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Abstract. A condition on the functions ϕ : R+ → R+ = [0, +∞) which, for
single valued maps, has proved useful in asserting the existence of fixed points
for contractions or expansions relative to either distances or w-distances, is
now used to examine the behaviour of multivalued mappings. Since it applies
equally to both contracting (ϕ(t) < t for t > 0) or expanding maps (ϕ(t) > t
for all t > 0), it also allows, to some extent, a unified approach to both types
of problems.
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1. Introduction

Many authors have dealt with the Banach contraction principle for multiple
maps in a metric space (X, d) within the context of commuting mappings, i.e.,
when f ◦ g(x) = g ◦ f(x) for all x ∈ X. See, for example, Chang[3], Das and
Dabata[4], Jungck[8, 10], Pant[13], Ray[14]. The problem has also been exam-
ined under less restrictive assumptions, such as those of weak commutativity,
when d(f ◦ g(x), g ◦ f(x)) ≤ d(f(x), g(x)) for all x ∈ X (see Carbone et al.[1],
Fisher and Sessa[7]), or of compatibility, when for any sequence (xn) in X,
from lim f(xn) = lim g(xn) it follows that lim d(f ◦ g(xn), g ◦ f(xn)) = 0, in
which case we also say that (f, g) is a compatible pair (Jungck[9], Kang and
Rhoades[11], Rodŕıguez-Montes and Charris[17]).

All of the above concepts can be extended to maps defined in a metric space
(X, d) and taking as values sets of points of the same space, i.e., to multivalued
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maps of (X, d). In particular, if T is a multivalued map on X, a point x ∈ X
such that x ∈ T (x) is called a fixed point of T .

On the other hand, the constant 0 < α < 1 of classical contraction theory
can be replaced by a function φ : R+ → R+ = [0, +∞) with φ(t) < t for
all t > 0, usually satisfying additional conditions (continuity, semicontinuity,
monotonicity, etc.). See Carbone et al.[1], Dugundji and Granas[5], Kang and
Rhoades[11], Rodŕıguez-Montes[16], in this respect. Within this framework,
Chang[2] has established the following result. In all what follows, if Λ is a set
of subsets of X, [Λ] will denote the union of all sets A ∈ Λ.

Theorem 1.1 (Chang[2]). Let (X, d) be a complete metric space, I and J be
selfmaps of X, and S, T : X → B(X), where B(X) is the class of bounded, non
empty subsets of X, be such that [S(X)] ⊆ J(X) and [T (X)] ⊆ I(X). Further
assume that for all x, y ∈ X,

δ(Sx, Ty) ≤ φ(max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty),
1
2
(D(Ix, Ty) + D(Jy, Sx))}), (1.1)

where φ : R+ → R+, with φ(t) < t, t > 0, is upper semicontinuous, that both
(I, S) and (T, J) are compatible, and that at least one of I or J is continuous.
Then I, J, S and T have a unique common fixed point z in X. Furthermore

Sz = Tz = {Iz} = {Jz} = {z}. (1.2)

For the concepts and notations in the statement of Theorem 1.1, see Section
2 below.

In this paper we will follow at first ideas and techniques in Rodŕıguez-Montes
and Charris[17] to generalize results of the contractive type in Carbone et al.[1],
Chang[2], Jungck[8, 9, 10], Kang and Rhoades[11], as well as in Kubiak[12],
Pant[13], Rodŕıguez-Montes[16], Sing and Whitfield[19]. Then we will turn
our attention to expansions. Assumptions such as the compatibility of maps
will be replaced by less stringent conditions. Other assumptions, such as the
semicontinuity of φ in Theorem 1.1, will also be considerably weakened. As a
matter of fact, we will only requiere the functions φ : R+ → R+ = [0,+∞)
to satisfy the simple Condition (A) below. Such functions have proved very
valuable in establishing results of the contractive type (φ(t) < t for all t > 0) or
of the expansive type (φ(t) > t for all t > 0) for one or multiple single-valued
maps on a metric space (as in Rodŕıguez-Montes and Charris[17]), as well as
for contractions or expansions of single-valued maps relative to w-distances in
uniform spaces (as in Rodŕıguez-Montes and Charris[18]). We will now explore
the implications of Condition (A) in the case of multivalued maps.

Condition (A) for ϕ : R+ → R+ is the following:
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(A) For any decreasing sequence (tn) in R+ (i.e., tn+1 < tn for all n ≥ 1)
such that

lim tn = lim ϕ(tn) = t, (1.3)

it follows that t = 0.

Condition (A) is seen to hold for most contracting or expanding functions φ
appearing in the fixed point theory of single valued maps, allowing to simplify
arguments, and even leading to the remotion of hypothesis. Since it applies to
both types of functions, it also provides a unifying approach to contractions
and expansions. We shall see that this also holds for multivalued maps.

We observe that for contracting (ϕ(t) < t for all t > 0) or expanding func-
tions (ϕ(t) > t for all t > 0), Condition (A) is obviously equivalent to the
apparently stronger Condition (B) below.

(B) For any non increasing sequence (tn) in (0, +∞) such that (1.3) holds,
it follows that t = 0.

2. Basic definitions, results and notations

Definition 2.1. . In a metric space (X, d), we define:
1. 2X = {A ⊆ X/A 6= φ}.
2. B(X) = {A ∈ 2X/A is bounded}, Bc(X) = {A ∈ 2X/A is closed and
bounded}.
3. For A,B ∈ B(X),

δ(A,B) = Sup{d(a, b)/a ∈ A, b ∈ B}.
Then δ(A) = δ(A,A) is called the diameter of A.

4. For a ∈ X, S ∈ B(X) and r > 0,

d(a, S) = Inf{d(a, s)/s ∈ S}, Sr = {a ∈ X/d(a, S) < r}.
5. For A,B ∈ B(X),

D(A,B) = Inf{d(a, b)/a ∈ A, b ∈ B},
H(A,B) = Inf{r > 0/A ⊆ Br, B ⊆ Ar}.

