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Abstract. Corepresentations of equipped posets over the pair (F, G) are intro-
duced and studied, where F ⊂ G is a quadratic field extension. The reduction

algorithms V̂II and Completion for corepresentations (being in some intuitive
sense dual to the known algorithms VII and Completion for representations)
are built and investigated, with some applications. The generalized short ver-

sions of Differentiations VII and V̂II for representations and corepresentations
of equipped posets with additional relations are described.
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Resumen. Se introducen y estudian corepresentaciones de posets equipados
sobre la pareja (F,G), donde F ⊂ G es una extensión cuadrática de campos.

Los algoritmos de reducción V̂ II y Completación para corepresentaciones (que
son en algún sentido intuitivo dual a los ya conocidos algoritmos V II y Com-
pletación para representaciones) se construyen e investigan, con algunas apli-

caciones. Las versiones cortas generalizadas de las Diferenciaciones V II y V̂ II
para representaciones y corepresentaciones de posets equipados con relaciones
adicionales se describen.

1. Introduction

In modern representation theory, the diagrammatic methods and matrix prob-
lems (i.e. classification problems of linear algebra) play an important role. The
study of representations of finite dimensional algebras, quivers, vectroids, or-
ders, posets (inclusively those with additional relations or structures) leads in
many cases to matrix problems (see for instance [2, 3, 7, 10]).

In particular, representations of equipped posets over the pair of fields of real
and complex numbers (R,C) (introduced and studied in [9, 10, 11]) are reduced
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to certain matrix problems of mixed type over this pair. The equipped posets of
finite representation type were described earlier (in a more general context) in
fact in [6], while those of one-parameter type, of tame type and of finite growth
in [9], [10], [11] respectively. It was elaborated in [10] a system of differentiation
functors (reduction algorithms) for solving these problems, among them the
Differentiation VII algorithm and the operation of Completion.

It becomes clear now that, the restriction to the case (R,C) is not essential
and the representation theory of equipped posets can be extended (true, not
quite automatically) to the case of an arbitrary quadratic field extension F ⊂ G.
At the same time, some other matrix problems of mixed type over the pair
(F,G) naturally appear.

In the present paper, we introduce and investigate corepresentations of
equipped posets over the pair (F, G) which are in some sense dual to the
mentioned above representations. Their classification leads to the dual ma-
trix problem of mixed type over (F,G). In spite of this, it is not yet known any
formal construction establishing a direct relationship between representations
and corepresentations.

We define in Section 2 the category of corepresentations corepP of an
equipped poset P and develop for it in Sections 3–5 the reduction functor
machinery sufficient at least for the finite and one-parameter cases. More pre-
cisely, the dual variants of Differentiation VII and Completion for corepresen-
tations are described and (following the scheme of [12] for ordinary posets) the
short generalized versions of the algorithms VII and V̂II for representations and
corepresentations of equipped posets with additional relations of lattice type
are constructed.

Possible applications are observed in Section 7.

2. Main definitions and notations

Equipped posets and their representations over the pair of fields of real and
complex numbers (R,C) were introduced and studied in [9, 10, 11]. Now we
see that the chosen there definition of an equipped poset can be reformulated
in the following equivalent form.

A poset (P,≤) is called equipped if all the order relations between its points
x ≤ y are separated into strong (x E y) and weak (x ¹ y) in such a way that

x ≤ y E z or x E y ≤ z implies x £ z , (2.1)

i.e. a composition of a strong relation with any other relation is strong∗.
Clearly, in general both binary relations E and ¹ are not order relations:

they are antisymmetric but not reflexive and ¹ is not transitive (meanwhile E
is transitive).

∗It is interesting that this definition coincides with that one for a biordered set, given in
[1] in another context (our relation x E y corresponds to x C y in [1]).



ON COREPRESENTATIONS OF EQUIPPED POSETS 119

A point x ∈ P will be called strong (weak) if x E x (resp. x ¹ x), with the
notation in diagrams ◦ (resp. ⊗) (remark that in [9, 10, 11] strong and weak
points were called single and double respectively). If there are no weak points,
the equipment is trivial and the poset P is ordinary.

We write x ≺ y if x ¹ y and x 6= y (similarly, x¢ y means x£ y and x 6= y).
We call an abstract relation xRy between two points strict if x 6= y.

Remark 2.1. It follows from the definition (2.1) that, for any weak relation
x ≺ y, both the points x, y are weak and moreover it holds x ≺ t ≺ y for any
possible intermediate point x < t < y. This condition defines completely P

(that was the original definition of an equipped poset used in [9, 10, 11]).

By a sum X1+· · ·+Xn we denote a disjoint union of subsets X1, . . . , Xn ⊂ P

(notice that elements belonging to different subsets Xi can be comparable).
For a point x ∈ P, set

x∨ = {y : x ≤ y}, xO = {y : x E y}, xg = {y : x ¹ y},
and dually define subsets x∧, xM, xf. Remark that x∨ and xO (x∧ and xM) are
upper (lower) cones in P, while xg and xf in general are not cones (see the
example below). Obviously x∨ = xO + xg and the dual formula holds . Also it
holds xg = xf = ∅ for a strong point x.

For a subset X ⊂ P, set

X∨ =
⋃

x∈X

x∨, XO =
⋃

x∈X

xO, Xg =
⋃

x∈X

xg

and symmetrically (also by the union) define the corresponding sets X∧, XM,
Xf. Sometimes we identify a one-point subset {x} ⊂ P with the point itself
{x} = x.

Graphically each equipped poset is presented by its Hasse diagram (with
strong and weak points) completed by additional lines symbolizing those strong
strict relations between weak points which are not consequences of other rela-
tions.

Example 2.2. If an equipped poset P is given by the diagram

⊗

⊗

⊗

⊗

⊗

⊗

◦

◦

´
´

´́
´

´
´́

´
´

´́Q
Q

QQ

´
´

´́

Q
Q

QQ

1

2

3

4

5

6

7

8

then (among strict relations) the relations 1 ¢ {3, 5, 6}, 4 ¢ 8 ¢ 6 and 7 ¢ 8
are the only strong ones, hence all those in the rest are weak. In particular
3M = {1}, 3f = {2, 3, 4, 5}, 3O = ∅, 3g = {3}, 1O = {3, 5, 6}, 1g = {1, 2}, 1M =
∅, 1f = {1}, 8O = {6, 8}, 8M = {4, 7, 8}, 8f = 8g = ∅, 7O = {6, 7, 8}, 7M = {7}.
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Let F ⊂ G be an arbitrary quadratic field extension and G = F (u) for
some fixed element u. Then each element x ∈ G is presented uniquely in the
form α + βu with α, β ∈ F and (analogously to the case (F, G) = (R,C)) the
coefficients α and β are called the real and imaginary parts of x.

