CW-complexes with duality

Abdelaziz Kheldouni
Mohammed Ben Abdellah Universitry, Morocco

Abstract

It is the aim of this paper to provide an elementary definition of CW-complexes with duality and envisage some problems of gluing and cutting. Keywords. Poincaré duality, homotopy-equivalence, simple-homotopy equivalence.

2000 Mathematics Subject Classification. Primary: 55Q05.

Resumen. El propósito de este artículo es suministrar una definición elemental de CW-complejos con dualidad y prever algunos problemas de pegado y cortado.

1. Introduction

Let V be a closed, connected and oriented n-manifold. The Poincaré duality gives isomorphisms [8]

$$
\begin{equation*}
\cap[V]: H^{k}(V ; \mathbb{Z}) \rightarrow H_{n-k}(V ; \mathbb{Z}) \tag{1.1}
\end{equation*}
$$

where $[V] \in H_{n}(V ; \mathbb{Z})$ is the fundamental class of V. When V is nonorientable, it is advisable to introduce the orientation sheaf Ω_{V}^{*} of V, (see [2], [3]); we then have formulations of the cap and slant products which allow to establish an equivalence

$$
\begin{equation*}
C^{k}(V ; \mathcal{B}) \rightarrow C_{n-k}\left(V ; \mathcal{B} \widehat{\otimes} \Omega_{V}^{*}\right) \tag{1.2}
\end{equation*}
$$

for any locally trivial sheaf \mathcal{B} on V, inducing isomorphisms

$$
\cap[V]: H^{k}(V ; \mathcal{B}) \rightarrow H_{n-k}\left(V ; \mathcal{B} \widehat{\otimes} \Omega_{V}^{*}\right)
$$

where the fundamental class $[V]$ is in $H_{n}\left(V ; \Omega_{V}^{*}\right)$.
Note that if the manifold V is triangulated, then by means of a cellular approximation of the diagonal $\Delta(V)$, one can exhibit a cycle $\{V\}$ in $C_{n}\left(\widehat{K}_{1}(V), \Omega_{V}^{*}\right)$ representing $[V]$, where the cellular complex $\widehat{K}_{1}(V)$ is obtained by barycentric subdivision of the triangulation of V, which allows us to show (cf. [3]), that the homotopy equivalence

$$
\begin{equation*}
\cap\{V\}: C^{k}(V ; \mathcal{A}(V)) \rightarrow C_{n-k}\left(V ; \mathcal{A}(V) \widehat{\otimes} \Omega_{V}^{*}\right) \tag{1.3}
\end{equation*}
$$

is a simple-homotopy equivalence (i.e. the Whitehead torsion $\tau_{w h}(\cap\{V\})=0$ (cf. [1]). where $\mathcal{A}(V)$ denotes the fundamental sheaf of V which is the direct image of the constant sheaf $\underline{\mathbb{Z}}$ on the universal covering of $V(c f[3])$.

The formalism introduced in [3] to establish equivalences (2) and (3) suggests to consider spaces (not necessarily manifolds) which satisfy the Poincaré duality isomorphisms. These spaces are the analog of closed manifolds in the category of $C W$-complexes. Although there are several different flavors of Poincaré complexes in the literature (cf. [4], [5], [6], [7], [9]). The purpose of this article is to present a convenient definition of CW-complexes with duality, allowing us to obtain some cutting and gluing results.

2. CW-complexes with Duality (or simple-duality)

Let (X, Y) be a finite $C W$-pair. Write $\mathbb{A}[X]=\mathbb{Z}\left[\pi_{1}\left(X, x_{o}\right)\right]$, and $\mathbb{A}[Y]=$ $\mathbb{Z}\left[\pi_{1}\left(Y, x_{o}\right)\right]$ for the integral group rings of the corresponding fundamental groups. Let $\mathcal{A}(X)$ and $\mathcal{A}(Y)$ be the fundamental sheaves of X and Y, respectively. We have the identification

$$
\left.\mathcal{A}(X)\right|_{Y}=\mathcal{A}(Y) \otimes_{\mathbb{A}[Y]} \mathbb{A}[X] .
$$

Since $\pi_{1}\left(X, x_{o}\right)$ acts at the left on the universal covering \widetilde{X} of X, it also acts on the left on $\mathcal{A}(X)$, endowing the fibre $\mathcal{A}(X)_{x_{0}}$ with an $\mathbb{A}[X]$-module structure.