It is easily verified that d(a, S) = 0 if and only if a ∈ S̄, the closure of S, i.e.,
S̄ = ∩r>0Sr. Also D(A, B) = D(Ā, B̄), H(A,B) = H(Ā, B̄). Furthermore,
H(A,B) = 0 if and only if Ā = B̄. Since obviously H(A, B) = H(B,A) and
H(A,B) ≤ H(A,C) + H(C, B), H is a metric on Bc(X), and if (X, d) is com-
plete, it can be proved that (Bc(X),H) is also complete. Finally observe that
D(A,B) ≤ H(A,B) ≤ δ(A,B) ≤ δ(A ∪B).
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Definition 2.2 (Chang[2]). A set valued map S : X → B(X) is continuous if
for any x ∈ X and any sequence (xn) in X converging to x, limH(Sxn, Sx) =
0.

Definition 2.3 (Chang[2]). The maps I : X → X and S : X → B(X) are
compatible if IS(x) ∈ B(X) for any x ∈ X and lim H(SI(xn), IS(xn)) = 0 for
any sequence (xn) in X such that lim δ(Ixn, Sxn) = 0. We also say that (I, S)
is a compatible pair.

Definition 2.4. The maps I : X → X and S : X → B(X) are locally com-
muting if SI(x) = IS(x) at any x ∈ X such that S(x) = {I(x)}. It is also said
that (I, S) is a locally commuting pair.

Remark 2.1. Clearly if (I, S) is compatible, it is locally commuting. For single
valued maps, local commutativity reduces to commutativity at coincidence points
(i.e., at points x such that Sx = Ix).

For contracting maps, i.e., for functions φ : R+ → R+ such that φ(t) < t for
all t > 0, a weaker condition than (A) is the following.

(C) For any decreasing sequence (tn) in R+ such that tn+1 ≤ φ(tn) for all
n ≥ 1, if (1.3) holds, then t = 0.

Since (tn) is assumed decreasing, we may as well require tn+1 < φ(tn) for
all n ≥ 1, in Condition (C) above.

Condition (C) was also introduced in Rodŕıguez-Montes and Charris[17],
but to stress the unifying quality of (A), and in spite of the fact that (C) was
all that was needed in many instances, most proofs were given appealing to (A).

In this paper we will use more sistematically Condition (C), with the convic-
tion that, being a specialization of Condition (A), it does not hide the unifying
power of the latter. It further simplifies many arguments, though.

The following lemma improves Lemma 3.1 in [17] or Lemma 1.3 in [18].
In what follows, Φ∗ will denote the set of contracting maps φ : R+ → R+

satisfying Condition (C).

Lemma 2.1. Let φ : R+ → R+ be contractive and for each t ≥ 0 let

φ̃(t) = Sup{φ(x)/0 < x ≤ t}, t > 0 ; φ̃(0) = 0. (2.1)

Then, for φ ∈ Φ∗, the following holds:

(i) φ̃ is a nondecreasing function such that φ̃(0) = 0 and φ(t) ≤ φ̃(t) < t

or φ(t) < φ̃(t) ≤ t for all t > 0.
(ii) For each ε > 0 there is 0 < t ≤ ε such that φ̃(t) < t.
(iii) φ̃ satisfies Condition (C).
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Proof. Condition (i) follows at once from the definition of φ̃. To prove (ii),
assume that there is ε > 0 such that φ̃(t) = t for all t ≤ ε. Let 0 < α < ε.
Since φ̃(ε) = ε, there exists t1 in R+ such that α < φ(t1) < t1 ≤ ε. Since
φ̃(φ(t1)) = φ(t1), also t2 exists such that α < φ(t2) < t2 ≤ φ(t1). Iteration of
the argument then yields a decreasing sequence (tn) in R+ such that tn+1 ≤
φ(tn) < tn for n ≥ 1 and lim φ(tn) = lim tn ≥ α > 0, which is absurd. To
establish (iii), let (tn) be a decreasing sequence in R+ with tn+1 ≤ φ̃(tn) and
such that lim φ̃(tn) = lim tn = t. The definition of φ̃ yields a sequence (sn) in
R+ such that tn+1 < φ(sn) < sn ≤ tn and φ(sn) ≤ φ̃(tn), n ≥ 1, so that (sn)
is decreasing and lim sn = lim φ(sn) = t. Since φ verifies Condition (C) then
t = 0, and the assertion follows. ¤X

Remark 2.2. The above definition of φ̃ differs from that in Rodŕıguez-Montes
and Charris[17, 18], unless φ(0) = 0, which was implicitly (but not explicitly)
assumed in those papers (otherwise φ̃(0) = φ(0) > 0 and φ̃ would still be
nondecreasing, so that, since φ̃(0+) = φ̃(0) > 0, φ̃(t) ≤ t could not hold for all
t > 0). It may happen that Condition (A) holds for φ but not for φ̃.

3. Results of the contractive type in metric spaces

Let (X, d) be a metric space and B(X) be the set of bounded non empty
subsets of X. We recall that if Λ is a set of subsets of X, [Λ] stands for their
union. Observe that if I, J : X → X and S, T : X → B(X) are such that
[S(X)] ⊆ J(X) and [T (X)] ⊆ I(X), then, starting with x0 ∈ X arbitrary, a
sequence (xn) in X can be found such that

Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1, n ≥ 0. (3.1)

Theorem 3.1. Let (X, d) be a complete metric space and I, J be single valued
selfmaps of X. Let S, T : X → B(X) be multivalued maps such that:

(i) For some φ ∈ Φ∗,

δ(Sx, Ty) ≤ φ(max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty),
1
2
(D(Ix, Ty) + D(Jy, Sx))

(3.2)

holds for all x, y in X.
(ii) [S(X)] ⊆ J(X), [T (X)] ⊆ I(X).
(iii) For any sequence (xn) in X as in (3.1), if

lim Ix2n = lim Jx2n+1 = y (3.3)

for some y ∈ X, then y ∈ I(X) ∪ J(X) ∪ [S(X)] ∪ [T (X)].
(iv) Both pairs of maps (I, S) and (J, T ) are locally commuting.