Each equipped poset P naturally defines a matrix problem of mixed type
over the pair (F, G). Consider a rectangular matrix M separated into vertical
stripes Mx, x ∈ P, with Mx being over F (over G) if the point x is strong
(weak):

M =

x y

. . . Mx . . . My . . .
(2.2)

Such partitioned matrices M are called matrix representations of P over
(F,G). Their admissible transformations are as follows:

(a) F -elementary row transformations of the whole matrix M ;

(b) F -elementary (G-elementary) column transformations of a stripe Mx

if the point x is strong (weak);

(c) In the case of a weak relation x ≺ y, additions of columns of the stripe
Mx to the columns of the stripe My with coefficients in G;

(d) In the case of a strong relation x ¢ y, independent additions both real
and imaginary parts of columns of the stripe Mx to real and imaginary
parts (in any combinations) of columns of the stripe My with coeffi-
cients in F (assuming that, for y strong, there are no additions to the
zero imaginary part of My).

Two representations are said to be equivalent or isomorphic if they can
be turned into each other with help of the admissible transformations. The
corresponding matrix problem of mixed type over the pair (F, G) consists of
classifying the indecomposable in the natural sense matrices M , up to equiva-
lence.

One can give another natural definition of representations, in terms of vector
spaces over F and G. Identifying the direct sum U2

0 of two copies of an F -space
U0 with a G-space U2

0 = U0⊕uU0, we notice that, for each G-subspace X ⊂ U2
0 ,

its real and imaginary parts coincide ReX = Im X. Hence X is contained in
its F -hull F (X) = (Re X)2, which is a G-subspace in U2

0 .
A G-subspace X ⊂ U2

0 is called strong if F (X) = X or, equivalently, if
X = Y 2 for some F -subspace Y (remark that we use the notation X ⊂ Y for
an arbitrary inclusion of sets, not necessarily proper).

A representation of an equipped poset P over the pair (F, G) is any collection
of the form

U = (U0, Ux : x ∈ P ) (2.3)
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where U0 is a finite-dimensional F -space and Ux are G-subspaces in U2
0 such

that the following conditions are satisfied

x ≤ y =⇒ Ux ⊂ Uy ,

x £ y =⇒ F (Ux) ⊂ Uy .
(2.4)

In particular, if a point x is strong, then the corresponding subspace Ux =
F (Ux) = (Re Ux)2 is strong and is determined completely by its real part
Re Ux.

Representations are the objects of the category rep P, morphisms U
ϕ−→ V

of which are F -linear maps ϕ : U0 → V0 such that ϕ2(Ux) ⊂ Vx for each
x ∈ P. Two representations U, V are isomorphic (U ' V ) if and only if for
some F -isomorphism ϕ : U0 → V0 it holds ϕ2(Ux) = Vx for all x.†

The described problem (for the classical pair of fields (R,C)) was investigated
in [9, 10, 11], where in particular the criteria for an equipped poset to be
respectively one-parameter, tame and of finite growth were obtained (the finite
representation type criterion for an arbitrary pair (F,G) follows from the earlier
result of [6] on schurian vector space categories).

The aim of the present article is to observe one more matrix problem of
mixed type over the pair (F, G), which also is defined by an equipped poset P

and is in some intuitive sense dual to the mentioned above. Moreover, as will
be shown, one can manage with that problem by similar technical means.

Nevertheless, it is not yet known any formal construction reducing one of
these problems to another one. Our intension is in particular to present some
primary information and facts concerning the new one, on the base of the expe-
rience with the old one. To avoid confusions in terminology, we will attach the
particle co to some terms concerning the new dual problem (saying coproblem,
corepresentation, etc.).

Consider again a rectangular separated matrix M of the form (2.2) suppos-
ing now that all its vertical stripes Mx, x ∈ P, are over G. This is by defini-
tion a matrix corepresentation of an equipped poset P over the pair (F, G) to
which one can apply the following admissible transformations (compare with
the transformations (a)− (d) above):

(a′) G-elementary row transformations of the whole matrix M ;

(b′) G-elementary (F -elementary) column transformations of a stripe Mx

if the point x is strong (weak);

†The matrix problem for representations (a) − (d) naturally appears when classifying
the objects of the category rep P, up to isomorphism. For this, one should attach to a
representation U its matrix realization M = (Mx : x ∈ P) in the following way. If a point
x is strong (weak), then the columns of the stripe Mx are formed by the coordinates (with
respect to some base of U0) of a system of generators of the F -space Re Ux (resp. G-space
Ux) modulo its radical subspace Re Ux (resp. Ux) defined analogously to [11], Section 3.

Changing the base and the systems of generators, you get the problem (a)− (d).
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(c′) In the case of a weak relation x ≺ y, additions of columns of the stripe
Mx to the columns of the stripe My with coefficients in F ;

(d′) In the case of a strong relation x¢y, additions of columns of the stripe
Mx to the columns of the stripe My with coefficients in G;

The matrix coproblem over the pair (F, G), defined by an equipped poset P,
consists in classifying all indecomposable corepresentations, up to equivalence
with respect to the admissible transformations (a′)−(d′). In this situation also
is possible to give a nice invariant definition in terms of subspaces over F and
G.

Assume now that U0 is a G-space. Then for any F -subspace X ⊂ U0 it is
defined its G-hull G(X) = GX being nothing else but the ordinary G-span
of X, i.e. the minimal G-subspace in U0 containing X. If G(X) = X, the
F -subspace X itself is a G-space and is said to be G-strong.

A corepresentation of an equipped poset P over the pair (F, G) is a collection
of the form

U = (U0, Ux : x ∈ P ) (2.5)

where U0 is a finite-dimensional G-space containing F -subspaces Ux such that

x ≤ y =⇒ Ux ⊂ Uy ,

x £ y =⇒ G(Ux) ⊂ Uy .
(2.6)

Notice that to a strong point x a strong subspace Ux = G(Ux) corresponds.
Corepresentations are the objects of the category corep P, with morphisms

U
ϕ−→ V being G-linear maps ϕ : U0 → V0 such that ϕ(Ux) ⊂ Vx for each

x ∈ P. It is clear that two corepresentations U, V are isomorphic if and only if
for some G-isomorphism ϕ : U0 → V0 it holds ϕ(Ux) = Vx for all x.

Remark 2.3. The classification of indecomposable objects of the category
corep P, up to isomorphism, corresponds precisely to the described above ma-
trix coproblem (a′) − (d′) (if to exclude from considerations formal indecom-
posable “empty” matrices having zero rows and one column). Namely, if M is
a matrix corepresentation, one may attach to n rows of M a base e1, . . . , en of
some n-dimensional G-space U0 and identify each column (λ1, . . . , λn)T of M
with the element u = λ1e1 + · · · + λnen ∈ U0. Denoting then by F [X] (resp.
G[X]) the F -span (G-span) in U0 of any column set X ⊂ M , put

Ux =
∑

y¹x

F [My] +
∑

y£x

G[My]

and obtain immediately a collection (2.5) satisfying the conditions (2.6). It
is clear that each vertical stripe Mx represents (by its columns) a system of
generators of the space Ux modulo its radical subspace

Ux =
∑
y≺x

F [My] +
∑
y¢x

G[My],
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hence the transformations (a′)−(d′) of M reflect both base changing in U0 and
generator changing in subspaces Ux.