Let X be a finite $C W$-complex, and let Ω_{X}^{*} be a sheaf on X that is locally isomorphic to the constant sheaf $\underline{\mathbb{Z}}, n \in \mathbb{N}$, and $[X]$ a homology class in $H_{n}\left(X ; \Omega_{X}^{*}\right)$ represented by a cycle $\{X\} \in C_{n}\left(X ; \Omega_{X}^{*}\right)$.
Definition 2.1. The triple $\left([X], n, \Omega_{X}^{*}\right)$ is said to be a duality (resp. simpleduality) on X if

$$
\cap\{X\}: C^{k}(X ; \mathcal{A}(X)) \rightarrow C_{n-k}\left(X ; \mathcal{A}(X) \widehat{\otimes} \Omega_{X}^{*}\right)
$$

is an equivalence (resp. simple-homotopy equivalence) for each $0 \leq k \leq n$.
Example 2.2. If X is a n-manifold, Ω_{X}^{*} its orientation sheaf [2], and $[X]$ its fundamental class, then $\left([X], n, \Omega_{X}^{*}\right)$ is a simple-duality on X.
Remark 2.1. There are $C W$-complexes with duality having nontrivial torsion. For example, let X be a $C W$-complex with a simple-duality $\left([X], n, \Omega_{X}^{*}\right)$, and consider a homotopy equivalence $f: X \rightarrow Y$ such that $\tau_{w h}(f)=\tau \neq 0$. The fundamental class $[X]$ gives a class $[Y]$, and in the commutative diagram

$$
\begin{array}{ccc}
C^{*}(X ; \mathcal{A}(X)) & \xrightarrow{\cap\{X\}} & C_{*}\left(X ; \mathcal{A}(X) \widehat{\otimes} \Omega_{X}^{*}\right) \\
f^{*} \uparrow & & \downarrow f_{*} \\
C^{*}(Y ; \mathcal{A}(Y)) & \xrightarrow{\rightarrow} & C_{*}\left(Y ; \mathcal{A}(Y) \widehat{\otimes} \Omega_{Y}^{*}\right)
\end{array}
$$

we have $\tau_{w h}(\cap\{Y\})=\tau_{w h}\left(f^{*}\right)+\tau_{w h}\left(f_{*}\right)=\tau+\bar{\tau}$, where $\tau \rightarrow \bar{\tau}$ is the Whitehead homomorphism corresponding to transposition. Then it suffices to take a $C W$ complex X such that the homomorphism from $W h\left(\pi_{1}\right)$ to it self, defined by $\tau \rightarrow \tau+\bar{\tau}$ is trivial.

Definition 2.3. Let (X, Y) be a finite $C W$ pair, Ω_{X}^{*} a sheaf on X locally isomorphic to the constant sheaf $\underline{\mathbb{Z}}$, and $[X] \in H_{n}\left(X, Y ; \Omega_{X}^{*}\right)$. We say that ($[X], n ; \Omega_{X}^{*}$) is a duality (resp.simple-duality) if

$$
\begin{aligned}
& C^{k}(X ; \mathcal{A}(X)) \xrightarrow{\cap\{X\}} C_{n-k}\left(X, Y ; \mathcal{A}(X) \widehat{\otimes} \Omega^{*}(X)\right) \\
& C^{k}(X, Y ; \mathcal{A}(X)) \xrightarrow{\cap\{X\}} C_{n-k}\left(X ; \mathcal{A}(X) \widehat{\otimes} \Omega^{*}(X)\right)
\end{aligned}
$$

are homotopy equivalences (resp.simple-homotopy equivalences) for each $0 \leq$ $k \leq n$.

