(*)-groups and pseudo-bad groups

Luis Jaime Corredor

Universidad de los Andes, Bogotá

Abstract

We give an example of an infinite simple Frobenius group G without involutions, with a trivial kernel and a nilpotent complement. Nevertheless, this group is not ω - stable (not even superstable), this is the "only" property missing in order to be a counterexample to the Cherlin-Zil'ber Conjecture which says that simple ω - stable groups are algebraic groups. Key words and phrases. Frobenius groups, group of finite Morley rank, pseudobad group, HNN-extension. 2000 Mathematics Subject Classification. Primary: 20A15. Secondary: 03C45, 03C60.

1. Introduction

In [Co2] we define a bad group to be a connected non-solvable group of finite Morley-rank in which all the definable proper subgroups are nilpotent-by-finite (i.e. all definable proper connected subgroups are nilpotent). We proved there that a bad group has a definable quotient which is a simple bad group. The Cherlin-Zil'ber conjecture states that every simple group of finite Morley rank is an algebraic group over an algebraically closed field, and we know that the maximal connected solvable subgroups (called Borel subgroups) of a non-solvable algebraic group are non-nilpotent. Therefore, the existence of bad groups would be in contradiction with the conjecture above.

The structure of a simple bad group is well understood (see [Co2]): if G is such a group, it has a proper definable subgroup B, which is selfnormalizing, such that the union of all its conjugates is G and the intersection of any pair of them is trivial. B is in fact a Borel subgroup of G, it is nilpotent and we can
also prove that G does not have involutions. We call such a pair (G, B), where G is not necessarily of finite Morley rank, a pseudo-bad group.

Definition. A pseudo-bad group is an infinite simple group G, without involutions, with a nilpotent proper subgroup B which is selfnormalizing, such that the union of its conjugates is G and the intersection of any pair of them is trikvial.

Equivalently a pseudo-bad group is an infinite simple Frobenius group G, without involutions, with a nilpotent complement B and with trivial kernel. It was unknown whether such a group existed.

In this article we construct a pseudo-bad group G, or rather a family of them, where the complement B is an infinite cyclic and definable subgroup and the maximal solvable subgroups of G are B and their conjugates. Since $B \cong \mathbb{Z}$ is definable, G is not of finite Morley rank (or $\omega-$ stable). We show that G is not even superstable.
S.V. Ivanov gave a similar example, but with the following additional property: there is an m (in his example $m=10^{6}$) such that, for every $b \notin B$ and every conjugacy class $C \neq\{1\}$ we have $(b B)^{m}=C^{m}=G$. This property is also satisfied by any simple bad group. For this reason his example is better than ours. His result was announced as an abstract in [I] but we do not know the actual proof of it. We presented our results for the first time in 1989 (see [Co1]) and we obtained them independently. We believe that our construction is simpler than Ivanov's and therefore we present it here.

2. (*)-groups

Definition. A $(*)$-group is a torsionfree group G with the following property:
$(*) \quad$ For all nontrivial element $g \in G, C_{G}(g)$ is cyclic.

In the rest of the paper, if G is a $(*)$-group and $g \in G \backslash\{1\}$, we will call v_{g} one of the generators of the cyclic group $C_{G}(g)$.

Examples of ($*$)-groups:
(1) $\langle\mathbb{Z},+\rangle$ is the only non trivial abelian (*)-group.
(2) Free groups are (*)-groups; cf [L-Sch].
(3) In Theorem 3 bellow we show that some HNN-extensions of (*)-groups are also ($*$)-groups.
(4) Subgroups of (*)-groups are ($*$)-groups.
(5) Free products of $(*)$-groups are $(*)$-groups. See Theorem 2 bellow.

Theorem 1. Let G be a $(*)$-group, $g \in G-\{1\}$ and $v_{g} \in G$ so that $C_{G}(g)=$ $\left\langle v_{g}\right\rangle$. Then:
(1) $C_{G}\left(v_{g}\right)=\left\langle v_{g}\right\rangle$
(2) $C_{G}(g)=\left\langle v_{g}\right\rangle$ is a maximal cyclic subgroup of G.
(3) For every $r \in \mathbb{Z}^{*}, C_{G}\left(g^{r}\right)=C_{G}(g)$.
(4) $C_{G}\left(C_{G}(g)\right)=N_{G}\left(C_{G}(g)\right)=N_{G}(\langle g\rangle)=C_{G}(g)$.
(5) For every $h \in G \backslash\{1\}$: if $C_{G}(h) \cap C_{G}(g) \neq\langle 1\rangle$, then $C_{G}(h)=C_{G}(g)$, and if $\left(\bigcup_{x \in G} C_{G}(h)^{x}\right) \cap\left(\bigcup_{x \in G} C_{G}(g)^{x}\right) \neq\langle 1\rangle$, then $\bigcup_{x \in G} C_{G}(h)^{x}=$ $\bigcup_{x \in G} C_{G}(g)^{x}$.
(6) The relation $a \leftrightarrow b$, " a commutes with b ", is an equivalence relation in $G \backslash\{1\}$.
(7) If $u^{-1} g^{p} u=g^{q}$, where $p \in \mathbb{Z}^{*}, q \in \mathbb{Z}$ and $u \in G$, then $p=q$.
(8) Let $x, h \in G$ such that $C_{G}(x)=\langle x\rangle$ and $h^{m}=x^{p}$, for $m, p \in \mathbb{Z}, m \neq 0$. Then m divides p and $h=x^{p / m}$.
(9) Every solvable subgroup of G is cyclic.