3. Further notations and preliminaries

The dimension of a matrix corepresentation M is a vector d = dimM =
(d0, dx : x ∈ P) with d0 (resp. dx) being the number of rows in M (of columns
in Mx). Meanwhile the dimension of U is a vector d = dimU = (d0, dx : x ∈ P)
with d0 = dimG U0 and dx = dimF Ux/Ux (dx = dimG Ux/Ux) for a weak
(strong) point x.

Obviously dimU ≤ dimM (the equality holds if and only if the columns
of each stripe Mx are linearly independent modulo the radical columns). A
corepresentation U will be called trivial if dimG U0 = 1.

A sincere vector has no zero coordinates by definitions. A representation or
corepresentation is sincere if its dimension vector is sincere. Every equipped
poset having at least one sincere indecomposable representation (corepresenta-
tion) is called sincere with respect to representations (corepresentations).

A subset of P is a chain (anti-chain) if all its points are pairwise comparable
(incomparable). The length of a chain is the number of its points. A chain of
the form a1 ≺ a2 ≺ · · · ≺ an is called weak, if additionally a1 ≺ an then it is
completely weak.

An arbitrary subset X ⊂ P is said to be completely weak if all its points and
possible relations between them are weak.

For a subset X ⊂ P and a matrix representation or corepresentation M , set
MX =

⋃
x∈X Mx.

Denote by min X (max X) the set of all minimal (maximal) points of a subset
X ⊂ P.

Let (X, Y ) be any pair of subsets of P such that X is completely weak, Y
is arbitrary and X ∩ Y ∨ = ∅. We use in the sequel trivial indecomposable
corepresentations T̂ (X, Y ) of the form

T̂ (X, Y ) = (G,Ut : t ∈ P)

where

Ut =





G, if t ∈ XO ∪ Y ∨;
F, if t ∈ X∨ \ (XO ∪ Y ∨);
0, otherwise.

It is clear that T̂ (X, Y ) = T̂ (minX, min Y ), thus in principle one can deal
with objects T̂ (X, Y ) supposing X, Y to be antichains.

Setting
T̂ (X,∅) = T̂ (X), T̂ (∅, Y ) = P̂ (Y ),

we have in particular

T̂ (∅,∅) = T̂ (∅) = P̂ (∅) = (G, 0, . . . , 0).
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In the case X = {x} or Y = {y}, we write simply T̂ (x, Y ) or T̂ (X, y), so
for instance, the objects T̂ (x), T̂ (x, y) with x ≺ y and P̂ (y) are partial cases of
T̂ (X, Y ) and have the following matrix forms

T̂ (x) =
x
1 , T̂ (x, y) =

x ≺ y
1 u , P̂ (y) =

y
1 u

(clearly, the element u can be deleted from the matrix P̂ (y) if the point y is
strong). In Section 5, some other objects of type T̂ (x, Y ) will be considered
(see Theorem 5.7).

The following simple fact holds.

Lemma 3.1. The corepresentations P̂ (∅), P̂ (x), T̂ (x) and T̂ (x, y) are all possi-
ble (up to isomorphism) indecomposable corepresentations of an arbitrary weak
chain.

Sketch of the proof. Use induction on n. The case n = 1 is in fact trivial. If
n ≥ 2, set X = {x2, . . . , xn} and consider a matrix corepresentation M of a
weak chain x1 ≺ · · · ≺ xn. First reduce the stripe Mx1 to the natural canonical
form, with direct summands P̂ (x1), T̂ (x1) and some zero-rows. Since each
direct summand P̂ (x1) annuls (by admissible column additions Mx1 −→ MX)
the same row in MX and is in fact a direct summand of the whole matrix
M , one can assume Mx1 containing (besides zero-rows) only direct summands
T̂ (x1). Thus M takes the form

M =

x1 x2 . . . xn

I ∗ ∗ ∗ K

0 ∗ ∗ ∗ L
(3.1)

Now you can reduce, by induction step, the stripe MX ∩ L to the canonical
form with direct summands mentioned in Lemma and then finally reduce (using
admissible column additions Mx1 −→ MX and row additions L

G−→ K) the
stripe MX ∩K getting the desired result (some more proof details for the case
(R,C) are given in [8]). ¤X

We recall (see [10, 12]) that, for given subspaces A, B,X, Y of some vector
space V over a field, the pair (X,Y ) is called (A, B)-cleaving if V = X⊕Y and
A = X + (A ∩B), B = Y ∩ (A + B).

Denote by Um (resp. ϕm) the direct sum of m copies of a representation,
corepresentation or a space U (of a morphism or linear map ϕ).

If X is a set and U a vector space, then UX means the direct some of |X|
copies of U numbered by the elements of X.
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In the sequel, K{e1, . . . , en} is a notation for the vector space over a field K
generated by the given vectors e1, . . . , en.

By [U ] we denote the isomorphism class of an object U . For a collection of
object X, set [X] = { [U ] : U ∈ X }. Let Ind P (resp. Înd P) be the set of all
isomorphism classes of indecomposable objects in repP (corep P).

Sometimes (if no confusions) a one-point set {a} is denoted simply by a.

4. Differentiation V̂II

The combinatorial action of Differentiation V̂II coincides with that one of Dif-
ferentiation VII described in [10]. Namely, a pair of incomparable points (a, b)
of an equipped poset P is called VII-suitable or V̂II-suitable if a is weak, b is
strong and

P = aO + bM + {a ≺ c1 ≺ · · · ≺ cn}
where {a ≺ c1 ≺ · · · ≺ cn} is a completely weak chain incomparable with the
point b. Putting a = c0, we assume n ≥ 0. Denote A = aO, B = bM \ b and
C = {c1 ≺ · · · ≺ cn}.

The derived poset P′ = P′(a,b) of P with respect to such a pair (a, b) has the
form

P′(a,b) = (P \ (a + C)) + {a− < a+}+ C+ + C−

where the point a− is weak, the point a+ is strong, C− = {c−1 ≺ · · · ≺ c−n }
and C+ = {c+

1 ≺ · · · ≺ c+
n } are completely weak chains, c−i ≺ c+

i for all
i = 1, . . . , n; a− ≺ c−1 ; a+ < c+

1 ; c−n < b and the following natural conditions
are satisfied:

(a) Each of the points a−, a+ (c−i , c+
i ) inherits all previous order relations

of the original point a (ci) with the points of the subset P \ (a + C).
(b) The order relation in P′(a,b) is induced by the initial order relation in

the subset P \ (a + C) and by the listed above relations.