Then, I, J, S and T have a unique common fixed point y0 in X, and

Sy0 = Ty0 = {Iy0} = {Jy0} = {y0}. (3.4)
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Proof. From (ii), a sequence (xn) as in (3.1) can be chosen. Let (Yn) be the
sequence of subsets of X defined by Y2n = Sx2n, Y2n+1 = Tx2n+1, n ≥ 0. It
follows from (i) that

δ(Y2n+2, Y2n+1) = δ(Sx2n+2, Tx2n+1)

≤ φ(max{d(Ix2n+2, Jx2n+1), δ(Ix2n+2, Sx2n+2), δ(Jx2n+1, Tx2n+1),
1
2
(D(Ix2n+2, Tx2n+1) + D(Jx2n+1, Sx2n+2))})

= φ(max{δ(Ix2n+2, Y2n+2), δ(Jx2n+1, Y2n+1),
1
2
(D(Jx2n+1, Y2n+2)})

≤ φ̃(max{d(Y2n+1, Y2n+2), δ(Y2n, Y2n+1),
1
2
(δ(Y2n+1, Y2n+2) + δ(Y2n, Y2n+1))}).

Since the assumption δ(Y2n+1, Y2n+2) > δ(Y2n, Y2n+1) leads to

δ(Y2n+2, Y2n+1) ≤ φ̃(δ(Y2n+1, Y2n+2)) < δ(Y2n+1, Y2n+2)

or
δ(Y2n+2, Y2n+1) < φ̃(δ(Y2n+2, Y2n+1)) ≤ δ(Y2n+2, Y2n+1),

which is contradictory, then

δ(Y2n+1, Y2n+2) ≤ φ̃(δ(Y2n, Y2n+1)) ≤ δ(Y2n, Y2n+1), n ≥ 1. (3.5)

Similarly,

δ(Y2n+1, Y2n) ≤ φ̃(δ(Y2n, Y2n−1)) ≤ δ(Y2n, Y2n−1), n ≥ 1. (3.6)

Let tn = δ(Yn+1, Yn), n ≥ 0, and assume first that tn > 0 for all n ≥ 0. Since,
from Lemma 2.1 (i), lim tn = lim φ̃(tn), then lim δ(Yn, Yn+1) = 0.

Also, if m is even, n is odd and m > n, then

δ(Ym, Yn) = δ(Sxm, Txn)

≤ φ̃(max{d(Ixm, Jxn), δ(Ixm, Sxm), δ(Jxn, Txn),
1
2
(D(Ixm, Txn) + D(Jxn, Sxm))})

≤ φ̃(max{δ(Ym−1, Yn−1), δ(Ym, Ym−1), δ(Yn, Yn−1),
1
2
(δ(Yn, Ym−1) + δ(Yn−1, Ym))}),

≤ φ̃(max{δ(Yi, Yj)/n− 1 ≤ i 6= j ≤ m}).

Let ε > 0 be such that φ̃(ε) < ε (Lemma 2.1), and let δ = (ε − φ̃(ε))/2 and
N ≥ 1 be such that δ(Yn+1, Yn) < δ, δ(Yn+2, Yn) < δ for all n ≥ N . We claim
that δ(Ym, Yn) < ε for all m,n ≥ 2N , m 6= n. This follows from an induction
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argument. In fact, if we assume that δ(Y2N+i, Y2N+j) < ε for i, j = 0, 1, ..., k,
then, for p even, k odd and p < k − 2,

δ(Y2N+k+1, Y2N+p) ≤ δ(Y2N+k+1, Y2N+k−1) + δ(Y2N+k−1, Y2N+p+1)

+ δ(Y2N+p+1, Y2N+p) ≤ 2δ + φ̃(max δ(Yi, Yj))

≤ 2δ + φ̃(ε) = ε, i, j = 2N + 1, ..., 2N + k, i 6= j.

On the other hand, if both p, q are even and p < k − 1, then

δ(Y2N+k+1, Y2N+p) ≤ δ(Y2N+k+1, Y2N+k) + δ(Y2N+k, Y2N+p+1)

+ δ(Y2N+p+1, Y2N+p) ≤ 2δ + φ̃(max δ(Yi, Yj))

≤ 2δ + φ̃(ε) = ε, i, j = 2N + 1, ..., 2N + k, i 6= j.

Similarly, if p is odd, δ(Y2N+k+1, Y2N+p) ≤ ε. Thus, since δ(Yn, Ym) ≤ ε
for m,n ≥ 2N , m 6= n, any sequence (yn), n ≥ 1, with yn ∈ Yn, is a
Cauchy sequence, so that for some y0 ∈ X, lim Iyn = y0. In particular
lim Ix2n = lim Jx2n+1 = y0, and lim δ(y0, Yn) = 0.

Now, resorting to (iii), assume there is y ∈ X such that y0 = Iy, i.e.,
y0 ∈ I(X). If δ(y0, Sy) > 0, by letting

t2n+1 = max{d(Iy, Jx2n+1), δ(Iy, Sy), δ(Jx2n+1, Y2n+1),
1
2
(D(Iy, Y2n+1) + D(Jx2n+1, Sy))},

we obtain t2n+1 = δ(Iy, Sy) for all n large enough, so that

δ(Sy, Tx2n+1) ≤ φ(t2n+1) = φ(δ(Iy, Sy)) < δ(Iy, Sy)

for all such n′s. Since δ(Sy, Tx2n+1) → δ(Sy, Iy), this is a contradiction. Thus
δ(y0, Sy) = 0, and then {y0} = {Iy} = Sy.

