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Abstract. We give an example of an infinite simple Frobenius group G without
involutions, with a trivial kernel and a nilpotent complement. Nevertheless, this
group is not ω- stable (not even superstable), this is the ”only” property missing
in order to be a counterexample to the Cherlin-Zil’ber Conjecture which says
that simple ω- stable groups are algebraic groups.
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1. Introduction

In [Co2] we define a bad group to be a connected non-solvable group of finite
Morley-rank in which all the definable proper subgroups are nilpotent-by-finite
(i.e. all definable proper connected subgroups are nilpotent). We proved there
that a bad group has a definable quotient which is a simple bad group. The
Cherlin-Zil’ber conjecture states that every simple group of finite Morley rank is
an algebraic group over an algebraically closed field, and we know that the max-
imal connected solvable subgroups (called Borel subgroups) of a non-solvable
algebraic group are non-nilpotent. Therefore, the existence of bad groups would
be in contradiction with the conjecture above.

The structure of a simple bad group is well understood (see [Co2]): if G is
such a group, it has a proper definable subgroup B, which is selfnormalizing,
such that the union of all its conjugates is G and the intersection of any pair
of them is trivial. B is in fact a Borel subgroup of G, it is nilpotent and we can
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also prove that G does not have involutions. We call such a pair (G,B), where
G is not necessarily of finite Morley rank, a pseudo-bad group.

Definition. A pseudo-bad group is an infinite simple group G, without involu-
tions, with a nilpotent proper subgroup B which is selfnormalizing, such that
the union of its conjugates is G and the intersection of any pair of them is
trikvial.

Equivalently a pseudo-bad group is an infinite simple Frobenius group G,
without involutions, with a nilpotent complement B and with trivial kernel. It
was unknown whether such a group existed.

In this article we construct a pseudo-bad group G, or rather a family of
them, where the complement B is an infinite cyclic and definable subgroup and
the maximal solvable subgroups of G are B and their conjugates. Since B ∼= Z
is definable, G is not of finite Morley rank ( or ω− stable). We show that G is
not even superstable.

S.V. Ivanov gave a similar example, but with the following additional prop-
erty: there is an m (in his example m = 106) such that, for every b /∈ B and
every conjugacy class C 6= {1} we have (bB)m = Cm = G. This property is
also satisfied by any simple bad group. For this reason his example is better
than ours. His result was announced as an abstract in [I] but we do not know
the actual proof of it. We presented our results for the first time in 1989 (see
[Co1]) and we obtained them independently. We believe that our construction
is simpler than Ivanov’s and therefore we present it here.

2. (∗)-groups

Definition. A (∗)-group is a torsionfree group G with the following property:

(∗) For all nontrivial element g ∈ G, CG(g) is cyclic.

In the rest of the paper, if G is a (∗)-group and g ∈ G r {1}, we will call vg

one of the generators of the cyclic group CG(g).

Examples of (∗)-groups:

(1) 〈Z, +〉 is the only non trivial abelian (∗)-group.
(2) Free groups are (∗)-groups; cf [L-Sch].
(3) In Theorem 3 bellow we show that some HNN-extensions of (∗)-groups

are also (∗)-groups.
(4) Subgroups of (∗)-groups are (∗)-groups.
(5) Free products of (∗)-groups are (∗)-groups. See Theorem 2 bellow.
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Theorem 1. Let G be a (∗)-group, g ∈ G− {1} and vg ∈ G so that CG(g) =
〈vg〉. Then:

(1) CG(vg) = 〈vg〉
(2) CG(g) = 〈vg〉 is a maximal cyclic subgroup of G.
(3) For every r ∈ Z∗, CG(gr) = CG(g).
(4) CG

(
CG(g)

)
= NG

(
CG(g)

)
= NG

(〈g〉) = CG(g).
(5) For every h ∈ Gr {1}: if CG(h) ∩ CG(g) 6= 〈1〉, then CG(h) = CG(g),

and if
( ⋃

x∈G

CG (h)x
)
∩

( ⋃
x∈G

CG (g)x
)
6= 〈1〉, then

⋃
x∈G

CG (h)x =
⋃

x∈G

CG (g)x
.

(6) The relation a ↔ b, “a commutes with b”, is an equivalence relation in
Gr {1}.

