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Weighted locally convex
spaces of measurable functions
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Abstract. In this paper, we make a study of weighted locally convex spaces of
measurable functions parallel to the studies of weighted locally convex spaces of
continuous functions which has been a subject of intense research for decades.
With Lp, 1 ≤ p < ∞, spaces as our motivation, the completeness and inductive
limits of those spaces are studied including their relationship with the weighted
spaces of continuous functions leading to new results and generalizations of
results true for Lp spaces.
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1. Preliminaries

Lp spaces are some of the most important spaces studied in Mathematics
because of its abundant usefulness and applications that run across all the
branches of Mathematics. It is a ready source of examples and counter-examples
for many mathematical theories. The study of Orlicz spaces, for example, is
borne out of an attempt to generalize the results of Lp spaces. This study is
also an attempt to generalize the study of Lp spaces with the tool of weighted
spaces parallel to that of locally convex spaces of continuous functions (see [6]
and [9]), leading us to new results and new proofs of known results.

2. Notation and definitions

Throughout this paper (except otherwise stated), X would denote:
(i) a locally compact Hausdorff space and
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(ii) a measure space, with positive Radon measure µ, on a σ-algebra M
such that M contains all Borel sets in X.

We adopt the notations of [6] and [9] for weighted spaces of continuous functions
on X. A real-valued non-negative upper semicontinuous function (u.s.c.) v on
X is called a weight on X. Let V be a non-empty system of weights such that
given v1,v2 in V and a > 0, there is a v ∈ V such that avi ≤ v, i = 1, 2
(pointwise on X); if in addition, for each t ∈ X there is v ∈ V with v(t) > 0,
then V is called a Nachbin family on X.

An Np family V p on X, 1 ≤ p < ∞, is defined as a set of non-negative
measurable functions v : X → [0,∞) on X satisfying the following condition:
if u and v ∈ V p and λ > 0, there is a w ∈ V p such that λu, λv ≤w (pointwise
on X).

Members of V p are also called weights. It should be noted that upper-
semicontinuous (u.s.c.) functions on X are measurable. So the Nachbin family
V on X and the Np family V p on X are comparable. It should be observed that
p appears redundant in the notation of Np family V p. However, its relevance
will be clear in the next section.

Let E be a real (resp.complex) locally convex Hausdorff space, M(X, E)
is the space of all measurable functions from X into E and C(X,E) is the
vector subspace of M(X, E) consisting of the continuous functions f from X
into E. Also B(X, E) is the space of all bounded functions f from X into E.
Bo(X, E) is the subspace of B(X, E) consisting of all bounded functions from
X into E that vanish at infinity, i.e., those bounded functions f from X into
E, such that, given any continuous seminorm (cs(E)) q on E and any ε > 0,
there is a compact subset K of X such that q(f(x)) < ε for every x ∈ X
outside of K. M(X, E)∩B(X,E) is denoted by Mb(X, E); C(X,E)∩B(X, E)
is denoted by Cb(X, E) and Co(X, E) denotes C(X, E)∩Bo(X, E). Mm(X, E)
will denote the subspace of M(X, E) consisting of those functions on X that
are identically zero outside some set of finite measure. For example, constant
non zero functions from X into E are measurable but are not in Mm(X, E)
if µ(X) = ∞. Cc(X,E) shall denote the subspace of C(X, E) consisting of
those functions that are identically zero outside some compact subset of X. It
is clear that Cc(X,E) ⊆ Mm(X, E). When E = R or C, the corresponding
function spaces on X are written omitting E. Thus B+(X) is the cone of B(X)
consisting of bounded positive valued functions on X, while B+

o (X) is the cone
of Bo(X) consisting of positive valued functions on X that vanish at infinity.
We can now introduce the following two spaces:

CVo(X,E) = {f ∈ C(X, E) : v.q(f) vanishes at

infinity on X for all v ∈ V, q ∈ cs(E)},

MV p(X,E) = {f ∈ M(X,E) : v.q(f) ∈ Lp for all v ∈ V p, q ∈ cs(E)}.
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The weighted topology wV on CVo(X, E) is defined by the family of seminorms

pv,q(f) = sup(v(x)q(f(x)) : x ∈ X) for v ∈ V and q ∈ cs(E)