Now let y′ ∈ X be such that {Jy′} = Sy. The existence of y′ follows from
[S(X)] ⊆ J(X) in (ii). From (i) it also follows, provided δ(Sy, Ty′) > 0, that

δ(Sy, Ty′) ≤ φ(max{d(Iy, Jy′), δ(Iy, Sy), δ(Jy′, Ty′)
1
2
(D(Iy, Ty′) + D(Jy′, Sy))})

= φ(δ(Jy′, T y′)) = φ(δ(Sy, Ty′)) < δ(Sy, Ty′),
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which is clearly absurd. Thus, {y0} = {Iy} = Sy = {Jy′} = Ty′, and by (i)
and (iv) we have, inasmuch as δ(Sy0, y0) > 0, that

δ(Sy0, y0) = δ(Sy0, T y′)

≤ φ(max{d(Iy0, Jy′), δ(Iy0, Sy0), δ(Jy′, T y′),
1
2
(D(Iy0, Ty′) + D(Jy′, Sy0))})

= φ(δ(Sy0, y0)) < δ(Sy0, y0),

which is again a contradiction. Therefore {y0} = Sy0 = {Iy0}.

An entirely symmetrical argument shows that {y0} = {Jy0} = Ty0, and
completely demonstrates that if y0 ∈ I(X) then y0 is a fixed point of I, J, S and
T satisfying (3.4). Since an entirely analogous argument applies if y0 ∈ J(X),
and because of (ii), also if y0 ∈ [S(X)] or y0 ∈ [T (X)], the existence of a com-
mon fixed point y0 is granted.

To establish the uniqueness of y0, assume z = I(z) = J(z) ∈ S(z) ∩ T (z)
and d(y0, z) > 0. From (i) we obtain

δ(z, Sz) ≤ δ(Sz, Tz)

≤ φ(max{d(Iz, Jz), δ(Iz, Sz), δ(Jz, Tz),
1
2
(D(Iz, Tz) + D(Jz, Sz))})

= φ(max{0, δ(z, Sz), δ(z, Tz), 0})
= φ(max{δ(z, Sz), δ(z, Tz)}),

and, symmetrically,

δ(z, Tz) ≤ φ(max{δ(z, Sz), δ(z, Tz)}),
which in any possibility for max{δ(z, Sz), δ(z, Tz)} leads, provided we assume
δ(z, Sz) > 0 or δ(z, Tz) > 0, to a contradiction with φ(t) < t.

Hence δ(z, Sz) = δ(z, Tz) = 0, and {z} = {Iz} = {Jz} = Sz = Tz. From

d(y0, z) = δ(Sy0, T z)

≤ φ(max{d(Iy0, Jz), δ(Iy0, Sy0), δ(Jz, Tz),
1
2
(D(Iy0, T z) + D(Jz, Sy0))})

= φ(d(y0, z))

it follows that the assumption d(y0, z) > 0 is contradictory, and we conclude
that y0 = z. Hence, provided tn = δ(Yn, Yn+1) > 0 for all n ≥ 1, the existence
and uniqueness of a common fixed point of I, J, S and T is ensured.
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Now, if tm = δ(Ym, Ym+1) = 0 for some m, it follows from (3.5) and (3.6)
that δ(Yn, Yn+1) = 0 for n ≥ m, so that for some y0 ∈ X, Yn = {y0} for all
n ≥ m. This implies that also y0 = lim Ix2n = lim Jx2n+1. Since the argument
from here on is exactly as above, the proof is complete in all details. ¤X

Remark 3.1. If φ satisfies φ(t) < t for t > 0 and is upper semicontinuous,
and if (tn) is a decreasing sequence in R+ verifying (1.3) with t > 0, then
t = lim sup φ(tn) = φ(t) < t, which is absurd. Thus t = 0, and Condition (C)
holds for φ.

Remark 3.2. Assume I, J, S, T are as in Theorem 3.1, but instead of condi-
tions (iii) and (iv) assume either I or J is continuous and (I, S), (J, T ) are
compatible , the other assumptions remaining unchanged. Then, the proof of
Theorem 4 in [2], p. 680, ensures that if (xn) is as in (3.1), and (3.3) holds,
then y0 = Iy0 if I is continuous or y0 = Jy0 if J is. Thus, Condition (iii) of
Theorem 3.1 actually holds. This and Remark 3.1 show that Theorem 1.1 is a
consequence of Theorem 3.1.

Theorem 3.2. Let (X, d) be a complete metric space and I, J be selfmaps of
X. Let (Sα)α∈Λ and (Tβ)β∈Λ′ be families of multivalued maps of X into B(X),
and assume that

(i)

δ(Sαx, Tβy) ≤ φ(max{d(Ix, Jy), δ(Ix, Sαx), δ(Jy, Tβy),
1
2
(D(Ix, Tβy) + D(Jy, Sαx))}), (3.7)

for all x, y ∈ X and all α ∈ Λ, β ∈ Λ′, where φ ∈ Φ∗ is fixed.

Also assume that there exist α0 in Λ and β0 in Λ′ such that:

(ii) [Sα0(X)] ⊆ I(X), [Tβ0(X)] ⊆ J(X).
(iii) For any sequence (xn) in X such that Jx2n+1 ∈ Sα0x2n and Ix2n+2 ∈

Tβ0x2n+1, n ≥ 0, if lim Ix2n = limJx2n+1 = y ∈ X, it follows that
y ∈ I(X) ∪ J(X) ∪ [Sα0(X)] ∪ [Tβ0(X)].

(iv) The maps I and Sα0 as well as J and Tβ0 are locally commuting.

Then, I, J, Sα and Tβ, have a unique common fixed point y0 in X for all α ∈
Λ, β ∈ Λ′. Furthermore

Sαy0 = {y0} = {Iy0} = {Jy0} = Tβy0 (3.8)

for all α ∈ Λ, β ∈ Λ′.