A

a

c1

cn
b

B

⊗

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡

µ´
¶³

◦

µ´
¶³

V̂ II-
(a, b)

A

a+

c+
1

c+
n

a−

c−1

c−n

b

B

◦

µ´
¶³

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡

⊗¡
¡@

@

◦

µ´
¶³

The differentiation functor D̂(a,b) : corep P −→ corep P′ (denoted also by ′) of
the algorithm V̂II assigns to each co-representation U of P the derived one U ′
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of P′ by the rule

U ′
0 = U0

U ′
c−i

= Uci ∩ Ub for i = 0, 1, . . . , n

U ′
c+

i

= Uci
+ G(Ua) for i = 0, 1, . . . , n

U ′
x = Ux for the remaining points x ∈ P′.

(4.1)

And, for a morphism U
ϕ−→ V of the category corep P (considered as a linear

map ϕ : U0 −→ V0), set ϕ′ = ϕ. One checks trivially that the functor is well
defined.

The objects P̂ (a), T̂ (a) and T̂ (a, ci), i = 1, . . . , n , play an important role
in the description of properties of the algorithm V̂II. Their derivative all coin-
cide P̂ (a)′ = T̂ (a)′ = T̂ (a, ci)′ = P̂ (a+), thus we have to consider the reduced
objects of the category corep P (corep P′) as those not containing direct sum-
mands P̂ (a), T̂ (a) and T̂ (a, ci), i = 1, . . . , n , (resp. P̂ (a+)).

We point out that, as a rule, the derived object U ′ contains trivial direct
summands P̂ (a+), even if U is indecomposable. That’s why the reduced derived
object U↓ (which is unique up to isomorphism) is defined for any object U ∈
corep P′ as the largest direct summand of U ′ not containing trivial summands
P̂ (a+), i.e. by setting U ′ = U↓ ⊕ P̂m(a+), with m = dimG G(Ua)/(G(Ua) ∩
Ub) = dimG(G(Ua) + Ub)/Ub. Evidently (U1 ⊕ U2)↓ ' U↓

1 ⊕ U↓
2 .

An equivalent definition of U↓ is as follows: take any (G(Ua), Ub)-cleaving
pair of subspaces (E0,W0) of the G-space U0 and set U↓ = W = (W0;Wx | x ∈
P′) where Wx = U ′

x ∩W0 for each x ∈ P′.
It is clear that, the reduced derived object U↓ can be viewed as a corepre-

sentation not only of P′(a,b) but also of the completed derived equipped poset
P ′

(a,b) obtained from P′(a,b) by adding one additional relation a+ < b (since due
to the definition Wa+ ⊂ Wb).

The integration procedure for the algorithm V̂II (which is in some sense
inverse to the differentiation) is described in the following way. For a given
corepresentation W of the completed derived poset P ′

(a,b), present each F -
space Wc+

i
(i = 1, . . . , n) in the form Wc+

i
= W c+

i
⊕ Si ⊕Hi, where Si,Hi are

some complements such that Si ⊂ Wb and Hi ∩ Wb = 0. Choose in each Si

some F -base si1, . . . , simi . Analogously present the G-space Wa+ in the form
Wa+ = W a+ ⊕ T0 where T0 = G{t01, . . . , t0m0} is some complement for the
G-subspace W a+ .
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Taking now a new G-space E0 with a base {eij : i = 0, . . . , n; j = 1, . . . , mi },
attach to W its primitive object W ↑ = U = (U0, Ux : x ∈ P) where

U0 = W0 ⊕ E0 ,

Ux = Wx ⊕ E
A∩{x}
0 for x 6= a, ci ,

Ua = Wa− + F{s0j + ue0j : j = 1, . . . , m0}+
+ F{eij : i = 0, . . . , n; j = 1, . . . ,mi} ,

Uci = Uci−1 + Wc−i
+ Hi + F{sij + ueij : j = 1, . . . , mi} (i ≥ 1) ,

(4.2)

and Uc0 = Ua. The primitive object W ↑ depends no, up to isomorphism,
on the choice of subspaces Ti, Hi and their bases, moreover (W1 ⊕ W2)↑ '
W ↑

1 ⊕ W ↑
2 . There hold also equalities dimG S0 = dimG(Wa+/G(Wa−)) and

dimF Si = dimF (Wc+
i
∩Wb)/(Wc−i

+ Wc+
i−1

∩Wb) for i = 1, . . . , n.

The main result on Differentiation V̂II is as follows.

Theorem 4.1. In the case of Differentiation V̂II, the operations ↑ and ↓ induce
mutually inverse bijections

Înd P \ [P̂ (a), T̂ (a), T̂ (a, ci), i = 1, . . . , n] ¿ Înd P ′
(a,b) = Înd P′(a,b) \ [P̂ (a+)] .

Proof. For given corepresentations U of P and W of P ′, one has to prove
that [U↓]↑ ' U and [W ↑]↓ ' W . The second isomorphism is verified without
difficulties by a standard routine procedure using the formulas (4.1) and (4.2),
this is left to the reader as an exercise.

To prove the first one, consider the matrix M of a reduced corepresentation
U of P chosen in such a way that the columns of each vertical stripe Mx, x ∈ P,
generate Ux. Applying to M suitable G-elementary row transformations, place
at its bottom linearly independent rows corresponding to some base of the G-
subspace Ub obtaining all zeroes above them in the block Mb+B (our convention
for matrix pictures is that empty blocks denote zero-blocks, but blocks marked
by ∗ are arbitrary, and I denotes the identity block of arbitrary order):

a A c1 cn B b

uI I

I uI

I uI

∗ X1 Xn

∗ ∗ ∗ ∗ S1 Y1 ∗ Sn Yn ∗ ∗
a− a+ c−1 c−n

E0





W0

{
Q

Ub

︸ ︷︷ ︸
c+
1

︸ ︷︷ ︸
c+
n

(4.3)

Further, select linearly independent over G rows in Ma above the horizontal
stripe Ub denoting the new horizontal stripe by E0 and obtaining (by suitable
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G-elementary transformations of rows) all zeroes in the intermediate horizontal
stripe Q∩Ma. Applying then to the block Q∩(Mc1∪· · ·∪Mcn) suitable admis-
sible column transformations, we can leave there only those cells X1, . . . , Xn

the columns of which are F -linearly independent (all together).
Consider each matrix Mci (i = 1, . . . , n) as a union of two vertical stripes

Mci
= M ′

ci
∪ M ′′

ci
where M ′′

ci
is formed by the columns containing the block

Xi and M ′
ci

consists of the rest of the columns. Reduce to the canonical form
the block E0 ∩ (Ma ∪ M ′

c1
· · · ∪ M ′

cn
) considering it as a corepresentation of

the completely weak chain a ≺ c1 ≺ · · · ≺ cn and applying Lemma 3.1 (select
the matrix forms T̂ (a) = u 1 and T̂ (a, ci) = 1 u , i = 1, . . . , n). Omit
the direct summands P̂ (a) which obviously are split as direct summands of the
whole M . Make (by row additions) zeroes below the identity blocks I in Ma

and get the block Ma as shown in (4.3).
Then (using row additions Q

G−→ E0 and column addition Ma
F−→

M{c1,...,cn}) annul all the blocks M ′′
ci

(this is possible because the matrix X1 ∪
· · · ∪ Xn can be viewed as a corepresentation of a completely weak chain
c1 ≺ · · · ≺ cn and hence presented as a direct sum of the mentioned in Lemma
3.1 trivial blocks). Remark that the shown matrix blocks Si and Xi ∪ Yi

correspond to the subspaces Si and Hi respectively, considered above in the
integration procedure.