3. Gluing of spaces with duality

We consider a triad of finite $C W$-complexes $\left(Z ; X, X^{\prime}\right)$ and $Y=X \cap X^{\prime}$. Suppose an isomorphism

$$
f:\left.\left.\Omega_{X}^{*}\right|_{Y} \rightarrow \Omega_{X^{\prime}}^{*}\right|_{Y}
$$

is given. We construct a sheaf Ω_{Z}^{*} on Z such that $\left.\Omega_{Z}^{*}\right|_{X}=\Omega_{X}^{*}$ and $\left.\Omega_{Z}^{*}\right|_{X^{\prime}}=$ $\Omega_{X^{\prime}}^{*}$ as follows.

Consider $[X] \in H_{n}\left(X, Y ; \Omega_{X}^{*}\right)$ and $\left[X^{\prime}\right] \in H_{n}\left(X^{\prime}, Y ; \Omega_{X^{\prime}}^{*}\right)$, two homology classes such that $\partial[X]+\partial^{\prime}\left[X^{\prime}\right]=0$, where $\partial: H_{n}\left(X, Y ; \Omega_{X}^{*}\right) \rightarrow H_{n-1}\left(Y ; \Omega_{X}^{*}\right)$ and $\partial^{\prime}: H_{n}\left(X^{\prime}, Y ; \Omega_{X^{\prime}}^{*}\right) \rightarrow H_{n-1}\left(Y ; \Omega_{X^{\prime}}^{*}\right)$ are the boundary maps of the long exact sequences of the pairs (X, Y) and $\left(X^{\prime}, Y\right)$, respectively.

The homology class $[X]$ is represented by a relative cycle $\{X\} \in C_{n}\left(X ; \Omega_{X}^{*}\right)$, and so $d\{X\} \in C_{n-1}\left(X ; \Omega_{X}^{*}\right)$ where d is the boundary operator of the complex $C_{*}\left(X ; \Omega_{X}^{*}\right)$. Although $d\{X\} \in C_{n-1}\left(X ; \Omega_{X}^{*}\right)$ is not necessarily zero, we have that $d\{X\} \in C_{n-1}\left(Y ; \Omega_{X}^{*}\right)$. Similarly, we have $d\left\{X^{\prime}\right\} \in C_{n-1}\left(Y ; \Omega_{X^{\prime}}^{*}\right)$. Furthermore, $d\{X\}$ and $-d\left\{X^{\prime}\right\}$ are null homologous in Y, so there is an (n-1)-chain $\{Y\} \in C_{n-1}\left(Y ; \Omega_{Y}^{*}\right)$ such that $d\{X\}+d\left\{X^{\prime}\right\}=d\{Y\}$. Hence we obtain a cycle $\{Z\}=\{X\}+\{Y\}+\left\{X^{\prime}\right\}$ representing a class $[Z] \in H_{n}\left(Z ; \Omega_{Z}^{*}\right)$ which we also denote by $\left[X \cup_{Y} X^{\prime}\right]$. Note that the image of $\left[X \cup_{Y} X^{\prime}\right]$ in $H_{n}\left(Z, X^{\prime} ; \Omega_{Z}^{*}\right) \simeq H_{n}\left(X, Y ; \Omega_{X}^{*}\right)$ is $[X]$, and that the image of $\left[X \cup_{Y} X^{\prime}\right]$ in $H_{n}\left(Z, X ; \Omega_{Z}^{*}\right) \simeq H_{n}\left(X^{\prime}, Y ; \Omega_{X^{\prime}}^{*}\right)$ is $\left[X^{\prime}\right]$.

Consider now a locally trivial sheaf \mathcal{F} on $Z=X \cup X^{\prime}$. By using the long exact sequence of the pair (Z, X^{\prime}) and the naturality of the cap product we obtain the commutative diagram

We also have an excision which induces the isomorphism

$$
\xi^{*}: C^{*}\left(Z, X^{\prime} ; \mathcal{F}\right) \stackrel{\approx}{\rightarrow} C^{*}\left(X, Y ;\left.\mathcal{F}\right|_{X}\right)
$$

Thus we obtain the exact sequence

$$
0 \rightarrow C^{*}\left(X, Y ;\left.\mathcal{F}\right|_{X}\right) \simeq C^{*}\left(Z, X^{\prime} ; \mathcal{F}\right) \xrightarrow{k} C^{*}(Z ; F) \rightarrow C^{*}\left(X^{\prime} ;\left.\mathcal{F}\right|_{X^{\prime}}\right) \rightarrow 0
$$