Proof. It follows from Theorem 3.1 that there is a unique y in X which is a
common fixed point of I, J, Sα0 and Tβ0 . Let γ ∈ Λ′, γ 6= β0. From (i) it also
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follows, if δ(y, Tγy) > 0, that

δ(y, Tγy) = δ(Sα0y, Tγy)

≤ φ(max{d(Iy, Jy), δ(Iy, Sα0y), δ(Jy, Tγy),
1
2
(D(Iy, Tγy) + D(Jy, Sα0y))})

= φ(max{δ(y, Tγy),
1
2
D(y, Tγy)})

= φ(δ(y, Tγy) < δ(y, Tγy),

which is absurd. Hence, Tγy = {y} = {Iy} = {Jy} for all γ ∈ Λ′. The proof is
entirely similar for γ ∈ Λ, γ 6= α0. ¤X

Taking into account Remarks 3.1 and 3.2, the following corollaries hold.

Corollary 3.1 (Chang[2]). If (X, d) is a complete metric space, I, J are self-
maps of X and (Sα)α∈Λ, (Tα)α∈Λ are two families of maps of X into B(X)
with

∪α∈Λ[SαX] ⊆ J(X), ∪α∈Λ[TαX] ⊆ I(X) (3.9)
and such that

δ(Sαx, Tβy) ≤ φ(max{d(Ix, Jy), δ(Ix, Sαx), δ(Jy, Tβy),
1
2
(D(Ix, Tβy) + D(Jy, Sαx))}) (3.10)

for all x, y ∈ X and all α, β ∈ Λ, where φ : R+ → R+, with φ(t) < t, t > 0,
is upper semicontinuous, then, if for all α, β ∈ Λ, (Tα, J) and (Sβ , I) are
compatible, and one of I or J is continuous, a unique y0 ∈ X exists such that

Sαy0 = Tβy0 = {Iy0} = {Jy0} = {y0} (3.11)

for all α, β ∈ Λ.

Proof. The compatibility of pairs implies their local commutativity (Remark
2.1). ¤X

Corollary 3.2. If (X, d) is complete and Sα : X → B(X), α ∈ Λ, is a family
of multivalued maps such that

δ(Sαx, Sβy) ≤ φ(max{d(x, y), δ(x, Sαx), δ(y, Sβy),
1
2
(D(x, Sβy) + D(y, Sαx))}) (3.12)

for all x, y ∈ X and all α, β ∈ Λ, where φ ∈ Φ∗ is a fixed, then the maps Sα,
α ∈ Λ, have a unique common fixed point y0 in X, and Sαy0 = {y0} for all
α ∈ Λ.

Proof. Just let I = J be the identity map of X. ¤X

Remark 3.3. Corollary 3.2 above generalizes Corollary 6 in Chang[2].
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Corollary 3.3. Let (X, d) be a complete metric space and I, J be selfmaps of
X. Also let S, T : X → B(X) be such that [S(X)] ⊆ J(X) and [T (X)] ⊆ I(X)
and that (3.2) holds with φ ∈ Φ∗. Also assume that

δ(Sx, Sx) ≤ δ(x, Sx) (3.13)

holds for all x ∈ X. If the pairs (S, I) and (T, J) are compatible and if S is
continuous, then S, T, I and J have a unique fixed point y0 ∈ X. Furthermore,

Sy0 = Ty0 = {Iy0} = {Jy0} = {y0}. (3.14)

Proof. Condition (3.13), the compatibility of I and S and the continuity of
S guarantee (Chang[2], p.682) that if Jx2n+1 ∈ Sx2n and Ix2n+2 ∈ Tx2n+1,
n ≥ 0 and if y = lim Ix2n = lim Jx2n+1, then y ∈ S(X). The conclusion then
follows from Theorem 3.1. ¤X

Remark 3.4. Corollary 3.3 above improves Theorem 7 in Chang[2].

Theorem 3.3. Let (X, d) be a complete metric space and I, J, S and T be
selfmaps of X such that:

(i)
d(Sx, Ty) ≤ φ(max{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty),

1
2
(d(Ix, Ty) + d(Jy, Sx))}) (3.15)

for all x, y ∈ X, where φ ∈ Φ∗ is fixed.
(ii) S(X) ⊆ J(X), T (X) ⊆ I(X).
(iii) For any sequence (xn) in X such that Jx2n+1 = Sx2n, Ix2n+2 =

Tx2n+1, n ≥ 0, and lim Ix2n = limJx2n+1 = y, it follows that y ∈
I(X) ∪ J(X) ∪ S(X) ∪ T (X).

(iv) The maps I, S as well as J, T commute at their coincidence points; i.e.,
(I, S) and (J, T ) are locally commuting.

Then, S, T, I, J have a unique common fixed point in X.

Proof. Theorem 3.1 and its proof obviously hold when S, T are also single-
valued. ¤X

Remark 3.5. Since Theorem 8 in Chang[2] is an easy consequence of Theorem
3.3, many results in Fisher[6, 7], Kubiak[12], Rodŕıguez-Montes and Charris[17]
and Sing and Whitfield[19] are special cases of Theorems 3.1 and 3.3. For
example:

Corollary 3.4 (Rodŕıguez-Montes and Charris[17]). Let X be a complete met-
ric space and let f, g be selfmaps of X, at least one of them being continuous,
such that

d(g(x), g(y)) ≤ Q(max{d(f(x), f(y)), d(f(x), g(x)), d(f(y), g(y)),
1
2
(d(f(x), g(y)) + d(f(y), g(x)))}) (3.16)

for all x, y ∈ X, where Q : R+ → R+ satisfies
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(a) 0 < Q(t) < t for t > 0, Q(0) = 0
(b) q(t) = t/(t−Q(t)) is non increasing on (0,+∞).

Also assume that
(i) f and g are compatible, and
(ii) g(X) ⊆ f(X).

Then, f and g have a unique common fixed point.

Proof. If (tn) is a sequence in R+ such that tn+1 ≤ Q(tn) < tn, n ≥ 1,
and lim tn = limQ(tn) = t, assuming t > 0 leads from (b) to q(t) = t/(t −
Q(t)) ≥ tn/(tn − Q(tn)) = q(tn), n ≥ 1, and letting n → ∞, to q(t) = +∞,
which is absurd. Hence, Q satisfies Condition (C). Since the compatibility of
f and g implies their local conmutativity, and the continuity of either f or
g ensures that for any sequence (xn) in X such that g(xn) = f(xn+1) and
y0 = lim g(xn) = lim f(xn+1) it follows that y0 ∈ f(X) ∪ g(X), the corollary
is a consequence of either Theorem 3.1 (when f is continuous) or of Corollary
3.3 (when g is continuous), with S = T = g and I = J = f . ¤X

The above corollary was also proved in Rodŕıguez-Montes and Charris[17]
by a different procedure, and then used to establish or generalize results of
Carbone et al.[1], sometimes removing redundant assumptions.