If CVo(X, E) is endowed with the weighted topology wV , it is called a weighted
locally convex space of continuous functions. It has a basis of closed absolutely
convex neighbourhoods of origin of the form

Vv,q = {f ∈ CVo(X, E) : pv,q(f) ≤ 1}.
Much has been done on those spaces. See for example [1], [3], [6] and [9].
Similarly, if MV p(X, E) is endowed with the weighted topology wV p generated
by the family of continuous seminorms

pv,q(f) = (
∫

X

(v.q(f))pdµ)
1
p

as v ranges over V p and q ∈ cs(E), then it is called a weighted locally con-
vex space of measurable functions. It has a basis of closed absolutely convex
neighbourhoods of the origin of the form

Vv,q = {f ∈ MV p(X, E) : pv,q(f) ≤ 1}
We shall assume that MV p(X) is endowed with this topology wV p henceforth.
We shall also assume that MV p(X,E) is Hausdorff. This is true if there is a
v ∈ V p such that v > 0 a.e. on X. Finally, if U(resp.Up) and V (resp.V p) are
two Nachbin(Np) families on X, and for every u ∈ U(Up) there is a v ∈ V (V p)
such that u ≤ v(pointwise on X), then we write U(Up) ≤ V (V p). In the case
V (V p) ≤ U(Up) and U(Up) ≤ V (V p) we write U(Up) ∼ V (V p).

Examples. Denote K+(X) as the set of all positive constant functions on
X. If V p = K+(X), then MV p(X, E) = Lp(X,E) both topologically and
algebraically. If almost equal functions are identified we have Lp(X,E) spaces.
Also if X is the set of natural numbers and µ is the counting measure, then
MV p(X) = `p both topologically and algebraically.

By following the proofs for 0 < p < 1 in [4], the following result can be easily
checked for 1 ≤ p < ∞: If V p ≤ B(X), then

(i) Cc(X) is wV p dense in Mm(X).
(ii) Mm(X) is wV p dense in MV p(X).

For let f ∈ MV p(X), f > 0, then by [ 8, Theorem 1.17 ], there are simple
measurable functions sn on X such that 0 ≤ s1 ≤ s2 ≤ · · · ≤ f and sn(x) →
f(x) as n → ∞. Clearly each sn ∈ Mm(X) ⊆ MV p(X) and |f − sn|p ≤ fp.
The dominated convergence Theorem shows that for v ∈ V , pv(f − sn) → 0 as
n → ∞. f − sn ∈ Vv,|.| for some n; and since each sn ∈ Mm(X) then f is in
the wV p closure of Mm(X). The general case (f complex) follows from this.

Combining (i) and (ii), we have the following:
(iii) Cc(X) is wV p dense in MV p(X).

Thus, specifically Cc(X) is Lp(µ) dense in Lp(X). This is well known.
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3. Completeness of weighted spaces

Let Up and V p be Np families on X and φ : X → X be a continuous mapping
such that Up ≤ V p ◦ φ, then the mapping f → f ◦ φ is a continuous linear
mapping from MV p(X, E) into MUp(X, E). For if f ∈ MV p(X, E) and u ∈
Up, we can choose v ∈ V such that u ≤ voφ. Hence, for any continuous
seminorm q on E, we have

pu,q(f ◦ φ) ≤
(∫

X

((v ◦ φ).q(f ◦ φ))pdµ

) 1
p

≤ pv,q(f)

Since v.q(f) ∈ Lp for all v ∈ V p and q ∈ cs(E), it is clear that u.q(f ◦ φ) ∈ Lp.
Hence, since u is arbitrary, then f ◦ φ ∈ MUp(X,E). We have just shown the
following result which is an analogue of [6, Propositions 1 and 2].

Proposition 3.1. Let Up and V p be Np families on X and φ : X → X be a
continuous mapping such that Up ≤ V p ◦ φ, then the mapping f → f ◦ φ is a
continuous linear mapping from MV p(X, E) into MUp(X,E).