Lemma 3.1. For a locally trivial sheaf \mathcal{F} on Z, we have the commutative diagram

where the rows are exact, and i is induced by the inclusion $X \hookrightarrow Z$
Proof. For the square to the left, it suffices to observe that we have the two commutative diagrams

$$
\begin{array}{ccc}
C^{*}\left(Z, X^{\prime} ; \mathcal{F}\right) & \xrightarrow{\cap\{Z\}^{\prime}} & C_{*}\left(Z ; \mathcal{F} \widehat{\otimes} \Omega_{Z}^{*}\right) \\
\downarrow & & \| \\
C^{*}(Z ; \mathcal{F}) & \xrightarrow{\cap\{Z\}} & C_{*}\left(Z ; \mathcal{F} \widehat{\otimes} \Omega_{Z}^{*}\right) \\
C^{*}\left(X, Y ;\left.\mathcal{F}\right|_{X}\right) & \xrightarrow{\cap\{X\}} & \\
\uparrow & C_{*}\left(X ;\left.\mathcal{F}\right|_{X} \widehat{\otimes} \Omega_{X}^{*}\right) \\
\downarrow & \\
C^{*}\left(Z, X^{\prime} ; \mathcal{F}\right) & \xrightarrow{\cap Z Z\}^{\prime}} & \\
C_{*}\left(Z ; \mathcal{F} \widehat{\otimes} \Omega_{Z}^{*}\right)
\end{array}
$$

where $\{Z\}^{\prime}$ is the image of $\{Z\}$ under the map

$$
C_{*}\left(Z ; \Omega_{Z}^{*}\right) \rightarrow C_{*}\left(Z, X^{\prime} ; \Omega_{Z}^{*}\right)
$$

which agrees with $\{X\}$ by identifying $C_{*}\left(Z, X^{\prime} ; \Omega_{Z}^{*}\right)$ with $C_{*}\left(X, Y ; \Omega_{X}^{*}\right)$.
We use a similar argument for the right square.
Now, when \mathcal{F} is the fundamental sheaf $\mathcal{A}(Z)$ of Z, if $\left([X], n, \Omega_{X}^{*}\right)$ is a duality (resp. a simple-duality) on (X, Y), and $\left(\left[X^{\prime}\right], n, \Omega_{X}^{*}\right)$ is a duality (resp. a
simple-duality) on (X^{\prime}, Y), we have isomorphisms

$$
\begin{array}{rll}
C^{*}(X ; \mathcal{A}(X)) & \stackrel{\cap\{X\}}{\rightarrow} & C_{*}\left(X, Y ; \mathcal{A}(X) \widehat{\otimes} \Omega_{X}^{*}\right) \\
C^{*}(X, Y ; \mathcal{A}(X)) & \stackrel{\cap X}{\rightarrow}\} & C_{*}\left(X ; \mathcal{A}(X) \widehat{\otimes} \Omega_{X}^{*}\right) \\
C^{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right)\right) & \stackrel{\left.\cap X^{\prime}\right\}}{\longrightarrow} & C_{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right) \\
C^{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right)\right) & \xrightarrow{\left.\cap X^{\prime}\right\}} & C_{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right)
\end{array}
$$

by application of the functors $\cdot \leadsto \otimes_{\mathbf{A}[X]} \mathbf{A}[Z]$ and $\cdot \leadsto \otimes_{\mathbf{A}\left[X^{\prime}\right]} \mathbf{A}[Z]$, we obtain the equivalences