Annul finally (by column additions Ma
G−→ MA) the block E0∩A and obtain

the shown matrix form (4.3). An immediate comparison with the formulas (4.1)
and (4.2) confirms evidently that in the horizontal stripe W0 = Q∪Ub we have
just the reduced derived corepresentation U↓ and certainly the isomorphism
(U↓)↑ ' U holds. The proof is complete. ¤X

Remark 4.2. Analogously to the case of Differentiation VII (see [10], Remark
3.5), one can expect that the differentiation functor V̂II induces an equivalence
of the quotient categories

corep P/〈P̂ (a), T̂ (a), T̂ (a, ci), i = 1, . . . , n〉 ∼−→ corep P′/〈P̂ (a+)〉
where the brackets 〈. . . 〉 denote the ideals of all morphisms passed through
finite direct sums of the shown objects. The proof may be carried out by the
same scheme as in [12] (Section 7) using short generalized steps of the algorithm
V̂II, as explained below.

5. Short generalized versions of Differentiations
VII and V̂II

To deal with differentiation algorithms more effectively, one has to reduce (if
possible) long differentiation steps to shorter ones, probably passing to a more
wide (but suitable) class of matrix problems.
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Such a possibility exists in the case of the algorithms VII and V̂II and
can be realized analogously to [12] via passing to a class of representations or
corepresentations of equipped posets with additional relations. We outline here
briefly the main scheme (a more detailed exposition will be placed elsewhere).

First we decompose easily the algorithms VII and V̂II in two intermediate
steps, one of which will be decomposed then more.

Preliminary decomposition. Let (a, b) be a VII-suitable pair of points of
an equipped poset P as defined above, i.e. P = aO + bM + (a + C) where
C = {c1 ≺ · · · ≺ cn} is a completely weak chain (n ≥ 0, c0 = a) incomparable
with b (set A = aO, B = bM \ b).

We recall that the combinatorial action of the algorithms VII and V̂II coin-
cide and are going to present it as a combination of two steps.

The long step or briefly l-step or Differentiation VII l consists in transition
P 7→ Ṗ(a,b) from the ordinary equipped poset P to an equipped poset with
relation of the form

Ṗ(a,b) = (P l
(a,b) | Σ(a,b)),

where P l
(a,b) is a new ordinary equipped poset differing slightly from P′(a,b),

namely

P l
(a,b) = (P \ C) + C+ + C−

where C− = {c−1 ≺ · · · ≺ c−n } and C+ = {c+
1 ≺ · · · ≺ c+

n } are completely weak
chains, c−i ≺ c+

i for i = 1, . . . , n; a ¢ c+
1 ; c−n < b and the standard conditions

hold:

(al) Each of the points c−i , c+
i , (i = 0, 1, . . . , n) inherits all previous order

relations of the original point ci with the points of the subset P\(a+C).
(bl) The order relation in P l

(a,b) is induced by the initial order relation in
the subset P \ C and by the listed above relations.

As for the set of relations Σ(a,b), it consists of one relation only

Σ(a,b) = { ab ⊂ c−1 }

which means conditionally that the categories rep Ṗ(a,b) and corep Ṗ(a,b) are
by definition the full subcategories of the categories repP l

(a,b) and corep P l
(a,b)

respectively formed by all those objects V which satisfy the relations

Va ∩ Vb ⊂ Vc−1
.

The diagram of the long step is as follows:
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A B

a

c1

cn
b

⊗

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡

µ´
¶³

◦

µ´
¶³ V II l-

(a, b) A B

a c−1

c+
1

c−n

c+
n

b

µ´
¶³

⊗

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

⊗

⊗

⊗

¡
¡

¡
¡

¡
¡
◦

µ´
¶³

ab ⊂ c−1

P Ṗ(a,b)

Notice that if n = 0 and therefore C = ∅, then Σ(a,b) = ∅ and actually
Ṗ(a,b) = P l

(a,b) = P.

The additional 0-step or Differentiation VII 0 is a transition from Ṗ(a,b) to
P′(a,b) where P′(a,b) is the defined in Section 4 complete (a, b)-derived poset.
In other words, Differentiation VII 0 is nothing else but a particular case of
Differentiation VII applied in the situation C = ∅:

A

B

a

b

⊗
µ´
¶³ ◦

µ´
¶³

V II 0-
(a, b)

A

a+

a−

b

B

◦
µ´
¶³

⊗¡
¡

¡¡

@
@

◦

µ´
¶³

P P 0
(a,b)

So, the obtained combinatorial decomposition P 7−→ Ṗ(a,b) 7−→ P′(a,b) (com-

pare with the shown in Section 4 diagram of the algorithm V̂II) corresponds
to the functor decomposition for representations and corepresentations

D(a,b) = D 0
(a,b)D

l
(a,b) and D̂(a,b) = D̂ 0

(a,b)D̂
l
(a,b)

with the functors being defined in the following unified way.
For a representation or corepresentation U of P and a point x ∈ P, let Ũx

be the hull of the space Ux in the following sense combining two possibilities

Ũx =
{

F (Ux), if U is a representation;
G(Ux), if U is a corepresentation.

Then both the differentiation functors D(a,b) and D̂(a,b) of the algorithms VII
and V̂II (described in [10] and Section 4 above respectively) are given by the
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same formulas
U ′

0 = U0

U ′
c−i

= Uci ∩ Ub for i = 0, 1, . . . , n

U ′
c+

i

= Uci
+ Ũa for i = 0, 1, . . . , n

U ′
x = Ux for the remaining points x ∈ P′

ϕ′ = ϕ for a linear map-morphism ϕ : U0 −→ V0.

(5.1)

To get from (5.1) the l-step differentiation functors D l
(a,b) and D̂ l

(a,b), you have
simply to exclude the case i = 0. Meanwhile to get the 0-step functors D 0

(a,b)

and D̂ 0
(a,b), you have on the contrary to assume n = 0.