(7) If u−1gpu = gq, where p ∈ Z∗, q ∈ Z and u ∈ G, then p = q.
(8) Let x, h ∈ G such that CG(x) = 〈x〉 and hm = xp, for m, p ∈ Z, m 6= 0.

Then m divides p and h = xp/m.
(9) Every solvable subgroup of G is cyclic.

Proof.
(1) There is a p ∈ Z such that g = vp

g , because g ∈ CG(g) = 〈vg〉. Therefore

CG(vg) ⊆ CG(g) = 〈vg〉.

The other inclusion is clear.
(2) 〈vg〉 is a maximal cyclic subgroup of G: if 〈vg〉 ≤ 〈u〉, then u commutes

with vg, so
〈u〉 ≤ CG(vg) ≤ 〈vg〉 ≤ 〈u〉.

(3) It is clear that CG(g) ≤ CG(gr). But CG(gr) is also a cyclic subgroup
of G. By the maximality of CG(g) , we have the equality.

(4) The following inclusions are clear

CG(g) ≤ CG

(
CG(g)

) ≤ NG

(
CG(g)

) ≤ NG

(〈g〉).

We show that NG

(〈g〉) ≤ CG(g): Let u ∈ NG

(〈g〉), i.e., gu = g±1.

Then u2 ∈ CG(g) i.e., u2 = vq
g for some q ∈ Z. If u 6= 1, i.e., q 6= 0,

then we get CG(u2) = CG(u), so

u ∈ CG(u) = CG(u2) = CG(vq
g) = CG(vg) = 〈vg〉 = CG(g).

(5) Let b 6= 1 in CG(h) ∩ CG(g). By (2) CG(g) and CG(h) are maximal
cyclic subgroups of G. Both are contained in CG(b), which is also cyclic.
Hence

CG(h) = CG(b) = CG(g).
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The second part of the claim follows from here.
(6) The relation “ ↔ ” is clearly reflexive and symmetric. The transitivity

follows easily from (5).
(7) By hypothesis CG(u−1gu) ∩ CG(g) 6= 1, so CG(g)u = CG(g). By (4)

u ∈ NG

(
CG(g)

)
= CG(g). Hence p = q.

(8) We have

h ∈ CG(hm) = CG(xp) = CG(x) = 〈x〉.

Then h = xq, for some q ∈ Z and xp = hm = xqm. Therefore p = qm,
q = p/m and h = xp/m.

(9) Let H 6= 1 be a solvable subgroup of G. H contains a non trivial abelian
normal subgroup H(n). Let 1 6= h ∈ H(n), then H(n) ≤ CG(h). Since
CG(h) is cyclic, then H(n) is also cyclic. Let H(n) = 〈u〉. Then

H ≤ NG

(〈u〉) = CG(u),

and H is cyclic. ¤X

Definition. Let G be a torsion-free group. x ∈ Gr {1} is called indecompos-
able if 〈x〉 is a maximal cyclic subgroup of G.

Let G be a (∗)-group and x ∈ Gr {1}. The set

CG
x :=

⋃

g∈G

CG (x)g

is called the component of x in G. x is called atomic if CG(x) = 〈x〉.
Theorem 2. Let G and H be (∗)-groups. Then G∗H, the free product of G
and H, is also a (∗)-group.

Proof. Every w ∈ G∗H, w 6= 1, can be written uniquely as a product w1 · · ·wn,
where w1 6= 1, each wi belongs G or H and consecutive factors wi and wi+1 are
not in the same group. This is called the normal form of w and we say that
w = w1 · · ·wn is reduced. The number |w| = n is called the length of w.

We call w = w1 · · ·wn cyclicly reduced if wn and w1 are in different factors
or n = 1.

Let w ∈ G ∗ H, w 6= 1. The proof will be complete once we prove by
induction on |w| = n the following claim:

Claim. For every r ∈ Z∗, CG∗H(wr) = CG∗H(w) is cyclic.

If |w| = 1. then w ∈ G or w ∈ H and so CG∗H(wr) equals CG(wr) or
CH(wr). Now we can apply Theorem 1 (3).

Suppose that |w| ≥ 2. Without lost of generality, assume that w is cyclicly
reduced (every element of G ∗H is conjugated to one element which is cyclicly
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reduced). We may also assume, without lost of generality, that w is indecom-
posable; otherwise w = vr for some v ∈ G ∗H, v indecomposable, also cyclicly
reduced and |v| < |w|. But, if the claim holds for v, it holds for vr = w as
well. Therefore w = w1 · · ·wm is cyclicly reduced and indecomposable. Let
u = u1 · · ·un be in CG∗H(wr). We are done if we prove by induction on |u| = n
that

u ∈ 〈w〉(≤ CG∗H(w) ≤ CG∗H(wr)
)
.