If φ is taken to be the identity map on X, then the first part of the following
result follows immediately from Proposition 3.1.

Proposition 3.2. Let Up and V p be Np families on X with Up ≤ V p, then
(1) MV p(X) ⊆ MUp(X)
(2) the topology induced on MV p(X) by wUp is weaker than wV p .

Conversely, if (1) and (2) hold and µ is a probability measure such that V p ≤
B(X), then Up ≤ V p.

To prove the converse, we use an argument supplied by the referee which
is inspired by Summers’ one [9,Theorem 3.3]. It should be observed that the
assumptions (1) and (2) imply that for any u ∈ Up there is v ∈ V p such that
Vv ⊆ Uu ∩ MV p(X). We will show that if A = {x ∈ X : (u − v)(x) > 0},
then µ(A) = 0. Indeed, suppose µ(A) > 0. For every integer n ≥ 2, let
Bn = {x ∈ X : u(x) > n+1

n−1v(x)}; then B2 ⊆ B3 · · · ⊆ Bn ⊆ Bn+1 ⊆ · · · and
A =

⋃∞
n=2 Bn. Then 0 < µ(A) = limn→∞ µ(Bn) implies that there is no ≥ 2

such that µ(Bno) > 0. Let

f =
1

(µ(Bno))
1
p

2
u + v

χBno
.

Then f ∈ Vv, since
(∫

X

(v.|f |)pdµ
) 1

p

=
1

(µ(Bno))
1
p

( ∫

Bno

( 2v

u + v

)p
dµ

) 1
p ≤ (µ(Bno))

1
p

(µ(Bno))
1
p

= 1

but ( ∫

X

(u.|f |)pdµ
) 1

p

=
1

(µ(Bno))
1
p

( ∫

Bno

( 2u

u + v

)p
dµ

) 1
p

.
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Now, for all x ∈ Bno
, u(x) + v(x) < (1 + no−1

no+1 )u(x) = 2no

no+1u(x) implies

( ∫

X

(u.|f |)pdµ
) 1

p ≥ 1

(µ(Bno
))

1
p

(no + 1
no

)
(µ(Bno))

1
p =

no + 1
no

> 1

so, f /∈ Uu ∩MV p(x), a contradiction.

Corollary 3.3. Let Up and V p be Np families on X such that Up ∼ V p ≤
B(X). If µ is a probability measure, then MV p(X) = MUp(X) as topological
vector spaces.

The relationship between CVo(X,E) and MV p(X,E) is set forth in the
following result, the proof of which can be easily checked.

Proposition 3.4. Let V (V p) be a Nachbin(resp.Np) family on X such that
V p ≤ V ≤ B(X). If µ is a finite measure, then CVo(X) ⊆ MV p(X).

Remark. Unlike Proposition 3.2(2), when µ is a finite measure the topology
induced on CVo(X) by wV p is weaker than wV . If K+(X) = V p and V =
B+

u (X), where B+
u (X) is the set of all upper semicontinuous bounded positive

functions on X, wV is the supremum norm topology ‖.‖ (see ([3], [9])) and
wV p is the Lp topology. Also, CVo(X) = Co(X) algebraically whenever V =
B+

u (X). Since the topology induced on CVo(X) by wV p is weaker than wV

when V p ≤ V , then in particular, on Co(X), the Lp topology is weaker than
the supremum norm topology. The following example supplied by the referee
shows that these two topologies do not coincide. For consider X = (0, 1) with
the usual topology, µ = the Lebesgue measure, and for n ≥ 3,

fn(x) =





0 if x ∈ (0, 1
2 − 1

n ] ∪ [ 12 + 1
n , 1),

1 if x = 1
2 ,

linear on [ 12 − 1
n , 1

2 ] and on [ 12 , 1
2 + 1

n ].

Then fn → 0 in Lp(µ), 1 ≤ p < ∞, but ‖fn‖ = sup|fn| = 1, ∀n ≥ 3.