Proof.
(1) There is a $p \in \mathbb{Z}$ such that $g=v_{g}^{p}$, because $g \in C_{G}(g)=\left\langle v_{g}\right\rangle$. Therefore

$$
C_{G}\left(v_{g}\right) \subseteq C_{G}(g)=\left\langle v_{g}\right\rangle
$$

The other inclusion is clear.
(2) $\left\langle v_{g}\right\rangle$ is a maximal cyclic subgroup of G: if $\left\langle v_{g}\right\rangle \leq\langle u\rangle$, then u commutes with v_{g}, so

$$
\langle u\rangle \leq C_{G}\left(v_{g}\right) \leq\left\langle v_{g}\right\rangle \leq\langle u\rangle
$$

(3) It is clear that $C_{G}(g) \leq C_{G}\left(g^{r}\right)$. But $C_{G}\left(g^{r}\right)$ is also a cyclic subgroup of G. By the maximality of $C_{G}(g)$, we have the equality.
(4) The following inclusions are clear

$$
C_{G}(g) \leq C_{G}\left(C_{G}(g)\right) \leq N_{G}\left(C_{G}(g)\right) \leq N_{G}(\langle g\rangle) .
$$

We show that $N_{G}(\langle g\rangle) \leq C_{G}(g)$: Let $u \in N_{G}(\langle g\rangle)$, i.e., $g^{u}=g^{ \pm 1}$. Then $u^{2} \in C_{G}(g)$ i.e., $u^{2}=v_{g}^{q}$ for some $q \in \mathbb{Z}$. If $u \neq 1$, i.e., $q \neq 0$, then we get $C_{G}\left(u^{2}\right)=C_{G}(u)$, so

$$
u \in C_{G}(u)=C_{G}\left(u^{2}\right)=C_{G}\left(v_{g}^{q}\right)=C_{G}\left(v_{g}\right)=\left\langle v_{g}\right\rangle=C_{G}(g) .
$$

(5) Let $b \neq 1$ in $C_{G}(h) \cap C_{G}(g)$. By (2) $C_{G}(g)$ and $C_{G}(h)$ are maximal cyclic subgroups of G . Both are contained in $C_{G}(b)$, which is also cyclic. Hence

$$
C_{G}(h)=C_{G}(b)=C_{G}(g) .
$$

The second part of the claim follows from here.
(6) The relation " \leftrightarrow " is clearly reflexive and symmetric. The transitivity follows easily from (5).
(7) By hypothesis $C_{G}\left(u^{-1} g u\right) \cap C_{G}(g) \neq 1$, so $C_{G}(g)^{u}=C_{G}(g)$. By (4) $u \in N_{G}\left(C_{G}(g)\right)=C_{G}(g)$. Hence $p=q$.
(8) We have

$$
h \in C_{G}\left(h^{m}\right)=C_{G}\left(x^{p}\right)=C_{G}(x)=\langle x\rangle .
$$

Then $h=x^{q}$, for some $q \in \mathbb{Z}$ and $x^{p}=h^{m}=x^{q m}$. Therefore $p=q m$, $q=p / m$ and $h=x^{p / m}$.
(9) Let $H \neq 1$ be a solvable subgroup of G. H contains a non trivial abelian normal subgroup $H^{(n)}$. Let $1 \neq h \in H^{(n)}$, then $H^{(n)} \leq C_{G}(h)$. Since $C_{G}(h)$ is cyclic, then $H^{(n)}$ is also cyclic. Let $H^{(n)}=\langle u\rangle$. Then

$$
H \leq N_{G}(\langle u\rangle)=C_{G}(u)
$$

and H is cyclic. $\quad \nabla$
Definition. Let G be a torsion-free group. $x \in G \backslash\{1\}$ is called indecomposable if $\langle x\rangle$ is a maximal cyclic subgroup of G .

Let G be a $(*)$-group and $x \in G \backslash\{1\}$. The set

$$
C_{x}^{G}:=\bigcup_{g \in G} C_{G}(x)^{g}
$$

is called the component of x in $G . x$ is called atomic if $C_{G}(x)=\langle x\rangle$.
Theorem 2. Let G and H be $(*)$-groups. Then $G * H$, the free product of G and H, is also a (*)-group.
Proof. Every $w \in G * H, w \neq 1$, can be written uniquely as a product $w_{1} \cdots w_{n}$, where $w_{1} \neq 1$, each w_{i} belongs G or H and consecutive factors w_{i} and w_{i+1} are not in the same group. This is called the normal form of w and we say that $w=w_{1} \cdots w_{n}$ is reduced. The number $|w|=n$ is called the length of w.

We call $w=w_{1} \cdots w_{n}$ cyclicly reduced if w_{n} and w_{1} are in different factors or $n=1$.

Let $w \in G * H, w \neq 1$. The proof will be complete once we prove by induction on $|w|=n$ the following claim:

Claim. For every $r \in \mathbb{Z}^{*}, C_{G * H}\left(w^{r}\right)=C_{G * H}(w)$ is cyclic.
If $|w|=1$. then $w \in G$ or $w \in H$ and so $C_{G * H}\left(w^{r}\right)$ equals $C_{G}\left(w^{r}\right)$ or $C_{H}\left(w^{r}\right)$. Now we can apply Theorem 1 (3).