$$
\begin{array}{rll}
C^{*}\left(X ;\left.\mathcal{A}(Z)\right|_{X}\right) & \stackrel{\cap\{X\}}{\rightarrow} & C_{*}\left(X, Y ;\left.\mathcal{A}(Z)\right|_{X} \widehat{\otimes} \Omega_{X}^{*}\right) \\
C^{*}\left(X, Y ;\left.\mathcal{A}(Z)\right|_{X}\right) & \stackrel{\cap X\}}{\rightarrow} & C_{*}\left(X ;\left.\mathcal{A}(Z)\right|_{X} \widehat{\otimes} \Omega_{X}^{*}\right) \\
C^{*}\left(X^{\prime} ;\left.\mathcal{A}(Z)\right|_{X^{\prime}}\right) & \stackrel{\left.\cap X^{\prime}\right\}}{\rightarrow} & C_{*}\left(X^{\prime}, Y ;\left.\mathcal{A}(Z)\right|_{X} \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right) \\
C^{*}\left(X^{\prime}, Y ;\left.\mathcal{A}(Z)\right|_{X^{\prime}}\right) & \xrightarrow{\left\{X^{\prime}\right\}} & C_{*}\left(X^{\prime} ;\left.\mathcal{A}(Z)\right|_{X^{\prime}} \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right)
\end{array}
$$

Furthermore, if in the diagram of Lemma 3.1 the vertical arrows $\{X\}$ and $\cap\left\{X^{\prime}\right\}$ are equivalences, so is the vertical arrow $\cap\{Z\}$. We obtain the following result.

Let $\left(Z ; X, X^{\prime}\right)$ be a triad of $C W$-complexes, and let $Y=X \cap X^{\prime}$. Let $\{X\} \in$ $C_{n}\left(X, Y ; \Omega_{X}^{*}\right)$ and $\left\{X^{\prime}\right\} \in C_{n}\left(X^{\prime}, Y ; \Omega_{X^{\prime}}^{*}\right)$ be such that $\partial[X]+\partial^{\prime}\left[X^{\prime}\right]=0$. If $\left([X], n, \Omega_{X}^{*}\right)$ is a duality (resp. a simple-duality) on (X, Y), and $\left(\left[X^{\prime}\right], n, \Omega_{X^{\prime}}^{*}\right)$ is a duality (resp. a simple-duality) on $\left(X^{\prime}, Y\right)$, then there is a cycle $[Z] \in$ $C_{n}\left(Z ; \Omega_{Z}^{*}\right)$ such that $\left([Z], n, \Omega_{Z}^{*}\right)$ is a duality (resp. a simple-duality) on Z.

4. Cutting lemma

Let (Z, X) and $\left(Z, X^{\prime}\right)$ be finite $C W$-pairs such that $Z=X \cup_{Y} X^{\prime}$ with $Y=$ $X \cap X^{\prime}$. Suppose a duality (resp. a simple-duality) $\left([Z], n, \Omega_{Z}^{*}\right)$ on Z is given. Let us define $[X]$ to be the image of $[Z]$ in $C_{n}\left(X, Y ;\left.\Omega_{Z}^{*}\right|_{X}\right)$ and $\left[X^{\prime}\right]$ to be the image of $[Z]$ in $C_{n}\left(X^{\prime}, Y ;\left.\Omega_{Z}^{*}\right|_{X^{\prime}}\right)$. Then we have
Lemma 4.1. If $\left([X], n, \Omega_{X}^{*}\right)$ is a duality (resp. a simple-duality) on (X, Y), and $\pi_{1}\left(X^{\prime}\right) \rightarrow \pi_{1}(Z)$ is an isomorphism, then $\left(\left[X^{\prime}\right], n, \Omega_{X^{\prime}}^{*}\right)$ is a duality (resp. a simple-duality) on $\left(X^{\prime}, Y\right)$.
Proof. It can be easily verified that the gluing of $[X]$ and $\left[X^{\prime}\right]$ is $[Z]$, by using the five lemma in the diagrams of the lemma 3.1. Note that the hypothesis on π_{1} ensures that $\mathcal{A}\left(X^{\prime}\right)$ agrees with $\left.\mathcal{A}(Z)\right|_{X^{\prime}}$.