In [15], Rhoades et al. state a contraction result of the Meir-Keeler type,
but their conclusion is erroneous (see Chang[2]). Chang[2] proposes additional
assumptions to validate it. In what follows we adapt techniques of Chang[2] to
our point of view and establish results which improve some of those in [2] and
in Pant[13].

Lemma 3.1. let Y be a set and f, g : Y → R+ be such that f(x) = 0 whenever
g(x) = 0. Assume there is δ̂ : R+ → R+ which is either non decreasing or left
lower semicontinuous and such that δ̂(t) > 0 when t > 0 and for any ε > 0,
f(x) < ε whenever ε ≤ g(x) < ε+ δ̂(ε). Then, there is a nondecreasing function
φ ∈ Φ∗ such that f(x) ≤ φ(g(x)) for all x ∈ Y .

Proof. The conditions on f and g ensure that f(x) ≤ g(x) for all x ∈ Y and
if f(x) > 0 then g(x) 6∈

[
f(x), f(x) + δ̂(f(x))

)
. Thus, f(x) + δ̂(f(x)) ≤ g(x)

whenever f(x) > 0. For each t ≥ 0, let φ(t) = sup{f(x)/g(x) ≤ t} provided
{f(x)/g(x) ≤ t} 6= φ and φ(t) = 0 otherwise. By definition, 0 ≤ φ(t) ≤ t for
all t ≥ 0. If φ(t) = t for some t > 0, there is a sequence (xn) in Y such that
0 < f(xn) ≤ t, 0 < g(xn) ≤ t, (f(xn)) and (g(xn)) are nondecreasing,

lim f(xn) = lim g(xn) = t (3.17)
and

f(xn) + δ̂(f(xn)) ≤ g(xn). (3.18)

Thus, if tn = f(xn), n ≥ 1, then lim δ̂(tn) = 0. Now, if δ̂ is nondecreasing,
δ̂(tn) ≥ δ̂(t1) > 0 for all n ≥ 1, which is contradictory. Also, if δ̂ is left
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lower semicontinuous then, since tn ≤ t, 0 < δ̂(t) ≤ lim inf δ̂(tn) = 0, which
is equally contradictory. Thus, φ(t) < t for all t > 0. Now let (tn) be a
decreasing sequence in R+ such that tn+1 < φ(tn) < tn for all n ≥ 1 and
limφ(tn) = lim tn = t. From the definition of φ, there is a sequence (xn)
in Y such that t < tn+1 < f(xn) < g(xn) ≤ tn and f(xn) ≤ φ(tn) for all
n ≥ 1. Then lim f(xn) = lim g(xn) = t. If t > 0, there exists N ≥ 1 such that
t ≤ g(xn) < t + δ̂(t), and therefore f(xn) < t for all n ≥ N , which is absurd.
Then t = 0, and φ satisfies Condition (C). ¤X

Remark 3.6. Lemma 3.1 above is a simpler alternative to Proposition 11 in
Chang[2].

Theorem 3.4. Let (X, d), S, T, I and J be as in Theorem 3.1, but instead of
Condition (i) assume that

(i’) there is a function δ̂ : (0, +∞) → (0,+∞) which is either nondecreasing
or left lower semicontinuous and such that, for all x, y ∈ X and ε > 0,
δ(Sx, Ty) < ε whenever

ε ≤ max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty),
1
2
(D(Ix, Ty) + D(Jy, Sx))} < ε + δ̂(ε),

(3.19)

the other conditions remaining unchanged. Then, the conclusions of Theorem
3.1 hold.

Proof. Follows from Lemma 3.1 with Y = X × X, f(x, y) = δ(Sx, Ty) and
g(x, y) = max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty), 1

2 (D(Ix, Ty)+D(Jy, Sx))}, and
from Theorem 3.1. ¤X

Remark 3.7. Theorems 3.2 and 3.3, as well as Corollary 3.2, also remain
valid if condition (i) in each of them is replaced by condition (i’) in Theorem
3.4 above. This shows that the results in Chang[2] and Pant[13] follow from
results in the present paper.

4. Results of the expansive type

Now we explore the use of Condition (A) for expanding maps ψ : R+ → R+

(ψ(t) > t for t > 0) in the context of multi-valued maps in metric spaces.
For a contracting function φ, necessarily φ(0+) = limt→0+ φ(t) = 0. For an

expanding map ψ this may not hold and has to be assumed when needed. We
denote by Ψ the set of expanding maps satisfying Condition (A), and by Ψ0

the set of those ψ ∈ Ψ verifying ψ(0+) = 0.
For ψ ∈ Ψ and t > 0, let ψ̂(t) = Sup{x/ψ(x) < t} provided {x/ψ(x) < t} 6=

φ, ψ̂(t) = 0 otherwise. Then 0 ≤ ψ̂(t) ≤ t for t > 0.
The following lemma states two useful properties of ψ ∈ Ψ0. It appears in

Rodŕıguez-Montes and Charris[17, 18], but for completeness we also include its
proof here.
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Lemma 4.1. For ψ ∈ Ψ0, the following holds:
(a) 0 < ψ̂(t) ≤ t for all t > 0.
(b) For any ε > 0 there is 0 < t ≤ ε such that ψ̂(t) < t.