Suppose that $|w| \geq 2$. Without lost of generality, assume that w is cyclicly reduced (every element of $G * H$ is conjugated to one element which is cyclicly
reduced). We may also assume, without lost of generality, that w is indecomposable; otherwise $w=v^{r}$ for some $v \in G * H, v$ indecomposable, also cyclicly reduced and $|v|<|w|$. But, if the claim holds for v, it holds for $v^{r}=w$ as well. Therefore $w=w_{1} \cdots w_{m}$ is cyclicly reduced and indecomposable. Let $u=u_{1} \cdots u_{n}$ be in $C_{G * H}\left(w^{r}\right)$. We are done if we prove by induction on $|u|=n$ that

$$
u \in\langle w\rangle\left(\leq C_{G * H}(w) \leq C_{G * H}\left(w^{r}\right)\right)
$$

First we show that either $u=1$ or $n \geq m$. Suppose, for a contradiction, that $u \neq 1$ and $n<m$. It follow by induction that $C_{G * H}(u)$ is cyclic. Let $C_{G * H}(u)=\left\langle v_{u}\right\rangle$. Then $u=v_{u}^{q}$ for some $q \in \mathbb{Z}^{*}$ and $\left|v_{u}\right| \leq|u|$. Therefore

$$
C_{G * H}\left(v_{u}\right)=C_{G * H}\left(v_{u}^{q}\right)=C_{G * H}(u)=\left\langle v_{u}\right\rangle .
$$

By hypothesis we have $w^{r} \in C_{G * H}(u)=\left\langle v_{u}\right\rangle$. Then $w^{r}=v_{u}^{ \pm s}$ where $s \geq 0$. Hence

$$
w \in C_{G * H}\left(w^{r}\right)=C_{G * H}\left(v_{u}^{ \pm s}\right)=C_{G * H}\left(v_{u}\right)=\left\langle v_{u}\right\rangle
$$

Then $w=v_{u}^{p}$ for some $p \in \mathbb{Z}^{*}$. But w is indecomposable, so $|p|=1$ and we have $|w|=\left|v_{u}\right| \leq|u|<|w|$, a contradiction.

Assume now that $u \neq 1$. We have $n \geq m$ and since $u \in C_{G * H}\left(w^{r}\right)$, the following equality holds:

$$
u_{1} \cdots u_{n-m} \cdots u_{n} w_{1} \cdots w_{m} \cdots w_{1} \cdots w_{m} u_{n}^{-1} \cdots u_{1}^{-1}=w^{r}
$$

The word on the left side must be reducible for the words to have the same lenght. This can only happen if $u_{n} w_{1}$ or $w_{m} u_{n}^{-1}$ is reducible. It is clear that only one of them is reducible because w is cyclicly reduced. Therefore there are two cases, but we will consider only the case in which $w_{m} u_{n}^{-1}$ is reducible.

Let $i \leq m-1$ be maximal such that $w_{m-i} \cdots w_{m} u_{n}^{-1} \cdots u_{n-i}^{-1}=: b_{i}$ is an element of G or H . One can easily see that $i=m-1$; otherwise $w_{m-i-1} b_{i} u_{n-i-1}^{-1}$ would be reduced and so would be the word

$$
u w^{r-1} w_{1} \cdots w_{m-i-1} b_{i} u_{n-i-1}^{-1} \cdots u_{1}^{-1}=u w^{r} u^{-1}=w^{r} .
$$

By a length argument we get $m=|w|>|u|=n$, a contradiction.
Let $\hat{u}=u_{1} \cdots u_{n-m} b_{m-1}^{-1}$. Then $u=\hat{u} w$ and so $w^{r}=\hat{u} w^{r} \hat{u}^{-1}$. Since $|\hat{u}|<|u|$, by induction we get that $\hat{u} \in\langle w\rangle$. Therefore $u \in\langle w\rangle$. $\quad \square$

Now we make a brief introduction to HNN-extensions. Let G be a group with two isomorphic subgroups A and B . Let $\varphi: A \longrightarrow B$ be an isomorphism. The $H N N$-extension of G with respect to A, B and φ is the group

$$
G^{*}=\left\langle G, t ; t^{-1} a t=\varphi(a), a \in A\right\rangle
$$

Each element $w \in G^{*}$ can be written in the form $w=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}$, where the w_{i} 's are in G and $\epsilon_{i}= \pm 1$. This representation of w is called reduced if it does not contain the substring $t^{-1} w_{i} t$ with $w_{i} \in A$ or $t w_{i} t^{-1}$ with $w_{i} \in B$.

If we choose a system of right coset representatives for A and B in G, then we get for each element $w \in G^{*}$ a normal form $w=w_{0} t^{\epsilon_{1}} \cdots t^{\epsilon_{n}} w_{n}(n \geq 0)$ with the properties:
(a) w_{0} is an element of G.
(b) If $\epsilon_{i}=-1$, then w_{i} is one of the representatives for the cosets of A in G.
(c) If $\epsilon_{i}=1$, then w_{i} is one of the representatives for the cosets of B in G.
(d) $t^{\epsilon} 1 t^{-\epsilon}$ is not a substring.
$|w|=n$ denotes the length of $w . w=w_{0} t^{\epsilon_{1}} \cdots t^{\epsilon_{n}} w_{n}(n \geq 0)$ is called cyclicly reduced if every cyclic permutation of w is reduced.

Theorem 3.

(i) Let G be a $(*)$-group, $x, z \in G \backslash\{1\}$ be atomic elements with different components. Then the HNN-extension $G^{*}=\left\langle G, t ; t^{-1} x t=z\right\rangle$ is also a $(*)$-group and for every $u \in G \backslash\{1\}, C_{G^{*}}(u)=C_{G}(u)$.
(ii) If $y \in G$ is a G-component other than that of x or that of z, i.e. $C_{y}^{G} \neq C_{x}^{G}$ and $C_{y}^{G} \neq C_{z}^{G}$, then $C_{y}^{G^{*}} \neq C_{x}^{G^{*}}$ and $C_{y}^{G^{*}} \neq C_{z}^{G^{*}}$.