First we show that either u = 1 or n ≥ m. Suppose, for a contradiction,
that u 6= 1 and n < m. It follow by induction that CG∗H(u) is cyclic. Let
CG∗H(u) = 〈vu〉.Then u = vq

u for some q ∈ Z∗ and |vu| ≤ |u|. Therefore

CG∗H(vu) = CG∗H(vq
u) = CG∗H(u) = 〈vu〉.

By hypothesis we have wr ∈ CG∗H(u) = 〈vu〉. Then wr = v±s
u where s ≥ 0.

Hence
w ∈ CG∗H(wr) = CG∗H(v±s

u ) = CG∗H(vu) = 〈vu〉.
Then w = vp

u for some p ∈ Z∗. But w is indecomposable, so |p| = 1 and we
have |w| = |vu| ≤ |u| < |w|, a contradiction.

Assume now that u 6= 1. We have n ≥ m and since u ∈ CG∗H(wr), the
following equality holds:

u1 · · ·un−m · · ·unw1 · · ·wm · · ·w1 · · ·wmu−1
n · · ·u−1

1 = wr.

The word on the left side must be reducible for the words to have the same
lenght. This can only happen if unw1 or wmu−1

n is reducible. It is clear that
only one of them is reducible because w is cyclicly reduced. Therefore there
are two cases, but we will consider only the case in which wmu−1

n is reducible.
Let i ≤ m − 1 be maximal such that wm−i · · ·wmu−1

n · · ·u−1
n−i =: bi is an

element of G or H. One can easily see that i = m−1; otherwise wm−i−1biu
−1
n−i−1

would be reduced and so would be the word

uwr−1w1 · · ·wm−i−1biu
−1
n−i−1 · · ·u−1

1 = uwru−1 = wr.

By a length argument we get m = |w| > |u| = n, a contradiction.
Let û = u1 · · ·un−mb−1

m−1. Then u = ûw and so wr = ûwrû−1. Since
|û| < |u|, by induction we get that û ∈ 〈w〉. Therefore u ∈ 〈w〉. ¤X

Now we make a brief introduction to HNN-extensions. Let G be a group
with two isomorphic subgroups A and B. Let ϕ : A −→ B be an isomorphism.
The HNN-extension of G with respect to A, B and ϕ is the group

G∗ =
〈
G, t; t−1at = ϕ(a), a ∈ A

〉
.
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Each element w ∈ G∗ can be written in the form w = w0t
ε1w1 · · · tεnwn, where

the wi’s are in G and εi = ±1. This representation of w is called reduced if it
does not contain the substring t−1wit with wi ∈ A or twit

−1 with wi ∈ B.
If we choose a system of right coset representatives for A and B in G, then

we get for each element w ∈ G∗ a normal form w = w0t
ε1 · · · tεnwn (n ≥ 0)

with the properties:

(a) w0 is an element of G.
(b) If εi = −1, then wi is one of the representatives for the cosets of A in

G.
(c) If εi = 1, then wi is one of the representatives for the cosets of B in G.
(d) tε1t−ε is not a substring.

|w| = n denotes the length of w. w = w0t
ε1 · · · tεnwn (n ≥ 0) is called cyclicly

reduced if every cyclic permutation of w is reduced.

Theorem 3.

(i) Let G be a (∗)-group, x, z ∈ Gr{1} be atomic elements with different
components. Then the HNN-extension G∗ =

〈
G, t; t−1xt = z

〉
is also

a (∗)-group and for every u ∈ Gr {1}, CG∗(u) = CG(u).
(ii) If y ∈ G is a G-component other than that of x or that of z, i.e.

CG
y 6= CG

x and CG
y 6= CG

z , then CG∗
y 6= CG∗

x and CG∗
y 6= CG∗

z .

Proof. We use the following conventions: y1 := x and y−1 := z. With this
notation we have that t−δym

δ tδ = ym
−δ, where δ = ±1 and m ∈ Z. If w ∈ G,

ε = ±1 and δ = ±1, then tεwtδ is reducible if and only if ε = −δ and w = ym
δ

for some m ∈ Z. We use the standard theory of HNN-extensions which can be
found in, say, [L-Sch].