For the remaining part of this section, we define

χc(X) = {λχK ;λ ≥ 0 and K a compact subset of X}.
Theorem 3.5. Let V p(V ) be an Np(Nachbin) family on X and µ be a proba-
bility measure. Then wV and wV p coincide on the following identities:

(1) CVo(X) = MV p(X) ∩ C(X) if V p ∼ V = χc(X)

(2) CVo(X) = MV p(X) ∩ Cb(X) if V p ∼ V ∼ B+
o (X)

(3) CVo(X) = MV p(X) ∩ Co(X) if V p ∼ V ∼ B+
u (X)

(4) CVo(X) = MV p(X) ∩ Cc(X) if V p ∼ V = C+(X)
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X is σ compact and wV is, respectively, the compact open (c-op) topology; strict
(β0) topology; the topology of uniform convergence (‖.‖) and ind.lim.top. on
{CK = f ∈ Cc(X) : suppf ⊂ K} where each CK is endowed with the topology
of uniform convergence on X as K varies over compact subsets of X (e.g. see
[2, p50]).

Proof. We first prove the algebraic equalities (1) Let f ∈ CVo(X), then fv
vanishes at infinity for all v ∈ V and thus fv ∈ Lp ∀ v ∈ V p since V ∼ V p

and µ is a probability measure. Thus CVo(X) ⊆ MV p(X) ∩ C(X). Also let
f ∈ MV p(X) ∩ C(X). Since V = χc(X), and f ∈ C(X), then fv vanishes
at infinity for all v ∈ V and so f ∈ CVo(X). Thus the algebraic equality
of (1) is proved. The remaining three algebraic equalities can similarly be
verified. The topological equalities of the four identities follow immediately
from Corollary 3.3. The proof is complete since it is well known that wV

is respectively the compact open topology, the strict topology, the topology
of uniform convergence and the ind.lim.topology on CVo(X) whenever V is
equivalent (∼) to χc(X), B+

o (X), B+
u (X), C+(X) respectively (see [1], [6],

[9]). ¤X

We are now in a position to consider the completeness of MV p(X, E).

Theorem 3.6. Let V p be an Np family on X such that 0 < V p ≤ B+(X). If
E is complete, then MV p(X, E) is complete.

Proof. Let φ be a Cauchy filter in MV p(X,E) and U be a closed neighbourhood
of the origin in Lp(X, E). Then we can find a set H in φ such that v.(f − g) ∈
U ∀ f, g ∈ H and v ∈ V p. Clearly φ.V p = {vH : H ∈ φ, v ∈ V p}, where vH
= {vf : f ∈ H}, is a Cauchy filter in Lp(X,E). Since each v is bounded, it is
clear that φ is a Cauchy filter in Lp(X, E) and thus converges to fo ∈ Lp(X, E)
by the completeness of Lp(X, E). Thus v.q(fo) ∈ Lp for all v in V, q ∈ cs(E),
(since each v is bounded). Therefore fo ∈ MV p(X, E) and it is the limit of φ

in the space MV p(X, E). ¤X

If V (V p) is a Nachbin(Np) family on X such that CVo(X, E) is contained in
MV p(X, E) and V p ≤ B+(X), then in the light of Theorem 3.6, CVo(X, E) is
complete if and only if CVo(X,E) is closed in MV p(X,E). Suppose µ(X) < ∞
and V p ≤ V , then CVo(X, E) is contained in MV p(X,E). If E is complete
and χc(X) ≤ V , then CVo(X, E) is complete [6, Theorem 3] and thus from
Theorem 3.6, we have the following result.

Proposition 3.7. Suppose V p and V be respectively Np and Nachbin families
on X such that χc(X) ≤ V , V p ≤ B+(X) and V p ≤ V . If µ(X) < ∞ and E is
complete, then CVo(X,E) is wV p closed in MV p(X, E).