Remark 4.1. If the hypothesis on π_{1} is not verified, we obtain isomorphisms

$$
\begin{aligned}
& C^{*}\left(X^{\prime}, Y ;\left.\mathcal{A}(Z)\right|_{X^{\prime}}\right) \rightarrow C_{*}\left(X^{\prime} ;\left.\mathcal{A}(Z)\right|_{X^{\prime}} \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right) \\
& C^{*}\left(X^{\prime} ;\left.\mathcal{A}(Z)\right|_{X^{\prime}}\right) \rightarrow C_{*}\left(X^{\prime}, Y ;\left.\mathcal{A}(Z)\right|_{X^{\prime}} \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right)
\end{aligned}
$$

which are equivalent to isomorphisms

$$
\begin{aligned}
& C^{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right)\right) \otimes_{\mathcal{A}\left[X^{\prime}\right]} \mathbf{A}[Z] \rightarrow C_{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right) \otimes_{\mathbf{A}\left[X^{\prime}\right]} \mathbf{A}[Z] \\
& C^{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right)\right) \otimes_{\mathbf{A}}\left[X^{\prime}\right] \mathbf{A}[Z] \rightarrow C_{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right) \otimes_{\mathbf{A}}\left[X^{\prime}\right] \mathbf{A}[Z]
\end{aligned}
$$

and the maps

$$
C^{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right)\right) \rightarrow C_{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right)
$$

and

$$
C^{*}\left(X^{\prime}, Y ; \mathcal{A}\left(X^{\prime}\right)\right) \rightarrow C_{*}\left(X^{\prime} ; \mathcal{A}\left(X^{\prime}\right) \widehat{\otimes} \Omega_{X^{\prime}}^{*}\right)
$$

are not necessarily homotopy equivalences.
However, if $\pi_{1}\left(X^{\prime}\right)$ is a direct factor of $\pi_{1}(Z)$ then Lemma 3.1 is still true. Indeed, it suffices to note that $\mathbf{A}\left[X^{\prime}\right]$ is a $\mathbf{A}[Z]$-module, and for each left $\mathbf{A}\left[X^{\prime}\right]$ module \mathcal{M}, we have $\left(\mathcal{M} \otimes_{\mathbf{A}\left[X^{\prime}\right]} \mathbf{A}[Z]\right) \otimes_{\mathbf{A}[Z]} \mathbf{A}\left[X^{\prime}\right] \approx \mathcal{M}$.

Note that there exists a space X, a sheaf Ω_{X}^{*}, and a cycle $\{X\} \in C_{n}\left(X, \Omega_{X}^{*}\right)$ such that: $\bigcap\{X\}: C^{k}(X, Z) \rightarrow C_{n-k}\left(X, Z \widehat{\otimes} \Omega_{X}^{*}\right)$ is a homotopy equivalence but $\bigcap\{X\}: C^{k}(X ; \mathcal{A}(X)) \rightarrow C_{n-k}\left(X, \mathcal{A}(X) \widehat{\otimes} \Omega_{X}^{*}\right)$ is not. For example, Let X_{\circ} be a $2 n$-manifold with n large and $\pi_{1}\left(X_{\circ}\right)=\mathbb{Z} / 5 \mathbb{Z} . X_{\circ}$ can therefore be oriented. Consider the matrix M with coefficients belonging to $\mathbb{Z}[\mathbb{Z} / 5 \mathbb{Z}]$

$$
M=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
\alpha & 1 & 1 & 0 & 0 \\
\alpha^{2} & 0 & 1 & 1 & 0 \\
\alpha^{3} & 0 & 0 & 1 & 0 \\
\alpha^{4} & 0 & 0 & 0 & 1
\end{array}\right), \quad \operatorname{det}(M)=\alpha^{4}-\alpha^{3}+\alpha^{2}-\alpha+1
$$

and μ the matrix with coefficients in \mathbb{Z} that is the image of M under the augmentation map $\mathbb{Z}[\mathbb{Z} / 5 \mathbb{Z}] \rightarrow \mathbb{Z} . \mu$ is invertible since $\operatorname{det}(\mu)=1$. On the other hand, M is not invertible because $\operatorname{det}(M)$ is not. Indeed, the product by $\operatorname{det}(M)$ in $\mathbb{Z}[\mathbb{Z} / 5 \mathbb{Z}]$ has, relative to the basis $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right)$ the matrix

$$
D=\left(\begin{array}{rrrrr}
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1
\end{array}\right)
$$