(i) That G∗ is torsionfree follows from the general theory of HNN-extensions.
We show that G∗ has also the property (∗). We shall be done when we prove
by induction on |w| the following claim:

Claim A. For every w ∈ G∗ r {1}, CG∗(w) is cyclic (equal to 〈vw〉) and
CG∗(wr) = CG∗(w) for every r ∈ N∗.

We consider two cases:

Case I. Suppose w ∈ Gr{1}. It is enough to proof that NG∗
(〈w〉) = NG

(〈w〉),
because

NG

(〈w〉) = CG(w) ⊆ CG∗(w) ⊆ NG∗
(〈w〉).

Let u = u0t
δ1 · · · tδnun ∈ NG∗

(〈w〉) be reduced in normal form. We want to
show that n = 0. Suppose that n ≥ 1. We can suppose that un = 1 and
w = yp

−δn
for some p ∈ Z since uwu−1 = wr for r ∈ Z, i.e.,

u0t
δ1 · · · tδnunwu−1

n t−δn · · · t−δ1u−1
0 w−r = 1
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which implies that tδnunwunt−δn is reducible, i.e., w = u−1
n yp

−δn
un for some

p ∈ Z. Let u′ = unuu−1
n = unu0t

δ1 · · · tδn and w′ = unwu−1
n = yp

−δn
. Then

u′wu′−1 = wr, i.e., u′ ∈ NG∗
(〈w′〉).

If n = 1, then u0t
δ1yp

−δ1
t−δ1u−1

o = ypr
−δ1

i.e, u0y
p
δ1

u−1
o = ypr

−δ1
. This implies

that ( ⋃

g∈G

〈z〉g
)
∩

( ⋃

g∈G

〈x〉g
)
6= 〈1〉.

But this contradicts our assumption that x and z have different components.
If n ≥ 2, then tδn−1un−1y

p
δn

u−1
n−1t

−δn−1 is reducible, i.e., un−1y
p
δn

u−1
n−1 =

yq
−δn−1

for some q ∈ Z. By Theorem 1 ((5) and (7)), we get that δn = −δn−1,
q = p and un−1 = ys

δn
, s ∈ Z.

Then the word u would be reducible at tδn−1un−1t
δn = t−δnys

δn
tδn which is

a contradiction. Whence NG∗
(〈w〉) = NG

(〈w〉) and CG∗(w) = CG(w).

Before we consider the case |w| ≥ 1, we need two lemmas. The first one is a
result of the theory of HNN-extensions.

Lemma 4. Let G∗ =
〈
G, t; t−1At = B

〉
be a HNN-extension of G. Let v ∈ G∗.

Then, there are words a and b in G∗ such that b is cyclicly reduced, v = aba−1

and aba−1 is reduced.

Proof. We prove this by induction on |v|. The cases |v| = 0 and |v| = 1 are
trivial.

Suppose |v| ≥ 2 and let v = v0t
ε1v1 · · · tεnvn be reduced. If v is cyclicly

reduced we are done; so we can assume that the word α := tεnvnv1t
ε1 belongs

to G and v = v0t
ε1 ṽ

(
v0t

ε1
)−1, where

ṽ =
{

v1t
ε2v2 · · · tεn−1vn−1α, if n ≥ 3

v1α, if n = 2.

In the second case take a = v0t
ε1 , b = v1α. In the first case we can apply

induction to ṽ = v1t
ε2v2 · · · tεn−1vn−1α and then ṽ = ãbã−1 is reduced for some

b cyclicly reduced.
Take a = v0t

ε1 ã. Then, by a length argument, v = aba−1 is reduced, . ¤X

Remark. Let v, a and b be as in previous lemma. It is clear that for every
r ∈ N, vr = abra−1 and |vr| = r|b|+ 2|a|. Therefore

|vr+1| ≥ |vr| and |vr+1| = |vr| if and only if |b| = 0.

Lemma 5. Let w ∈ G∗ as in Theorem 3. Then there is a vw ∈ G∗, inde-
composable, such that w = vr

w for some r ∈ N. If w is cyclicly reduced, so is
vw.

