,−σ

)
,

(2.4)
σ = ±1,

with the terminal condition Ft↑T = f(x).
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3. Historical volatility

Seeking for simplicity, we consider the particular case of λ− = λ+ = λ.

Theorem 3.1. Let f = f(x) and α± = α±(t), t ≥ 0 be smooth functions.
Then uσ = Eσ f

(
x − ασ(t) + X(t) + J(t)

)
, σ = ±1 form a solution of the

following system
∂uσ

∂t
−

[
cσ − dασ

dt

]
∂uσ

∂x
= −λuσ(x, t) + λu−σ

(
x + βσ(t), t

)
(3.1)

with βσ(t) = hσ −
(
ασ(t)− α−σ(t)

)
, σ = ±1.

The proof follows from the following lemma.

Lemma 3.1. Let pσ = pσ(x, t) be generalized probability density of X(t)+J(t).
Then

∂pσ

∂t
+ cσ

∂pσ

∂x
= −λpσ(x, t) + λp−σ(x− hσ, t) (3.2)

with initial condition pσ |t=0= δ(x).

Let mσ(t) = E
(
Xσ(t) + Jσ(t)

)
and sσ(t) = Var

(
Xσ(t) + Jσ(t)

)
. Applying

Theorem 3.1 with functions f(x) = x, α± = 0 and f(x) = x2, α± = m±(t) one
can obtain that

dmσ

dt
= −λ(mσ −m−σ) + cσ + λhσ, (3.3)

dsσ

dt
= −λ(sσ − s−σ) + λ(hσ + m−σ −mσ)2, σ = ±1 (3.4)

with zero initial conditions. Hence

m(t) =

t∫

0

e(t−τ)Λ(c + λh)dτ, s(t) = λ

t∫

0

e(t−τ)Λ
(
h−∆m(τ)

)2
dτ. (3.5)

Here

Λ =
( −λ λ

λ −λ

)
, m =

(
m+

m−

)
, s =

(
s+

s−

)
, c =

(
c+

c−

)
,

h =
(

h+

h−

)
, ∆m =

(
m+ −m−
m− −m+

)
.

Integrating in (3.5) we have

m±(t) =
[
A + λB ± (a + λb)Φλ(t)

]
t, (3.6)

where A = (c+ + c−)/2, a = (c+ − c−)/2, B = (h+ + h−)/2, b = (h+ − h−)/2
and Φλ(t) = (1− e−2λt)/(2λt). Functions m±/t converge to A+λB as t →∞.
Further M/t = (m++m−)/(2t) ≡ A+λB and m±/t |t=0= c±+λh±. Moreover

s±(t) =
[
a2/λ + λB2 + ψ(t)± ϕ(t)

]
t, (3.7)

where
ψ(t) = (a + λb) [(a + λb)Φ2λ(t)− 2aΦλ(t)] /λ
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and
ϕ(t) = 2B

[
(a + λb)e−2λt − aΦλ(t)

]
.

Notice, that

lim
t→+0

ϕ(t) = 2λbB, lim
t→+0

ψ(t) = (λ2b2 − a2)/λ

and

lim
t→∞

ϕ(t) = lim
t→∞

ψ(t) = 0.

We now define historical volatility

HVσ(t− s) =

√√√√Varσ

{
log

(
S(t)
S(s)

)}

t− s
, t > s ≥ 0. (3.8)

We have HVσ(t) = fσ(t), where the function fσ is given by fσ(t) =
√

sσ(t)/t.
Here s±(t) is defined by (3.7) with ln(1 + h±) instead of h±. Hence

f±(t) =
√

a2/λ + λB2 + ψ(t)± ϕ(t)

=
√

σ2 + κ2Φ2λ(t)/λ + γ±Φλ(t)± 2Bκe−2λt

with σ2 = a2/λ + λB2, κ = a + λb, γ± = −2a(κ± λB)/λ and

lim
t→+0

f±(t) =
√

λ|h±| =
√

λ| ln(1 + h±)|, (3.9)

lim
t→+∞

f±(t) = σ =
√

a2/λ + λ
([

ln(1 + h+)(1 + h−)
]
/2

)2
. (3.10)

In particular case κ = 0

f±(t) =
√

σ2 + γ±Φλ(t)

with γ± = ∓2aB.

Remark 3.1. It is interesting that model (2.2) has some features of models
with memory. The simplest form of a model with memory uses an ARCH-type
equation for a log-price process:

log S(t)/S(0) = at + σw(t)− σ

t∫

0

ds

s∫

−∞
pe−(p+q)(s−u)dw(u),

where σ, q, p + q > 0 and w = w(t), t ≥ 0 is a standard Brownian motion. In
this case the historical volatility is given by

f(t) =
σ

2λ

√
q2 + p(2q + p)Φλ(t),

with 2λ = p + q (see examples 4.3 and 4.5 in [1]).
In the framework of our model historical volatility function f(t) has the same

structure.
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