Corollary 3.8. If E is complete and X is such that µ(X) < ∞, then Co(X, E)
is Lp closed in Lp(X, E).
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Proof. Set V = B+
u (X) and V p = K+(X), then the result follows immediately

from Proposition 3.7. ¤X

4. Inductive limits

Let {V p
n , n ∈ N} be a sequence of Np families on X such that V p

n+1 ≤ V p
n for

each n ∈ N . We shall denote ind MV p
n (X) by V pM(X). We want to describe

the weighted inductive limit V pM(X), analogous to the case of weighted spaces
of continuous functions, in terms of an associated Np family on X. Let vn ∈ V p

n

and αn > 0 for each n; if we put v(x) = inf{αnvn(x), n ∈ N}, x ∈ X, then
v(x) is clearly a weight on X. Scalar multiples of all those weights on X form
an Np family on X which we will denote V

p
. Clearly V

p
contains every Np

family V p on X that satisfies V p ≤ V p
n for each n ∈ N .

We first state the following results:

Lemma 4.1. Let V p be an Np family on a σ-compact space X and µ a probabil-
ity measure, then MV

p
(X) and V pM(X) induce the same topology on Mm(X).

Proof. We follow the proof of the analogous result in the weighted spaces of
continuous functions (see [2,p114,Lemma 4]) with some modifications. Since
the canonical injection of V pM(X) into MV

p
(X) is continuous, we can fix an

arbitrary neighbourhood U of zero in V pM(X) and then have to prove that the
intersection of Mm(X) with some zero neighbourhood in MV

p
(X) is contained

in U . By the description of a basis of zero neighbourhoods in an inductive limit,
we may assume without loss of generality that U is an absolutely convex hull
of the form Γ(

⋃
n Bn), where

Bn = {f ∈ MV p
n (X) : pvn(|f |) ≤ ρn, vn ∈ Vn}

and ρn is positive for each n ∈ N . Put v = inf limn∈N
2n

ρn
vn ∈ V

p
. It re-

mains to show that {f ∈ Mm(X) : pv(|f |) < 1} ⊂ U . Fix f ∈ Mm(X)
with pv(|f |) < 1. For each n, let Fn denote the measurable subset {x ∈ X :
2n

ρn
vn(x)|f(x)| ≥ 1} of X. We observe that

⋂
Fn is empty because, for any

x ∈ ⋂
Fn, 2n

ρn
vn(x)|f(x)| ≥ 1 holds for each n, whereby pv(|f |) ≥ 1 contra-

dicting pv(|f |) < 1. If Un = X\Fn, then Un is measurable for each n. Hence
by [8, Theorem 2.17a], there is an open set Vn such that Un ⊂ Vn for each
n. Clearly (Vn, n ∈ N) is an open covering of X. Let (ψn)n ⊂ Cc(X) be a
continuous partition of unity on supp f which is subordinate to (Vn)n. We
then take gn = 2nψnf ∈ Mm(X) ⊂ MV p

n (X) for each n and estimate pv(|gn|)
= |ψn2n|pvn(|f |) = |ρnψn

2n

ρn
|pvn(|f |) ≤ ρn. Thus each gn ∈ Bn, and hence f =∑

ψnf is an element of Γ(
⋃

n Bn) = U and the proof is complete. ¤X

The following result will also be needed.

Lemma 4.2. [1, Lemma 1.2] Given a locally convex space (E1, ε1), let E2

denote a linear subspace and ε2 a locally convex topology on E2 which is finer
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than the topology induced by ε1. If ε1 and ε2 induce the same topology on some
dense linear subspace D of (E2, ε2), then ε2 = ε1/E2.

We now have the following result which is an analogue of [2, Theorem 1.3].

Theorem 4.3. Let X be a σ-compact space and µ a probability measure.
(1) If {V p

n , n ∈ N} is a sequence of Np families on X such that V p
n+1 ≤

V p
n for each n ∈ N , then the canonical injection from VpM(X) into

MV
p
(X) is a topological isomorphism.

(2) Suppose V p
n ≤ B+(X) for each n ∈ N , then MV

p
(X) is the completion

of V pM(X).

Proof. (1) If (E1, ε1) = MV
p
(X), (E2, ε2) = V pM(X) and D=Mm(X) in

Lemma 4.2, then the proof follows clearly from Lemma 4.1. (2) Since MV
p
(X)

is complete by Theorem 3.6, and the fact that Mm(X) is dense in V pM(X),
an application of (1) completes the proof. ¤X
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