Proof. First we prove the statement for w cyclicly reduced by induction on
|w|. If |w| = 0, then CG∗(w) = CG(w) = 〈vw〉, where vw is an atomic element
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of G. Then w = vr
w for some r ∈ N, and vw is indecomposable, since it is

indecomposable in G.
If |w| ≥ 1 and w is decomposable, let w = vr (r ∈ N, r ≥ 2). Then v is

cyclicly reduced; otherwise there are words a and b in G∗ such that b is cyclicly
reduced, |a| > 1, v = aba−1 and aba−1 is reduced. But then w = abra−1 is
not cyclicly reduced, a contradiction. Therefore |w| = r|v| and |v| < |w|. The
required statement follows by induction.

Now if v ∈ G∗ is arbitrary, v is conjugate to a cyclicly reduced element
w: v = uwu−1 with w cyclicly reduced. By the previous argument we find
vw ∈ G∗ indecomposable such that w = vr

w for some r ∈ N. It follows that
v = (uvwu−1)r and one can easily verifies that uvwu−1 is also indecomposable.

¤X
Now we continue the proof of Theorem 3.

Case II. k := |w| ≥ 1. By Lemma 4, it is clear that we can assume, without
lost of generality, that w is cyclicly reduced. We can also suppose that w is
indecomposable; otherwise w = vr

w, where r ≥ 2 and vw is cyclicly reduced and
indecomposable. Since |vw| < |w|, it follows by induction that CG∗(vw) is cyclic
and CG∗(vq

w) = CG∗(vw) for every q ∈ N∗. Then CG∗(w) = CG∗(vr
w) = CG∗(vw)

is cyclic and for every s ∈ N∗ we have

CG∗(ws) = CG∗(vrs
w ) = CG∗(vw) = CG∗(w).

Let w = w0t
δ1w1 · · · tδk be cyclicly reduced and indecomposable. Let u =

u0t
ε1u1 · · · tεnun be a reduced element of CG∗(wr) (r ≥ 1). We show by induc-

tion on |u| = n that u ∈ 〈w〉. First we prove that u = 1 or n ≥ k. arguing
for a contradiction, suppose that u 6= 1 and n < k. It follows by induction
that CG∗(u) is cyclic. Let CG∗(u) = 〈vu〉. Then u = vq

u for some q ∈ Z∗ and
|vu| ≤ |u|. It follows that

CG∗(vu) = CG∗(vq
u) = CG∗(u) = 〈vu〉.

By hypothesis, wr ∈ CG∗(u) = 〈vu〉. Then wr = v±s
u (s ≥ 1) and

w ∈ CG∗(wr) = CG∗(v±s
u ) = CG∗(u) = 〈vu〉.

Then w = v±p
u (p ≥ 1). Since w is indecomposable, p = 1 and |w| = |vu| ≤

|u| < |w|, a contradiction.
So we can suppose that u 6= 1 and n ≥ k. Since u ∈ CG∗(wr) we have that

uwru−1 = wr. More explicitly:

u0t
ε1u1 · · · tεn−kun−ktεn−k+1 · · · tεn−1un−1t

εnunw0t
δ1 · · ·

· · · tδk · · ·w0t
δ1w1 · · · tδku−1

n t−εn · · · t−ε1u−1
0 = wr.

We prove that the word from the left either at tεnunw0t
δ1 or at tδku−1

n t−εn is
reducible, but not at both positions. Since w is cyclicly reduced, |wr| = r|w|.
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Then it is clear that the word on the left of the equality above is reducible
and the only two positions where this is possible are the ones mentioned above.
Suppose it is reducible at both positions. Then tεnunw0t

δ1 is reducible, i.e.
εn = −δ1 and w0 = u−1

n yp
δ1

for some p ∈ Z∗ and tδku−1
n t−εn is also reducible,

i.e., δk = εn = −δ1 and u−1
n = yq

δ1
for some q ∈ Z∗.

If k = 1, then δk = −δ1 is already a contradiction. If k > 1, then w would
not be cyclicly reduced because

tδkw0t
δ1 = t−δ1u−1

n yp
δ1

tδ1 = t−δ1yp+q
δ1

tδ1 = yp+q
−δ1

.

This is also a contradiction.
To finish the proof we show that in both cases we have u ∈ 〈w〉.

Subcase IIa: The word on the left of the equality above is reducible at tδku−1
n t−εn .