Proof. We use the following conventions: $y_{1}:=x$ and $y_{-1}:=z$. With this notation we have that $t^{-\delta} y_{\delta}^{m} t^{\delta}=y_{-\delta}^{m}$, where $\delta= \pm 1$ and $m \in \mathbb{Z}$. If $w \in G$, $\epsilon= \pm 1$ and $\delta= \pm 1$, then $t^{\epsilon} w t^{\delta}$ is reducible if and only if $\epsilon=-\delta$ and $w=y_{\delta}^{m}$ for some $m \in \mathbb{Z}$. We use the standard theory of HNN-extensions which can be found in, say, [L-Sch].
(i) That G^{*} is torsionfree follows from the general theory of HNN-extensions. We show that G^{*} has also the property $(*)$. We shall be done when we prove by induction on $|w|$ the following claim:

Claim A. For every $w \in G^{*} \backslash\{1\}, C_{G^{*}}(w)$ is cyclic (equal to $\left\langle v_{w}\right\rangle$) and $C_{G^{*}}\left(w^{r}\right)=C_{G^{*}}(w)$ for every $r \in \mathbb{N}^{*}$.

We consider two cases:
Case I. Suppose $w \in G \backslash\{1\}$. It is enough to proof that $N_{G^{*}}(\langle w\rangle)=N_{G}(\langle w\rangle)$, because

$$
N_{G}(\langle w\rangle)=C_{G}(w) \subseteq C_{G^{*}}(w) \subseteq N_{G^{*}}(\langle w\rangle)
$$

Let $u=u_{0} t^{\delta_{1}} \cdots t^{\delta_{n}} u_{n} \in N_{G^{*}}(\langle w\rangle)$ be reduced in normal form. We want to show that $n=0$. Suppose that $n \geq 1$. We can suppose that $u_{n}=1$ and $w=y_{-\delta_{n}}^{p}$ for some $p \in \mathbb{Z}$ since $u w u^{-1}=w^{r}$ for $r \in \mathbb{Z}$, i.e.,

$$
u_{0} t^{\delta_{1}} \cdots t^{\delta_{n}} u_{n} w u_{n}^{-1} t^{-\delta_{n}} \cdots t^{-\delta_{1}} u_{0}^{-1} w^{-r}=1
$$

which implies that $t^{\delta_{n}} u_{n} w u_{n} t^{-\delta_{n}}$ is reducible, i.e., $w=u_{n}^{-1} y_{-\delta_{n}}^{p} u_{n}$ for some $p \in \mathbb{Z}$. Let $u^{\prime}=u_{n} u u_{n}^{-1}=u_{n} u_{0} t^{\delta_{1}} \cdots t^{\delta_{n}}$ and $w^{\prime}=u_{n} w u_{n}^{-1}=y_{-\delta_{n}}^{p}$. Then $u^{\prime} w u^{\prime-1}=w^{r}$, i.e., $u^{\prime} \in N_{G^{*}}\left(\left\langle w^{\prime}\right\rangle\right)$.

If $n=1$, then $u_{0} t^{\delta_{1}} y_{-\delta_{1}}^{p} t^{-\delta_{1}} u_{o}^{-1}=y_{-\delta_{1}}^{p r}$ i.e, $u_{0} y_{\delta_{1}}^{p} u_{o}^{-1}=y_{-\delta_{1}}^{p r}$. This implies that

$$
\left(\bigcup_{g \in G}\langle z\rangle^{g}\right) \cap\left(\bigcup_{g \in G}\langle x\rangle^{g}\right) \neq\langle 1\rangle .
$$

But this contradicts our assumption that x and z have different components.
If $n \geq 2$, then $t^{\delta_{n-1}} u_{n-1} y_{\delta_{n}}^{p} u_{n-1}^{-1} t^{-\delta_{n-1}}$ is reducible, i.e., $u_{n-1} y_{\delta_{n}}^{p} u_{n-1}^{-1}=$ $y_{-\delta_{n-1}}^{q}$ for some $q \in \mathbb{Z}$. By Theorem 1 ((5) and (7)), we get that $\delta_{n}=-\delta_{n-1}$, $q=p$ and $u_{n-1}=y_{\delta_{n}}^{s}, s \in \mathbb{Z}$.

Then the word u would be reducible at $t^{\delta_{n-1}} u_{n-1} t^{\delta_{n}}=t^{-\delta_{n}} y_{\delta_{n}}^{s} t^{\delta_{n}}$ which is a contradiction. Whence $N_{G^{*}}(\langle w\rangle)=N_{G}(\langle w\rangle)$ and $C_{G^{*}}(w)=C_{G}(w)$.

Before we consider the case $|w| \geq 1$, we need two lemmas. The first one is a result of the theory of HNN-extensions.

Lemma 4. Let $G^{*}=\left\langle G, t ; t^{-1} A t=B\right\rangle$ be a HNN-extension of G. Let $v \in G^{*}$. Then, there are words a and b in G^{*} such that b is cyclicly reduced, $v=a b a^{-1}$ and $a b a^{-1}$ is reduced.

Proof. We prove this by induction on $|v|$. The cases $|v|=0$ and $|v|=1$ are trivial.

Suppose $|v| \geq 2$ and let $v=v_{0} t^{\epsilon_{1}} v_{1} \cdots t^{\epsilon_{n}} v_{n}$ be reduced. If v is cyclicly reduced we are done; so we can assume that the word $\alpha:=t^{\epsilon_{n}} v_{n} v_{1} t^{\epsilon_{1}}$ belongs to G and $v=v_{0} t^{\epsilon_{1}} \tilde{v}\left(v_{0} t^{\epsilon_{1}}\right)^{-1}$, where

$$
\tilde{v}= \begin{cases}v_{1} \epsilon^{\epsilon_{2}} v_{2} \cdots t^{\epsilon_{n-1}} v_{n-1} \alpha, & \text { if } n \geq 3 \\ v_{1} \alpha, & \text { if } n=2\end{cases}
$$

In the second case take $a=v_{0} t^{\epsilon_{1}}, b=v_{1} \alpha$. In the first case we can apply induction to $\tilde{v}=v_{1} t^{\epsilon_{2}} v_{2} \cdots t^{\epsilon_{n-1}} v_{n-1} \alpha$ and then $\tilde{v}=\tilde{a} b \tilde{a}^{-1}$ is reduced for some b cyclicly reduced.