which is not invertible in \mathbb{Z}.
Let $X_{1}=X_{\circ} \cup 5\{n$-cells $\} \cup 5\{(n+1)$-cells $\}$. The n-cells are attached to a point of X_{\circ} and the $(n+1)$-cells are attached to the attached n-cells by an application having M as matrix. Then, $H_{k}\left(X_{\circ} ; \mathbb{Z}\right)=H_{k}\left(X_{1} ; \mathbb{Z}\right)$ and $H^{k}\left(X_{\circ} ; \mathbb{Z}\right)=H^{k}\left(X_{1} ; \mathbb{Z}\right)$, for $k \neq n, n+1$. But,

$$
\begin{aligned}
H_{n}\left(X_{1} ; \mathcal{A}\left(X_{1}\right)\right) & =H_{n}\left(X_{\circ} ; \mathcal{A}\left(X_{\circ}\right)\right) \oplus \operatorname{ker}(M) \\
H_{n+1}\left(X_{1} ; \mathcal{A}\left(X_{1}\right)\right) & =H_{n+1}\left(X_{\circ} ; \mathcal{A}\left(X_{\circ}\right)\right) \oplus c o \operatorname{ker}(M)
\end{aligned}
$$

Furthermore, $C_{*}\left(X_{\circ} ; \Omega_{X_{\circ}}^{*}\right) \rightarrow C_{*}\left(X_{1} ; \Omega_{X_{1}}^{*}\right)$ is a homotopy equivalence $\left(\Omega_{X_{\circ}}^{*}\right.$ and $\Omega_{X_{1}}^{*}$ are trivial), and therefore [X_{\circ}] is sent to $\left[X_{1}\right]$. Finally, the commutative diagram

$$
\begin{array}{ccc}
C^{k}\left(X_{1} ; Z\right) & \stackrel{\cap\left[X_{1}\right]}{\longrightarrow} & C_{2 n-k}\left(X_{1} ; Z \hat{\otimes} \Omega_{X_{1}}^{*}\right) \\
\downarrow & \uparrow \\
C^{k}\left(X_{\circ} ; Z\right) & \xrightarrow{\cap\left[X_{0}\right]} & C_{2 n-k}\left(X_{\circ} ; Z \hat{\otimes} \Omega_{X_{0}}^{*}\right)
\end{array}
$$

one deduces that $\cap\left[X_{1}\right]: C^{k}\left(X_{1} ; Z\right) \rightarrow C_{2 n-k}\left(X_{1} ; Z \widehat{\otimes} \Omega_{X_{1}}^{*}\right)$ is an equivalence, but $\cap\left[X_{1}\right]: C^{k}\left(X_{1} ; \mathcal{A}\left(X_{1}\right)\right) \rightarrow C_{2 n-k}\left(X_{1} ; \mathcal{A}\left(X_{1}\right) \widehat{\otimes} \Omega_{X_{1}}^{*}\right)$ is not.

References

[1] M. M. Cohen, A course in simple homotopy theory, Springer Verlag, Berlin, Heidelberg, New York, 1972.
[2] B. Iversen, Cohomology of sheaves, Springer-Verlag Verlag, Berlin, Heidelberg, New York, 1986.
[3] A. Kheldouni, Sur la dualité de Poincaré, Extracta Mathematicae 14 (1999) 3, 247-266.
[4] J. R. Klein, Poincaré duality spaces, Survey on surgery theory, Ann. of Math. Stud. 145 (2000) 1, 135-165.
[5] J. Lannes, C. Morlet, \& F. Latour, Géométrie des complexes de Poincaré et chirurgie, preprint IHES, (1972).
[6] N. Levitt, Application of engulfing, Thesis Princeton University, (1967)
[7] M. Spivak, Spaces satisfying Poincaré duality, Topology 6, (1967), 77-101.
[8] R. M. Switzer, Algebraic topology homotopy and homology, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
[9] C. T. Wall, Poincaré Complexes I, Ann. of Math. 86 (1967), 213-245.
(Recibido en agosto de 2006. Aceptado en abril de 2007)

Faculty of Sciences
Mohammed Ben Abdellah Universitry
B.P. 1796

Fez, Morocco
e-mail: akheldouni@yahoo.fr