Proof. From ψ(0+) = 0 it follows that ψ̂(t) > 0 for all t > 0. If (b) were
not satisfied, ε > 0 could be found such that ψ̂(t) = t for all 0 < t ≤ ε. Let
0 < α < ε. Since ψ̂(ε) = ε then, for some t1, α < t1 < ψ(t1) < ε, and having
selected tn such that α < tn < ψ(tn), we could also choose tn+1 such that
α < tn+1 < ψ(tn+1) < tn, from which it follows that t ≥ α > 0 exists such that
lim tn = lim ψ(tn) = t > 0. This is absurd for ψ satisfying Condition (A). ¤X

Theorem 4.1. Let (Y, d) be a metric space, X be a subspace of Y and I, J be
maps of X into Y . Let S, T : X → B(Y ) be such that:

(i)

ψ(δ(Sx, Ty)) ≤ max{d(Ix, Jy),
1
2
(D(Ix, Ty) + D(Jy, Sx)) (4.1)

for all x, y ∈ X, where ψ ∈ Ψ0 is fixed.

(ii) There exists a sequence (xn) in X such that

Jx2n+1 ∈ Sx2n, Ix2n+2 ∈ Tx2n+1, n ≥ 0. (4.2)

(iii) Either I(X) or J(X) is a complete subspace of (Y, d), and for any se-
quence (xn) as in (4.2) such that lim Ix2n = lim Jx2n+1 = y for some
y ∈ Y , it follows that y ∈ I(X) ∩ J(X).

(iv) The maps I, S as well as J, T are locally commuting.
Then I, J, S and T have a unique common fixed point y0 ∈ X. Furthermore

Sy0 = Ty0 = {Iy0} = {Jy0} = {y0}, (4.3)

and y0 = lim Ix2n = lim Jx2n+1 for any sequence (xn) as in (4.2).

Proof. Observe that condition (iv) implies that for any x ∈ X such that Sx =
{Ix} (resp. Tx = {Jx}) it follows that Ix ∈ X (resp. Jx ∈ X), which occurs
in particular if X = Y . From (i) we obtain that if Y2n = Sx2n, Y2n+1 = Tx2n+1

then

ψ(δ(Y2n+2, Y2n+1)) = ψ(δ(Sx2n+2, Tx2n+1)) ≤ max{d(Ix2n+2, Jx2n+1),
1
2
(D(Ix2n+2, Tx2n+1) + D(Jx2n+1, Sx2n+2))}

≤ max{δ(Y2n+1, Y2n),
1
2
(δ(Y2n, Y2n+1) + δ(Y2n+1, Y2n+2))}.

We first assume that δ(Yn, Yn+1) > 0 for all n ≥ 1. If it were δ(Y2n, Y2n+1) ≤
δ(Y2n+1, Y2n+2) then ψ(δ(Y2n+1, Y2n+2)) ≤ δ(Y2n+1, Y2n+2), which is absurd.
Hence, δ(Y2n+1, Y2n+2) < δ(Y2n, Y2n+1), and therefore

δ(Y2n+1, Y2n+2) < ψ(δ(Y2n+1, Y2n+2)) ≤ δ(Y2n, Y2n+1), n ≥ 0. (4.4)
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Similarly,

δ(Y2n, Y2n+1) < ψ(δ(Y2n, Y2n+1)) ≤ δ(Y2n−1, Y2n), n ≥ 0. (4.5)

Since ψ ∈ Ψ0, then lim δ(Yn, Yn+1) = lim ψ(δ(Yn, Yn+1)) = 0.

On the other hand, if m is even, n is odd and m > n, then

ψ(δ(Ym, Yn)) = ψ(δ(Sxm, Txn)) ≤ max{d(Ixm, Jxn),
1
2
(D(Ixm, Txn) + D(Jxn, Sxm))}

≤ max{δ(Ym−1, Yn−1),
1
2
(δ(Yn, Ym−1) + δ(Yn−1, Ym))}.

≤ max{δ(Yi, Yj)/n− 1 ≤ i 6= j ≤ m}.
The same holds if m is odd, n is even and m > n.

Let ε > 0 be such that ψ̂(ε) < ε (Lemma 4.1), let δ = (ε − ψ̂(ε))/2 and
let N > 0 be such that δ(Yn+1, Yn) < δ and δ(Yn+2, Yn) < δ for all n ≥ N .
We claim that δ(Ym, Yn) < ε for all m,n ≥ 2N , m 6= n. This follows from
an induction argument. In fact, if we assume that δ(Y2N+i, Y2N+j) < ε, i, j =
0, 1, ..., k, i 6= j, then, if k is odd, p is even and p < k − 2, we have that

δ(Y2N+k+1, Y2N+p) ≤ δ(Y2N+k+1, Y2N+k−1) + δ(Y2N+K−1, Y2N+p+1)

+ δ(Y2N+p+1, Y2N+p) ≤ 2δ + δ(Y2N+k−1, Y2N+p+1).

Since ψ(δ(Y2N+k−1, Y2N+p+1)) ≤ max{δ(Yi, Yj) : i, j = 2N, ..., 2N + k, i 6=
j} < ε then δ(Y2N+k−1, Y2N+p+1) ≤ ψ̂(ε), and therefore δ(Y2N+k+1, Y2N+p) ≤
2δ + ψ̂(ε) = ε. If p is odd then

δ(Y2N+k+1, Y2N+p) ≤ δ(Y2N+k+1, Y2N+k−1) + δ(Y2N+K−1, Y2N+p+2)

δ(Y2N+p+2, Y2N+p) ≤ 2δ + δ(Y2N+k−1, Y2N+p+2),

and since ψ(δ(Y2N+k−1, Y2N+p)) ≤ max{δ(Yi, Yj) : i, j = 2N, ..., 2N + k, i 6=
j} < ε, then δ(Y2N+k−1, Y2N+p+2) ≤ ψ̂(ε), and therefore δ(Y2N+k+1, Y2N+p) <

2δ + ψ̂(ε) = ε. The proof is similar if k is even.
Since either I(X) or J(X) is complete and δ(Yn, Ym) → 0 when m,n →

∞, there is y0 in Y such that y0 = lim Ix2n = lim Jx2n+1 and, since y0 ∈
I(X) ∩ J(X), also x̃1, x̃2 in X such that y0 = I(x̃1) = J(x̃2). Furthermore,
lim δ(y0, Yn) = 0.