Take $a=v_{0} t^{\epsilon_{1}} \tilde{a}$. Then, by a length argument, $v=a b a^{-1}$ is reduced, . $\quad \square$
Remark. Let v, a and b be as in previous lemma. It is clear that for every $r \in \mathbb{N}, v^{r}=a b^{r} a^{-1}$ and $\left|v^{r}\right|=r|b|+2|a|$. Therefore

$$
\left|v^{r+1}\right| \geq\left|v^{r}\right| \quad \text { and } \quad\left|v^{r+1}\right|=\left|v^{r}\right| \text { if and only if }|b|=0
$$

Lemma 5. Let $w \in G^{*}$ as in Theorem 3. Then there is a $v_{w} \in G^{*}$, indecomposable, such that $w=v_{w}^{r}$ for some $r \in \mathbb{N}$. If w is cyclicly reduced, so is v_{w}.

Proof. First we prove the statement for w cyclicly reduced by induction on $|w|$. If $|w|=0$, then $C_{G^{*}}(w)=C_{G}(w)=\left\langle v_{w}\right\rangle$, where v_{w} is an atomic element
of G. Then $w=v_{w}^{r}$ for some $r \in \mathbb{N}$, and v_{w} is indecomposable, since it is indecomposable in G.

If $|w| \geq 1$ and w is decomposable, let $w=v^{r}(r \in \mathbb{N}, r \geq 2)$. Then v is cyclicly reduced; otherwise there are words a and b in G^{*} such that b is cyclicly reduced, $|a|>1, v=a b a^{-1}$ and $a b a^{-1}$ is reduced. But then $w=a b^{r} a^{-1}$ is not cyclicly reduced, a contradiction. Therefore $|w|=r|v|$ and $|v|<|w|$. The required statement follows by induction.

Now if $v \in G^{*}$ is arbitrary, v is conjugate to a cyclicly reduced element $w: v=u w u^{-1}$ with w cyclicly reduced. By the previous argument we find $v_{w} \in G^{*}$ indecomposable such that $w=v_{w}^{r}$ for some $r \in \mathbb{N}$. It follows that $v=\left(u v_{w} u^{-1}\right)^{r}$ and one can easily verifies that $u v_{w} u^{-1}$ is also indecomposable.

Now we continue the proof of Theorem 3.
Case II. $k:=|w| \geq 1$. By Lemma 4, it is clear that we can assume, without lost of generality, that w is cyclicly reduced. We can also suppose that w is indecomposable; otherwise $w=v_{w}^{r}$, where $r \geq 2$ and v_{w} is cyclicly reduced and indecomposable. Since $\left|v_{w}\right|<|w|$, it follows by induction that $C_{G^{*}}\left(v_{w}\right)$ is cyclic and $C_{G^{*}}\left(v_{w}^{q}\right)=C_{G^{*}}\left(v_{w}\right)$ for every $q \in \mathbb{N}^{*}$. Then $C_{G^{*}}(w)=C_{G^{*}}\left(v_{w}^{r}\right)=C_{G^{*}}\left(v_{w}\right)$ is cyclic and for every $s \in \mathbb{N}^{*}$ we have

$$
C_{G^{*}}\left(w^{s}\right)=C_{G^{*}}\left(v_{w}^{r s}\right)=C_{G^{*}}\left(v_{w}\right)=C_{G^{*}}(w)
$$

Let $w=w_{0} t^{\delta_{1}} w_{1} \cdots t^{\delta_{k}}$ be cyclicly reduced and indecomposable. Let $u=$ $u_{0} t^{\epsilon_{1}} u_{1} \cdots t^{\epsilon_{n}} u_{n}$ be a reduced element of $C_{G^{*}}\left(w^{r}\right)(r \geq 1)$. We show by induction on $|u|=n$ that $u \in\langle w\rangle$. First we prove that $u=1$ or $n \geq k$. arguing for a contradiction, suppose that $u \neq 1$ and $n<k$. It follows by induction that $C_{G^{*}}(u)$ is cyclic. Let $C_{G^{*}}(u)=\left\langle v_{u}\right\rangle$. Then $u=v_{u}^{q}$ for some $q \in \mathbb{Z}^{*}$ and $\left|v_{u}\right| \leq|u|$. It follows that

$$
C_{G^{*}}\left(v_{u}\right)=C_{G^{*}}\left(v_{u}^{q}\right)=C_{G^{*}}(u)=\left\langle v_{u}\right\rangle .
$$

By hypothesis, $w^{r} \in C_{G^{*}}(u)=\left\langle v_{u}\right\rangle$. Then $w^{r}=v_{u}^{ \pm s}(s \geq 1)$ and

$$
w \in C_{G^{*}}\left(w^{r}\right)=C_{G^{*}}\left(v_{u}^{ \pm s}\right)=C_{G^{*}}(u)=\left\langle v_{u}\right\rangle
$$

Then $w=v_{u}^{ \pm p}(p \geq 1)$. Since w is indecomposable, $p=1$ and $|w|=\left|v_{u}\right| \leq$ $|u|<|w|$, a contradiction.