Denote by U (l) (resp. U (0)) the derivative of some object (representation or
corepresentation) U with respect to the l-step (0-step) of Differentiation. Then
it holds evidently for representations

P (a)(l) = P (a), T (a)(l) = T (a, ci)(l) = T (a),

P (a)(0) = P (a+), T (a)(0) = P 2(a+)
(5.2)

and for corepresentations

T̂ (a)(l) = T̂ (a, ci)(l) = T̂ (a), P̂ (a)(l) = P̂ (a),

T̂ (a)(0) = P̂ (a)(0) = P̂ (a+)
(5.3)

where P (x), T (x) and T (x, y) are representations in the matrix form

P (x) =
x
1 , T (x) =

x
1
u

, T (x, y) =

x ≺ y
1 0
u 1

(recall that P̂ (x), T̂ (x), T̂ (x, y) have been already defined in Section 3).
Taking the equalities (5.2) and (5.3) into account, analogously to Differen-

tiations VII and V̂II, one can define naturally the reduced derived object U↓

of an object U for the algorithms VII l (resp. V̂II l) as a maximal direct sum-
mand of U (l) not containing summands T (a) (resp. T̂ (a)). Also analogously
to the algorithms VII and V̂II one should define the primitive object W ↑ for
each object W of the derived category (free of direct summands T (a) (resp.
T̂ (a))) and to deduce then the following main property of the l-step algorithm
(compare with Theorem 4.1).

Theorem 5.1. In the case of Differentiations VII l and V̂II l, the operations ↑
and ↓ induce mutually inverse bijections

Ind P \ [T (a), T (a, ci), i = 1, . . . , n] ¿ Ind Ṗ(a,b) \ [T (a)] ,

Înd P \ [T̂ (a), T̂ (a, ci), i = 1, . . . , n] ¿ Înd Ṗ(a,b) \ [T̂ (a)] .
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We left the details of the proof (which is very similar to the proofs of Theorem
3.5 in [10] and Theorem 4.1 above‡) as an exercise for the interested reader.

Since the 0-step algorithms VII 0 and V̂II 0 are special cases of VII and V̂II,
we obtain for them immediately from Theorem 3.5 in [10] and Theorem 4.1
above the following corollary.

Corollary 5.2. In the case of Differentiations VII 0 and V̂II 0, the operations
↑ and ↓ induce mutually inverse bijections

Ind P \ [P (a), T (a)] ¿ Ind P 0
(a,b) \ [P (a+)] ,

Înd P \ [P̂ (a), T̂ (a)] ¿ Înd P 0
(a,b) \ [P̂ (a+)] .

Remark 5.3. In accordance with the previous statements, one should expect
that the differentiation functors VII l, V̂II l, VII 0, V̂II 0 induce respectively
equivalences of the quotient categories

( i ) rep P/〈T (a), T (a, ci), i = 1, . . . , n〉 ∼−→ rep Ṗ(a,b)/〈T (a)〉 ,
( î ) corep P/〈T̂ (a), T̂ (a, ci), i = 1, . . . , n〉 ∼−→ corep Ṗ(a,b)/〈T̂ (a)〉 ,
(ii) rep P/〈P (a), T (a)〉 ∼−→ rep P 0

(a,b)/〈P (a+)〉 (C = ∅),

(îi) corep P/〈P̂ (a), T̂ (a)〉 ∼−→ corep P 0
(a,b)/〈P̂ (a+)〉 (C = ∅).

Our next goal is to decompose more essentially the l-step.

Main decomposition. First we define the combinatorial action of the short
generalized algorithm VII s with respect to a triple of points.

A triple of points (a, b, c) of an equipped poset P will be called VII s-suitable
if the points a, c are weak, b is strong incomparable with a, c and

P = aO + bM + {a ≺ X ≺ c ≺ Y }
where {a ≺ X ≺ c ≺ Y } is a completely weak set containing arbitrary subsets
X, Y (probably empty).

The derived or (a, b, c)-derived equipped poset with relations P′(a,b,c) of the
poset P is a pair

P′(a,b,c) = (P s
(a,b,c) | Σ(a,b,c))

where
P s

(a,b,c) = (P \ c) + {c−, c+}
is an equipped poset such that the pairs c− ≺ c+, X ≺ c+ and c− ≺ Y are
completely weak, a ¢ c+, c− < b and the partial order in P s

(a,b,c) is induced
both by these relations and by the initial order in P\ c (it is assumed that each
of the points c−, c+ inherits the order relations of the point c with the points
of the subset aO + bM).

‡ The only difference with the complete matrix Differentiations VII and V̂II is that one
needs no more to separate the block Ma into the parts corresponding to the points a±.
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Further, Σ(a,b,c) is a set of two formal relations

Σ(a,b,c) = {c+ ⊂ ã +
_

Y ; bX ⊂ c−},
and by definition the categories rep P′(a,b,c) and corep P′(a,b,c) are the full sub-
categories of the categories rep P s

(a,b,c) and corep P s
(a,b,c) respectively formed by

those objects W which satisfy the relations

Wc+ ⊂ W̃a +
_

WY and Wb ∩WX ⊂ Wc−

where
_

WY =
⋂

y∈Y Wy and WX =
∑

x∈X Wx (with the commonly accepted

convention that
_

W∅ = W0 and W∅ = 0).

A X

Y

B

a

c

b

µ´
¶³

⊗¡
¡¡

¡¡

¡¡

µ´
¶³

µ´
¶³

⊗
◦

µ´
¶³

′ -
(a, b, c) A

X

Y

B

a

c+

c−

b

µ´
¶³

⊗

⊗

¯
¯
¯
¯
¯
¯
¯̄

¡
¡¡

µ´
¶³

µ´
¶³

⊗
¡

¡
¡¡

@
@

@
@@ ¡

¡
¡¡
◦

µ´
¶³

c+ ⊂ ã +
_

Y ; b(a + X) ⊂ c−

P P′(a,b,c)

Then both the differentiation functors D(a,b,c) : rep P −→ rep P′(a,b,c) and

D̂(a,b,c) : corep P −→ corep P′(a,b,c) (also denoted briefly by ′) are given by the
same formulas

U ′
0 = U0

U ′
c+ = Uc + Ũa; U ′

c− = Uc ∩ Ub

U ′
x = Ux for the remaining points x ∈ P′(a,b,c)

ϕ′ = ϕ for a linear map-morphism ϕ : U0 −→ V0.

(5.4)

Remark 5.4. Certainly, the action of the functor is naturally extended to those
situations when the initial poset P itself is an equipped poset with relations.
In such cases some more relations have to be added to Σ(a,b,c).