Let i ≤ k − 1 maximal so that

tδk−iwk−i · ... · tδk−1wk−1t
δku−1

n t−εn · ... · u−1
n−it

−εn−i = yp
εn−i

for some p ∈ Z∗. Let

w̃ = tδk−iwk−i · · · tδk−1wk−1t
δk , w̄ = w0t

δ1tδk−i−1wk−i−1

and
ū = u0t

ε1u1 · · · tεn−i−1un−i−1, ũ = tεn−iun−i · · · tεnun.

Then ũ = y−p
εn−i

w̃. We show now that i = k − 1, i.e., w̄ = w0. Suppose,
for a contradiction, that |w̄| ≥ 1. Then w̄yp

εn−1
ū−1 is not reducible. But

wr = uwru−1 = uwr−1w̄yp
εn−i

ū−1 and uwr−1w̄ is also reduced. It follows that

r|w| = |u|+ (r − 1)|w|+ |w̄|+ |ū|,

i.e., |w| = |u| + |w̄| + |ū| > |u|, a contradiction. We then have that w = w0w̃
and u = ūy−p

εn−i
w−1

0 w. Let û = ūy−p
εn−i

w−1
0 . Then u = ûw and

wr = uwru−1 = ûwwrw−1û−1 = ûwrû−1.

Since |û| < |u|, it follows by induction that û ∈ 〈w〉. Therefore u ∈ 〈w〉.
Subcase IIb: The word on the left of the equality above is reducible at tεnunw0t

δ1 .
Let j ≤ k − 1 maximal, so that

tεn−j un−j · · · · tεn−1un−1t
εnunw0t

δ1w1t
δ2 · · · · wjt

δj+1 = yq
−δj+1

for some q ∈ Z∗. Let

w̄ = w0t
δ1 · · · · wjt

δj+1 , w̃ = wj+1t
δj+2 · · · · tδk
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and
ū = u0t

ε1u1 · · · tεn−j−1un−j−1, ũ = tεn−j un−j · · · · tεnun.

Then ũ = yq
−δj+1

w̄−1. We show that j = k − 1, i.e., w̃ = 1. Suppose, for a
contradiction, that |w̃| ≥ 1, i.e. ūyq

−δj+1
w̃ is reduced. Then

wr = uwru−1 = ūũw̄w̃wr−1u−1 = ūyq
−δj+1

w̃wr−1u−1

and w̃wr−1u−1 is reduced. It follows that

r|w| = |ū|+ |w̃|+ (r − 1)|w|+ |u|,

i.e., |w| = |ū|+|w̃|+|u| > |u|, a contradiction. Then w̄ = w and ũ = yq
−δj+1

w−1.
Let û = ūyq

−δj+1
. Then

wr = uwru−1 = ûw−1wrwû−1 = ûwrû−1.

Since |û| < |u|, it follows by induction that û ∈ 〈w〉. Then u = ûw−1 ∈ 〈w〉.

(ii) Arguing for contradiction, suppose that CG∗
y = CG∗

x . We may assume,
without lost of generality, that y is atomic. Then there is a reduced word
u = u0t

ε1u1 · ... · tεkuk (k ≥ 1) in G∗, so that u−1xu = y.
If k = 1, then y = u−1

1 t−ε1u−1
0 xu0t

ε1u1 is reducible. So u−1
0 xu0 is in 〈x〉 or

in 〈z〉. But CG∗
x 6= CG∗

z . Then u−1
0 xu0 ∈ 〈x〉. It follows that

u−1
0 xu0 = x, u0 = xr0 (r0 ∈ Z) and ε1 = 1.

Then u−1
1 zu1 = y, a contradiction. Then we can assume that k ≥ 2. So

t−ε2u−1
1 t−ε1u−1

0 xu0t
ε1u1t

ε2 is reducible. It follows that

u0 = xr0 (r0 ∈ Z), ε1 = 1, u1 = zr1 (r1 ∈ Z), and ε2 = −1.

Then tε1u1t
ε2 would be reducible, a contradiction. ¤X

3. Pseudo-bad groups

Now we use Theorem 3 in order to construct a pseudo-bad group.

Definition. A Chain of (∗)-groups
(
Gi

)
i∈I

is called a (∗)-chain, if for every
i, j ∈ I, if i ≤ j, then Gi ⊆ Gj, and for every i ∈ I, every u ∈ Gi and every
j ≥ i, CGj (u) = CGi(u).
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Theorem 6. Let
(
Gi

)
i∈I

be a (∗)-chain. Then G =
⋃
i∈I

Gi is a (∗)-chain and

for every i ∈ I and every u ∈ Gi, CG(u) = CGi
(u).