Now, it follows from (i) that for all x, y ∈ X,

δ(Sx, Ix2n+2) ≤ δ(Sx, Tx2n+1) < ψ(δ(Sx, Tx2n+1))

≤ max{d(Ix, Jx2n+1),
1
2
(D(Ix, Tx2n+1) + D(Jx2n+1, Sx))}
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and

δ(Jx2n+1, T y) ≤ δ(Sx2n, T y) < ψ(δ(Sx2n, T y))

≤ max{d(Ix2n, Jy),
1
2
(D(Ix2n, T y) + D(Jy, Sx2n))}.

Letting n →∞ we obtain

δ(Sx, y0) ≤ max{d(Ix, y0),
1
2
(δ(Ix, y0) + δ(y0, Sx))} (4.6)

and
δ(y0, T y) ≤ max{d(y0, Jy),

1
2
(δ(y0, T y) + δ(Jy, y0))} (4.7)

Thus, from (4.6) and assuming δ(Sx̃1, y0) > 0, we get that

δ(Sx̃1, y0) = δ(Sx̃1, Ix̃1) <
1
2
δ(Sx̃1, Ix̃1),

and from (4.7) and assuming δ(T x̃2, y0) > 0, that δ(T x̃2, Jx̃2) < 1
2δ(T x̃2, Jx̃2).

Both conclusions are absurd, so that {y0} = {Ix̃1} = Sx̃1 = {Jx̃2} = T x̃2.
Now, from (iv) it follows that y0 ∈ X and Sy0 = {Iy0}, Ty0 = {Jy0}.

Hence, if we assume δ(Sy0, y0) > 0 then, by (i),

ψ(δ(Sy0, y0)) = ψ(δ(Sy0, T x̃2)) ≤ max{d(Iy0, Jx̃2),
1
2
(δ(Sy0, T x̃2) + δ(Jx̃2, Sy0))}

≤ max{d(Sy0, y0),
1
2
(δ(Sy0, y0) + δ(Sy0, y0))}

= δ(Sy0, y0),

which is absurd and ensures that Sy0 = {y0}. Similarly {y0} = Ty0, and
therefore {y0} = {Iy0} = {Jy0} = Sy0 = Ty0; i.e., y0 is a common fixed point
of I, J, S and T .

Now assume z is another common fixed point of these maps, i.e., z ∈ Tz∩Sz,
z = Iz = Jz and d(z, y0) > 0. Then, by (i), d(z, y0) ≤ δ(Sz, Ty0) <
ψ(δ(Sz, Ty0)) ≤ max{d(z, y0), 1

2 (d(z, y0) + δ(y0, Sz))} ≤ δ(y0, Sz), which con-
tradicts δ(y0, Sz) = δ(Sz, Ty0) > 0. Thus y0 = z, and the fixed point y0 is
unique.

If we now assume δ(Ym, Ym+1) = 0 for some m, it follows from the arguments
preceding (4.4) and (4.5) that also δ(Ym+1, Ym+2) = 0, so that Yn = {y0} for
some y0 ∈ Y and all n ≥ m. This implies as before that y0 = lim Ix2n =
limJx2n+1 and shows, as above, that y0 is a unique fixed point of I, J, S and
T . ¤X

Remark 4.1. We observe that if [T (X)] ⊆ I(X) and [S(X)] ⊆ J(X), condi-
tion (ii) and relation (4.2) in Theorem 4.1 are automatically satisfied. In fact,
choosing arbitrarily x0 ∈ X, x1 and x2 in X can be chosen such that Jx1 ∈ Sx0

and Ix2 ∈ Tx1; and having selected x2n, also x2n+1 and x2n+2 can be picked
out such that Jx2n+1 ∈ Sx2n and Ix2n+2 ∈ Tx2n+1.
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We have the following Corollary of Theorem 4.1.

Corollary 4.1. Let (X, d) be a complete metric space, I and J be selfmaps
of X, S, T : X → B(X). Assume that [S(X)] ⊆ J(X), [T (X)] ⊆ I(X), that
one of I(X) or J(X) is closed in X, and that conditions (i) and (iv) of the
theorem hold true. Then I, J, S and T have a unique common fixed point y0,
and y0 = lim Ix2n = lim Jx2n+1 for any sequence (xn) in X as in (4.2).

Proof. From Remark 4.1, a sequence (xn) exists as in the statement of the
corollary. From (i) it follows, as in the proof of the theorem, that y0 ∈ X exists
such that y0 = lim Ix2n = lim Jx2n+1 and δ(y0, Sx2n) → 0, δ(y0, Tx2n+1) → 0
when n →∞. If I(X) is closed, there is x̃1 ∈ X such that y0 = Ix̃1, and again,
as in the proof of the theorem, {y0} = {Ix̃1} = Sx̃1. Since [S(X)] ⊆ J(X),
y0 = Jx̃2 for some x̃2 ∈ X, and again {y0} = {Jx̃2} = T x̃2. This shows
that y0 ∈ I(X) ∩ J(X), and herefrom the proof is that of the theorem. The
argument is entirely similar if J(X) is closed. ¤X

Remark 4.2. It can be shown that if condition (i) in Theorem 4.1 is changed
to

ψ(δ(Sx, Ty)) ≤ max{d(Ix, Jy), δ(Ix, Sx), δ(Jy, Ty)
1
2
(D(Ix, Ty) + D(Jy, Sx))} (4.8)

for all x, y ∈ X, where ψ is an expanding map of R+ into R+ such that for
any increasing or decreasing sequence (tn) in R+ from lim tn = lim ψ(tn) = t it
follows that t = 0, then the conclusions of the theorem still hold, but we do not
know if Condition (A) alone yields the same result. We observe that a lower
semicontinuous expanding map ψ of R+ into R+ satisfies the above condition.

Acknowledgments: The author thanks Prof. Jairo A. Charris for guidance
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