Proposition 5.5. Let P = aO + bM + {a ≺ c1 ≺ · · · ≺ cn} be an equipped poset
with VII-suitable pair of points (a, b). Then the long differentiation functors
D l

(a,b) and D̂ l
(a,b) of the algorithms V II l and V̂II l are presented as compositions

D l
(a,b) = D(a,b,c1)D(a,b,c2) . . . D(a,b,cn) ,

D̂ l
(a,b) = D̂(a,b,c1)D̂(a,b,c2) . . . D̂(a,b,cn)
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which do not depend on the order of the factors. As a consequence, it holds

D(a,b) = D 0
(a,b)D

l
(a,b) = D 0

(a,b)D(a,b,c1)D(a,b,c2) . . . D(a,b,cn) ,

D̂(a,b) = D̂ 0
(a,b)D̂

l
(a,b) = D̂ 0

(a,b)D̂(a,b,c1)D̂(a,b,c2) . . . D̂(a,b,cn) .

Proof. Apply the functors D(a,b,ci) or D̂(a,b,ci) (i = 1, . . . , n) in arbitrary order
and check in each step the relations. The rule of their forming will become

clear (in particular, take into account the mentioned convention
_

W∅ = W0

and W∅ = 0). After n steps, the equipped poset P l
(a,b) appears and the only

one relation ab ⊂ c−1 remains, i.e. you get the set with relation Ṗ(a,b) which
obviously is transformed by the subsequent 0-step to P′(a,b). These transforma-
tions are conformed with the shown functor decompositions.

¤X

Example 5.6.
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Consider now a corepresentation T̂ (a, Y ) of the poset P defined as in Section
3. One can introduce analogously a representation T (a, Y ) having the matrix

form T (a, Y ) =

x y1 . . . yr

1 0 . . . 0
u 1 . . . 1 where {y1, . . . , yr} = min Y . Since for the

short Differentiations VII s and V̂II s it holds obviously

T (a)′ = T (a), T (a, Y )′ = T (a, c)′ = T (a, Y ), P (a)′ = P (a),

T̂ (a)′ = T̂ (a), T̂ (a, Y )′ = T̂ (a, c)′ = T̂ (a, Y ), P̂ (a)′ = P̂ (a) ,
(5.5)

we define the reduced objects of the category rep P (repP′(a,b,c)) as those not
containing direct summands T (a, Y ) and T (a, c) (resp. T (a, Y )). Symmet-
rically, the reduced objects of the category corep P (corep P′(a,b,c)) are those

without direct summands T̂ (a, Y ) and T̂ (a, c) (resp. T̂ (a, Y )).
The standard operations of integration ↑ and reduced differentiation ↓ can

be defined analogously to the algorithms VII and V̂II. Again by the matrix
considerations similar to those used in the proofs of Theorem 3.5 in [10] and
Theorem 4.1 above, one can establish the following main property of the short
algorithm.

Theorem 5.7. Let (a, b, c) be a VII s-suitable triple of points of an equipped
poset P and P′(a,b,c) = (P s

(a,b,c), Σ(a,b,c)) the corresponding derived equipped poset
with relations. Then the short generalized differentiation functors D(a,b,c) and
D̂(a,b,c) defined by (5.4) induce bijections between indecomposables

Ind P \ [T (a, Y ), T (a, c))] À Ind P′(a,b,c) \ [T (a, Y )] ,

Înd P \ [T̂ (a, Y ), T̂ (a, c))] À Înd P′(a,b,c) \ [T̂ (a, Y )] ,

realized by the corresponding operations ↓ and ↑.

Remark 5.8. In the short generalized case, one should expect that the differ-
entiation functors VII s and V̂II s induce equivalences of the quotient categories
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(a) rep P/〈T (a, Y ), T (a, c)〉 ∼−→ rep P′(a,b,c)/〈T (a, Y )〉 ,
(b) corep P/〈T̂ (a, Y ), T̂ (a, c)〉 ∼−→ corep P′(a,b,c)/〈T̂ (a, Y )〉 .

The proof may be carried out analogously to [12] (Section 7). In particular, in
the case Y = 0 one should expect the equivalences of the quotient categories

(a′) rep P/〈T (a), T (a, c)〉 ∼−→ rep P′(a,b,c)/〈T (a)〉 ,
(b′) corep P/〈T̂ (a), T̂ (a, c)〉 ∼−→ corep P′(a,b,c)/〈T̂ (a)〉 .

It is well known that, in the poset representation theory, the main reduction
of representations (real differentiation) usually is combined with the subsequent
easier operation of completion consisting in fact in deleting one simple object
from the representation category. A full categorical description of the com-
pletion for ordinary posets was given in [12]. For representations of equipped
posets, the completion was observed briefly in [10] (Section 4) only in the lan-
guage of objects, without paying attention to morphisms. Below we give similar
concise description (also in terms of objects) of the completion for corepresen-
tations. Its more deep categorical properties concerning morphisms can be
established analogously to [12] (Section 5).

6. Completion for corepresentations

Recall from [10] that a pair of weakly comparable points a ≺ b of an equipped
poset P is called special if P = aO +bM +{a ≺ Σ ≺ b} where Σ is some subset of
P (possibly empty). Note that automatically the set {a ≺ Σ ≺ b} is completely
weak. Set A = aO \ a, B = bO \ b.

The completion of P with respect to this pair (a, b) consists in strengthening
the relation a ≺ b, i.e. in converting it into a strong one a ¢ b. The resulting
poset is denoted by P = P(a,b).

a

b

Σ
A

B⊗³³³³µ´
¶³

³³³³⊗
µ´
¶³

µ´
¶³

Completion

-
(a, b)

a

b

Σ
A

B⊗³³³³µ´
¶³

³³³³⊗
µ´
¶³

µ´
¶³

Obviously, the category corep P is a full subcategory of the category corep P

and moreover the following is true (compare with Lemma 4.1 in [10]).

Lemma 6.1. The category corep P(a,b) is a full subcategory of the category
corep P formed by the objects without trivial direct summands T̂ (a). In partic-
ular

Înd P(a,b) = Înd P \ [T̂ (a)].

Proof. Let U ∈ corepP \ corep P, i.e. Ũa 6⊂ Ub. Consider the matrix M of U
and select in its lower part the horizontal stripe corresponding to the maximal
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G-subspace UG
b of the F -space Ub. You have zeroes above this stripe in the

block MB . Assume the matrix M to be chosen in such a way that the columns
of the stripe Mb generate the whole space Ub. Reduce the upper parts of the
matrices Ma,Mb (situated above the horizontal stripe UG

b ), as a representation
of a completely weak chain a ≺ b, to the canonical form in accordance with
Lemma 3.1. You get there the blocks T̂ (a) and T̂ (b) only, otherwise the G-space
UG

b could be extended more.