So we can suppose that $u \neq 1$ and $n \geq k$. Since $u \in C_{G^{*}}\left(w^{r}\right)$ we have that $u w^{r} u^{-1}=w^{r}$. More explicitly:

$$
\begin{aligned}
& u_{0} t^{\epsilon_{1}} u_{1} \cdots t^{\epsilon_{n-k}} u_{n-k} t^{\epsilon_{n-k+1}} \cdots t^{\epsilon_{n-1}} u_{n-1} t^{\epsilon_{n}} u_{n} w_{0} t^{\delta_{1}} \cdots \\
& \cdots t^{\delta_{k}} \cdots w_{0} t^{\delta_{1}} w_{1} \cdots t^{\delta_{k}} u_{n}^{-1} t^{-\epsilon_{n}} \cdots t^{-\epsilon_{1}} u_{0}^{-1}=w^{r} .
\end{aligned}
$$

We prove that the word from the left either at $t^{\epsilon_{n}} u_{n} w_{0} t^{\delta_{1}}$ or at $t^{\delta_{k}} u_{n}^{-1} t^{-\epsilon_{n}}$ is reducible, but not at both positions. Since w is cyclicly reduced, $\left|w^{r}\right|=r|w|$.

Then it is clear that the word on the left of the equality above is reducible and the only two positions where this is possible are the ones mentioned above. Suppose it is reducible at both positions. Then $t^{\epsilon_{n}} u_{n} w_{0} t^{\delta_{1}}$ is reducible, i.e. $\epsilon_{n}=-\delta_{1}$ and $w_{0}=u_{n}^{-1} y_{\delta_{1}}^{p}$ for some $p \in \mathbb{Z}^{*}$ and $t^{\delta_{k}} u_{n}^{-1} t^{-\epsilon_{n}}$ is also reducible, i.e., $\delta_{k}=\epsilon_{n}=-\delta_{1}$ and $u_{n}^{-1}=y_{\delta_{1}}^{q}$ for some $q \in \mathbb{Z}^{*}$.

If $k=1$, then $\delta_{k}=-\delta_{1}$ is already a contradiction. If $k>1$, then w would not be cyclicly reduced because

$$
t^{\delta_{k}} w_{0} t^{\delta_{1}}=t^{-\delta_{1}} u_{n}^{-1} y_{\delta_{1}}^{p} t^{\delta_{1}}=t^{-\delta_{1}} y_{\delta_{1}}^{p+q} t^{\delta_{1}}=y_{-\delta_{1}}^{p+q}
$$

This is also a contradiction.
To finish the proof we show that in both cases we have $u \in\langle w\rangle$.
Subcase IIa: The word on the left of the equality above is reducible at $t^{\delta_{k}} u_{n}^{-1} t^{-\epsilon_{n}}$.
Let $i \leq k-1$ maximal so that

$$
t^{\delta_{k-i}} w_{k-i} \cdot \ldots \cdot t^{\delta_{k-1}} w_{k-1} t^{\delta_{k}} u_{n}^{-1} t^{-\epsilon_{n}} \cdot \ldots \cdot u_{n-i}^{-1} t^{-\epsilon_{n-i}}=y_{\epsilon_{n-i}}^{p}
$$

for some $p \in \mathbb{Z}^{*}$. Let

$$
\tilde{w}=t^{\delta_{k-i}} w_{k-i} \cdots t^{\delta_{k-1}} w_{k-1} t^{\delta_{k}}, \quad \bar{w}=w_{0} t^{\delta_{1}} t^{\delta_{k-i-1}} w_{k-i-1}
$$

and

$$
\bar{u}=u_{0} t^{\epsilon_{1}} u_{1} \cdots t^{\epsilon_{n-i-1}} u_{n-i-1}, \quad \tilde{u}=t^{\epsilon_{n-i}} u_{n-i} \cdots t^{\epsilon_{n}} u_{n}
$$

Then $\tilde{u}=y_{\epsilon_{n-i}}^{-p} \tilde{w}$. We show now that $i=k-1$, i.e., $\bar{w}=w_{0}$. Suppose, for a contradiction, that $|\bar{w}| \geq 1$. Then $\bar{w} y_{\epsilon_{n-1}}^{p} \bar{u}^{-1}$ is not reducible. But $w^{r}=u w^{r} u^{-1}=u w^{r-1} \bar{w} y_{\epsilon_{n-i}}^{p} \bar{u}^{-1}$ and $u w^{r-1} \bar{w}$ is also reduced. It follows that

$$
r|w|=|u|+(r-1)|w|+|\bar{w}|+|\bar{u}|
$$

i.e., $|w|=|u|+|\bar{w}|+|\bar{u}|>|u|$, a contradiction. We then have that $w=w_{0} \tilde{w}$ and $u=\bar{u} y_{\epsilon_{n-i}}^{-p} w_{0}^{-1} w$. Let $\hat{u}=\bar{u} y_{\epsilon_{n-i}}^{-p} w_{0}^{-1}$. Then $u=\hat{u} w$ and

$$
w^{r}=u w^{r} u^{-1}=\hat{u} w w^{r} w^{-1} \hat{u}^{-1}=\hat{u} w^{r} \hat{u}^{-1} .
$$

Since $|\hat{u}|<|u|$, it follows by induction that $\hat{u} \in\langle w\rangle$. Therefore $u \in\langle w\rangle$.
Subcase IIb: The word on the left of the equality above is reducible at $t^{\epsilon_{n}} u_{n} w_{0} t^{\delta_{1}}$.
Let $j \leq k-1$ maximal, so that

$$
t^{\epsilon_{n-j}} u_{n-j} \cdots \cdot t^{\epsilon_{n-1}} u_{n-1} t^{\epsilon_{n}} u_{n} w_{0} t^{\delta_{1}} w_{1} t^{\delta_{2}} \cdots w_{j} t^{\delta_{j+1}}=y_{-\delta_{j+1}}^{q}
$$

for some $q \in \mathbb{Z}^{*}$. Let

$$
\bar{w}=w_{0} t^{\delta_{1}} \cdots w_{j} t^{\delta_{j+1}}, \quad \tilde{w}=w_{j+1} t^{\delta_{j+2}} \cdots t^{\delta_{k}}
$$

and

$$
\bar{u}=u_{0} t^{\epsilon_{1}} u_{1} \cdots t^{\epsilon_{n-j-1}} u_{n-j-1}, \quad \tilde{u}=t^{\epsilon_{n-j}} u_{n-j} \cdots t^{\epsilon_{n}} u_{n}
$$