Proof. Let u ∈ Gi. It is enough to prove that CG(u) ⊆ CGi
(u). Let v ∈ CG(u),

then v ∈ Gj for some j ≥ i. Whence v ∈ CGj
(u) = CGi

(u). ¤X

Corollary 7. Every (∗)-group G can be embedded in a (∗)-group G′, so that
Gr{1} is totally contained in one component of G′ and for every u ∈ Gr{1},
CG′(u) = CG(u).

Proof. Let
(
xα

)
α<β

be an ordering of a representatives system for the compo-
nents of G consisting only of atomic elements. Let

G′ =
〈
G,

(
tα

)
α<β−{0}; t−1

α x0tα = xα

〉

G′ =
⋃

α<β

Gα, where G0 := G, Gα+1 :=
〈
Gα, tα+1; t−1

α+1x0tα+1 = xα+1

〉
and

Gλ =
⋃

α<λ

Gα for some λ a limit ordinal. From Theorem 3 and Theorem 6 it

follows that
(
Gα

)
α<β

is a (∗)-chain and so the corollary follows. ¤X

The next corollary follows likewise.

Corollary 8. Every (∗)-group G can be embedded in a (∗)-group G̃ with only

one component, i.e., G̃ =
⋃

g∈G̃

CG̃ (x)g
for some fixed x.

Proof. Applying successively Corollary 7, we get a (∗)-chain

G = G(0) ≤ G′ ≤ G(2) ≤ · · · ,

where for every n, G(n) r {1} is contained in one component of G(n+1). G̃ =⋃
n<ω

G(n) is a (∗)-group with only one component. ¤X

Let G = F (x, z) be the free group over {x, z}. G is a (∗)-group. Let G̃ be
as in Corollary 8 and B = 〈x〉.
Theorem 10. The group G̃ of Corollary 8 is a pseudo-bad group. Moreover,
the maximal solvable subgroups of G̃ are B and its conjugates.

Proof. By construction G̃ is a (∗)-group with only one component. By Theorem
1 ((4), (9) and (2)), NG(B) = B and the maximal solvable subgroups of G̃ are
B and its conjugates. Then, all we have to prove is that G̃ is simple. Let
N 6= {1} be a normal subgroup of G̃; N contains an a ∈ B r {1}. Without
lost of generality, we may assume that a = xr for some r ∈ N∗, r minimal such
that xr ∈ N . It is clear that

N =
⋃

g∈G̃

〈xr〉g.
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Then zr ∈ N and xrzr ∈ N , i.e., xrzr =
(
ur

)n for some atomic element u and
some n ∈ Z. Then u ∈ F (x, z). Since xrzr is indecomposable, r · |n| = 1 and
so r = 1. We have then N = G̃. ¤X

In fact, we have a family of pseudo-bad groups, one for each (∗)-group G
we start with. G̃ looks like a minimal simple bad group, but it is not of finite
Morley rank since G̃ contains the definable subgroup B ∼= Z. We even have
the following result.

Theorem 11. Let G be a non trivial (∗)-group (e.g., G = F (x, z)), and let G̃

be like in Corollary 8. Then G̃ is not superstable.

Proof. We prove the following claim:

Claim. For every b1, · · · , bn ∈ G̃, there exists a g ∈ G̃, such that b1g, · · · , bng
are not squares in G̃.

G̃ is by construction a union of (∗)-groups Gα’s. Let α0 be such that
b1, · · · , bn ∈ Gα0 . Then Gα0+1 =

〈
Gα0 , tα0+1; t−1

α0+1x0tα0+1 = xα0+1

〉
, and

it is clear that b1tα0+1, · · · , bntα0+1 are not squares in Gα0+1, neither in G̃;
otherwise bitα0+1 = u2 for some u ∈ G̃ r Gα0+1. Then u ∈ CG̃(u2) ⊆ Gα0+1,
a contradiction.

By the claim and a lemma from [Po 2], it follows that if G̃ is in fact stable;
then if a is a generic element over G̃, a is not a square. So a2 is not generic over
G̃. But a is algebraic over a2 because a is the only square root of a2. Then G̃
is not superstable since for every super-stable group the following holds: if a
generic element is algebraic over an element b, then b itself is generic. ¤X
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