M =

a A Σ B b

I

∗ ∗ I

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

L

UG
b

(6.1)

Since (by our assumption on the election of Ub) each column of the block
MΣ is an F -linear combination of columns of the stripes Ma and Mb, the
block MΣ ∩ L is over F and therefore can be annulled by column additions
Ma

F−→ MΣ. Certainly, one can annul also the block MA ∩ L (by column
additions Ma

G−→ MA), as well as all the elements below the shown identity
matrix I in Ma (by row transformations over G). Hence the matrix M takes
the form (6.1) and evidently contains at least one trivial direct summand T̂ (a),
i.e. U contains it. ¤X

7. On some applications

In conclusion, a few words on possible applications. Recall from [10, 11] that
the evolvent of an equipped poset P is an ordinary poset E(P) obtained from
P by doubling some its points and relations

E(P) =
⋃

x∈P

{x′, x′′}

where x′ = x′′ = x for a strong point x ∈ P and x′ 6= x′′ is a pair of new
incomparable strong points replacing each old weak point x, with the order
relations defined by the rule

1) if x ≺ y, then x′ < y′ and x′′ < y′′;
2) if x ¢ y, then x′ < y′; x′ < y′′; x′′ < y′ and x′′ < y′′.

Many properties of the categories rep P and corep P can be expressed in terms
of the evolvent E(P). In particular, the following holds

(a) An equipped poset P is representation-finite (corepresentation-finite)
if and only if the evolvent E(P) is a representation-finite ordinary poset, i.e.
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doesn’t contain any of the Kleiner’s critical subsets [4] (this criterion is a con-
sequence of a more general result in [6] on representation-finite schurian vector
space categories).

(b) In the case (F, G) = (R,C), an equipped poset P is representation
one-parameter (of finite growth, tame) if and only if the evolvent E(P) is an
ordinary poset of the same type, i.e. also doesn’t contain some well known
special subsets (these criteria were proved in [9],[10] and [11] respectively).

The Differentiation VII and Completion reduction pair works effectively and
is sufficient in the representation finite and one-parameter cases (the same is
true for the pair V̂II and Completion for corepresentations). It allows not only
to give logically transparent and relatively short proofs of the corresponding
criteria but also classify all the indecomposables.

In particular, the criterion (a) was reproved rather briefly by differentiation:
for representations when preparing the paper [9], and recently for corepre-
sentations in [8]. One can find also in [9] and [8] the complete matrix lists
of indecomposable representations and corepresentations respectively of non-
trivially equipped posets of finite type. The combined list is shown in Appendix
B below, completing the Kleiner’s matrix list [5] of indecomposables of ordi-
nary representation-finite posets to the equipped case. Though in principle
this combined list can be also extracted from [6] (where it is contained in a less
evident form), in practice our form of presentation is indispensable for certain
matrix calculations.

In [9], there is given also a full matrix classification of indecomposable
representations of one-parameter non-trivially equipped posets (over the pair
(R,C)), obtained on the base of using some algorithm which is reduced to Dif-
ferentiation VII and Completion. Certainly, the same can be done for corepre-
sentations, using Differentiation V̂II and Completion for corepresentations. We
place in Appendix A below the series of indecomposable representations and
corepresentations for the not ordinary critical one-parameter equipped posets,
which may be found useful in various considerations.

Among other fields of applications, one can mention the categorical descrip-
tion of differentiation algorithms. For instance, the results of Section 5 (with
the source in [12], Section 7) give a nice opportunity to establish in a clear way
the main categorical properties of the algorithms VII and V̂II (see in particular
Remarks 4.2, 5.3, 5.8 and Proposition 5.5).

We hope, further developing of the corepresentation differentiation tech-
nic and establishing relationships between objects of the categories rep P and
corep P will allow to solve the remaining open problems in the tame corepre-
sentation situation.
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Notations for Appendices. With an equipped poset P there are associated
the Tits quadratic form f = fP and coform f̂ = f̂P given on a vector d =
(d0, dx : x ∈ P) by

f(d) = d2
0 +

∑

x∈P

lxd2
x +

∑
x<y

lxydxdy − d0

∑

x∈P

lxdx ,

where lx = 1 (lx = 2) if x is strong (weak), lxy = lxly (lxy = 2) if x ¢ y (x ≺ y),
and

f̂(d) = 2d2
0 +

∑

x∈P

l̂xd2
x +

∑
x<y

l̂xydxdy − 2d0

∑

x∈P

dx ,

where l̂x = 2 (l̂x = 1) if x is strong (weak), l̂xy = 2 (l̂xy = 1) if x ¢ y (x ≺ y).
In Appendix B, for each of the listed indecomposable representation or corep-

resentation of dimension d = (d0, d1, . . . , dn), the values f = f(d) and f̂ = f̂(d)
are shown.

The second column N contains the numbers of indecomposable representa-
tions or corepresentations (which coincide) for each of the considered sincere
non-trivially equipped posets of finite type F13 − F18 (the notations for posets
coincide with those in [11], Table 1).

The presented in Appendix A infinite series of matrix representations and
corepresentations of the critical equipped posets K6, . . . , K9 cover almost all
indecomposables of any shown dimension d when the square matrix blocks X,Y
(of arbitrary order n ≥ 1) run through the following families of matrices:

(a) X is an arbitrary indecomposable (under ordinary similarity) Frobenius
Canonical Form block over F (in other terminology, Rational Canonical Form
block). It holds X ∼ X ′ ⇔ M(X) ∼ M(X ′) where M(X) is the shown
matrix depending on X. This property holds because the series containing X
are reduced to the ordinary Kronecker pencil problem over F .

(b) Y also is an arbitrary indecomposable Frobenius Canonical Form block
over F , but here for non-equivalent blocks Y and Y ′ it may happen M(Y ) ∼
M(Y ′). Whether this really happens, depends on the pair (F, G). For instance,
if (F, G) = (R,C), the series is reduced to the case | detY |≤ 1 and under this
convention Y ∼ Y ′ ⇔ M(Y ) ∼ M(Y ′). The last property follows from the
fact that the (R,C)-series containing Y are reduced to those of the set K6, for
which the property was established in [9] using the result of [2].
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Appendix A. Series of indecomposables
of critical equipped posets

Critical
posets

Representation
series

Corepresentation
series

K6

K7

K8

K9

⊗ ⊗
1 2

◦⊗
⊗
⊗

1

2

3

4

◦ ◦⊗
1 2 3

⊗
⊗

◦
◦

1

2

3

4

1 2

I I

uI uY

1 2 3

4︷ ︸︸ ︷
I

uI I

uI I I

Y uI I

1 2 3

I I

uI X I

1 2 3 4

I

uI uI I I

X I

1 2

I uI + X

1 2 3 4

I X I I

I uI

1︷ ︸︸ ︷ 2 3

I uI I

I uY I

1︷ ︸︸ ︷ 2︷ ︸︸ ︷ 3 4

I uI I

I uI Y I

I uI

d = (2n; n, n)

d = (4n; n, n, n, 2n)

d = (2n; n, n, n)

d = (3n; n, n, n, n)

d = (n; n, n)

d = (2n; n, n, n, n)

d = (2n; 2n, n, n)

d = (3n; 2n, 2n, n, n)
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Appendix B. Indecomposables of representation-finite
equipped posets
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Universidad Nacional de Colombia
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