Then $\tilde{u}=y_{-\delta_{j+1}}^{q} \bar{w}^{-1}$. We show that $j=k-1$, i.e., $\tilde{w}=1$. Suppose, for a contradiction, that $|\tilde{w}| \geq 1$, i.e. $\bar{u} y_{-\delta_{j+1}}^{q} \tilde{w}$ is reduced. Then

$$
w^{r}=u w^{r} u^{-1}=\bar{u} \tilde{u} \bar{w} \tilde{w} w^{r-1} u^{-1}=\bar{u} y_{-\delta_{j+1}}^{q} \tilde{w} w^{r-1} u^{-1}
$$

and $\tilde{w} w^{r-1} u^{-1}$ is reduced. It follows that

$$
r|w|=|\bar{u}|+|\tilde{w}|+(r-1)|w|+|u|
$$

i.e., $|w|=|\bar{u}|+|\tilde{w}|+|u|>|u|$, a contradiction. Then $\bar{w}=w$ and $\tilde{u}=y_{-\delta_{j+1}}^{q} w^{-1}$.

Let $\hat{u}=\bar{u} y_{-\delta_{j+1}}^{q}$. Then

$$
w^{r}=u w^{r} u^{-1}=\hat{u} w^{-1} w^{r} w \hat{u}^{-1}=\hat{u} w^{r} \hat{u}^{-1}
$$

Since $|\hat{u}|<|u|$, it follows by induction that $\hat{u} \in\langle w\rangle$. Then $u=\hat{u} w^{-1} \in\langle w\rangle$.
(ii) Arguing for contradiction, suppose that $C_{y}^{G^{*}}=C_{x}^{G^{*}}$. We may assume, without lost of generality, that y is atomic. Then there is a reduced word $u=u_{0} t^{\epsilon_{1}} u_{1} \cdot \ldots \cdot t^{\epsilon_{k}} u_{k}(k \geq 1)$ in G^{*}, so that $u^{-1} x u=y$.

If $k=1$, then $y=u_{1}^{-1} t^{-\epsilon_{1}} u_{0}^{-1} x u_{0} t^{\epsilon_{1}} u_{1}$ is reducible. So $u_{0}^{-1} x u_{0}$ is in $\langle x\rangle$ or in $\langle z\rangle$. But $C_{x}^{G^{*}} \neq C_{z}^{G^{*}}$. Then $u_{0}^{-1} x u_{0} \in\langle x\rangle$. It follows that

$$
u_{0}^{-1} x u_{0}=x, u_{0}=x^{r_{0}} \quad\left(r_{0} \in \mathbb{Z}\right) \text { and } \epsilon_{1}=1
$$

Then $u_{1}^{-1} z u_{1}=y$, a contradiction. Then we can assume that $k \geq 2$. So $t^{-\epsilon_{2}} u_{1}^{-1} t^{-\epsilon_{1}} u_{0}^{-1} x u_{0} t^{\epsilon_{1}} u_{1} t^{\epsilon_{2}}$ is reducible. It follows that

$$
u_{0}=x^{r_{0}}\left(r_{0} \in \mathbb{Z}\right), \epsilon_{1}=1, u_{1}=z^{r_{1}} \quad\left(r_{1} \in \mathbb{Z}\right), \text { and } \epsilon_{2}=-1
$$

Then $t^{\epsilon_{1}} u_{1} t^{\epsilon_{2}}$ would be reducible, a contradiction. $\quad \square$

3. Pseudo-bad groups

Now we use Theorem 3 in order to construct a pseudo-bad group.
Definition. A Chain of $(*)$-groups $\left(G_{i}\right)_{i \in I}$ is called a $(*)$-chain, if for every $i, j \in I$, if $i \leq j$, then $G_{i} \subseteq G_{j}$, and for every $i \in I$, every $u \in G_{i}$ and every $j \geq i, C_{G_{j}}(u)=C_{G_{i}}(u)$.

Theorem 6. Let $\left(G_{i}\right)_{i \in I}$ be a $(*)$-chain. Then $G=\bigcup_{i \in I} G_{i}$ is a $(*)$-chain and for every $i \in I$ and every $u \in G_{i}, C_{G}(u)=C_{G_{i}}(u)$.
Proof. Let $u \in G_{i}$. It is enough to prove that $C_{G}(u) \subseteq C_{G_{i}}(u)$. Let $v \in C_{G}(u)$, then $v \in G_{j}$ for some $j \geq i$. Whence $v \in C_{G_{j}}(u)=C_{G_{i}}(u)$. $\quad \square$
Corollary 7. Every (*)-group G can be embedded in a (*)-group G^{\prime}, so that $G \backslash\{1\}$ is totally contained in one component of G^{\prime} and for every $u \in G \backslash\{1\}$, $C_{G^{\prime}}(u)=C_{G}(u)$.
Proof. Let $\left(x_{\alpha}\right)_{\alpha<\beta}$ be an ordering of a representatives system for the components of G consisting only of atomic elements. Let

$$
G^{\prime}=\left\langle G,\left(t_{\alpha}\right)_{\alpha<\beta-\{0\}} ; t_{\alpha}^{-1} x_{0} t_{\alpha}=x_{\alpha}\right\rangle
$$

$G^{\prime}=\bigcup_{\alpha<\beta} G_{\alpha}$, where $G_{0}:=G, G_{\alpha+1}:=\left\langle G_{\alpha}, t_{\alpha+1} ; t_{\alpha+1}^{-1} x_{0} t_{\alpha+1}=x_{\alpha+1}\right\rangle$ and $G_{\lambda}=\bigcup_{\alpha<\lambda} G_{\alpha}$ for some λ a limit ordinal. From Theorem 3 and Theorem 6 it follows that $\left(G_{\alpha}\right)_{\alpha<\beta}$ is a $(*)$-chain and so the corollary follows. $\quad \square$

The next corollary follows likewise.
Corollary 8. Every $(*)$-group G can be embedded in a $(*)$-group \tilde{G} with only one component, i.e., $\tilde{G}=\bigcup_{g \in \tilde{G}} C_{\tilde{G}}(x)^{g}$ for some fixed x.

Proof. Applying successively Corollary 7, we get a (*)-chain

$$
G=G^{(0)} \leq G^{\prime} \leq G^{(2)} \leq \cdots,
$$

where for every $n, G^{(n)} \backslash\{1\}$ is contained in one component of $G^{(n+1)}$. $\tilde{G}=$ $\bigcup_{n<\omega} G^{(n)}$ is a $(*)$-group with only one component.

Let $G=F(x, z)$ be the free group over $\{x, z\} . G$ is a $(*)$-group. Let \tilde{G} be as in Corollary 8 and $B=\langle x\rangle$.
Theorem 10. The group \tilde{G} of Corollary 8 is a pseudo-bad group. Moreover, the maximal solvable subgroups of \tilde{G} are B and its conjugates.

Proof. By construction \tilde{G} is a $(*)$-group with only one component. By Theorem $1((4),(9)$ and $(2)), N_{G}(B)=B$ and the maximal solvable subgroups of \tilde{G} are B and its conjugates. Then, all we have to prove is that \tilde{G} is simple. Let $N \neq\{1\}$ be a normal subgroup of \tilde{G}; N contains an $a \in B \backslash\{1\}$. Without lost of generality, we may assume that $a=x^{r}$ for some $r \in \mathbb{N}^{*}, r$ minimal such that $x^{r} \in N$. It is clear that

$$
N=\bigcup_{g \in \tilde{G}}\left\langle x^{r}\right\rangle^{g}
$$

Then $z^{r} \in N$ and $x^{r} z^{r} \in N$, i.e., $x^{r} z^{r}=\left(u^{r}\right)^{n}$ for some atomic element u and some $n \in \mathbb{Z}$. Then $u \in F(x, z)$. Since $x^{r} z^{r}$ is indecomposable, $r \cdot|n|=1$ and so $r=1$. We have then $N=\tilde{G}$. $\quad \nabla$

In fact, we have a family of pseudo-bad groups, one for each (*)-group G we start with. \tilde{G} looks like a minimal simple bad group, but it is not of finite Morley rank since \tilde{G} contains the definable subgroup $B \cong \mathbb{Z}$. We even have the following result.

Theorem 11. Let G be a non trivial (*)-group (e.g., $G=F(x, z)$), and let \tilde{G} be like in Corollary 8. Then \tilde{G} is not superstable.

Proof. We prove the following claim:
Claim. For every $b_{\tilde{G}}, \cdots, b_{n} \in \tilde{G}$, there exists a $g \in \tilde{G}$, such that $b_{1} g, \cdots, b_{n} g$ are not squares in \tilde{G}.
\tilde{G} is by construction a union of $(*)$-groups G_{α} 's. Let α_{0} be such that $b_{1}, \cdots, b_{n} \in G_{\alpha_{0}}$. Then $G_{\alpha_{0}+1}=\left\langle G_{\alpha_{0}}, t_{\alpha_{0}+1} ; t_{\alpha_{0}+1}^{-1} x_{0} t_{\alpha_{0}+1}=x_{\alpha_{0}+1}\right\rangle$, and it is clear that $b_{1} t_{\alpha_{0}+1}, \cdots, b_{n} t_{\alpha_{0}+1}$ are not squares in $G_{\alpha_{0}+1}$, neither in \tilde{G}; otherwise $b_{i} t_{\alpha_{0}+1}=u^{2}$ for some $u \in \tilde{G} \backslash G_{\alpha_{0}+1}$. Then $u \in C_{\tilde{G}}\left(u^{2}\right) \subseteq G_{\alpha_{0}+1}$, a contradiction.

By the claim and a lemma from [Po 2], it follows that if \tilde{G} is in fact stable; then if a is a generic element over \tilde{G}, a is not a square. So a^{2} is not generic over \tilde{G}. But a is algebraic over a^{2} because a is the only square root of a^{2}. Then \tilde{G} is not superstable since for every super-stable group the following holds: if a generic element is algebraic over an element b, then b itself is generic. \square

References

[B-P] A. Borovik \& B. Poizat, Mauvais groupes, Sibirskii Mathemati českii Z̆urnal.
[Ch] G. Cherlin, Bad groups of small Morley rank, Ann. of Math. Logic 17 (1979), 1-28.
[Co1] L. J. Corredor, Gruppen vonendlichen Morley-Rang, Ph. D. Thesis, Bonn, 1989.
[Co2] L. J. Corredor, Bad groups of finite Morley rank, J. of Symbolic Logic 54 (1989), 768-773.
[I] S. V. Ivanov, Abstracts of 11th All-Union Symposium on Theory of Groups, Kungurka, 1989, p. 51.
[L-Sch] Lyndon, Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.
[O] A. Yu. Ols̆Kanskii, Groups of bounded period with subgroups of prime order, Algebra i Logika 21 (1982), 553-618.
[Po 1] B. Poizat, Groupes Stables, Nur al-Mantik wal- Ma'rifah, Villeurbane, 1985.
[Po 2] B. Poizat, Groupes Stables avec types génériques reguliers, J. of Symbolic Logic 48 (1983), 339-355.

Departamento de Matemáticas
Universidad de los Andes
Apartado Aéreo 4976
Bogotá, COLOMBIA
e-mail: lcorredo@zeus.uniandes.edu.co

