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Abstract. By using some generalized Riemann integrals instead of ordinary
sums and multiplication systems of Banach spaces instead of Banach spaces, we
establish some natural generalizations of the most basic facts on Schauder bases
so that Hamel bases, and some other important unconditional bases, could also
be included.
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Introduction

By using some generalized Riemann integrals [11] instead of ordinary sums and
multiplication systems of Banach spaces [14] instead of Banach spaces, we shall
establish some natural generalizations of the following basic facts on Schauder
bases [4], [8].
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30 I. KOVÁCS & Á. SZÁZ

Definition 1. Let Z be a Banach space over K = R or C. Then a sequence
µ = (µn) in Z is called a Schauder basis for Z if for each z ∈ Z there exists
a unique sequence ẑ = (ẑn) in K such that

z =

∞
∑

n=1

ẑnµn.

Remark 1. If f and µ are sequences in K and Z, respectively, then we define

Sn(f, µ) =

n
∑

i=1

fiµi

for all n ∈ N. Thus,
∞
∑

n=1
fnµn = lim

n→∞
Sn(f, µ) whenever this limit exists.

Theorem 1. If µ is a Schauder basis for Z, and moreover

Lµ =
{

f ∈ K
N :

(

Sn(f, µ)
)

converges
}

,

and
∣

∣f
∣

∣

µ
= sup

n∈N

∣

∣Sn(f, µ)
∣

∣

for all f ∈ Lµ, then Lµ is a linear space over K and | |µ is a complete norm
on Lµ such that the mapping z 7→ ẑ is a continuous linear injection of Z onto
Lµ such that |z| ≤ |ẑ|µ for all z ∈ Z.

Definition 2. If µ is a Schauder basis for Z, then the number

Cµ = sup
|z|=1

∣

∣ẑ
∣

∣

µ

is called the basis constant of µ. Moreover, for each n ∈ N, the function Pµn

defined by
Pµn(z) = Sn(ẑ, µ)

for all z ∈ Z is called the nth µ-projection of Z.

Theorem 2. If µ is a Schauder basis for Z, then Pµn is a continuous linear
map of Z into itself for all n ∈ N such that

Cµ = sup
n∈N

∥

∥Pµn

∥

∥

and
Pµn = Pµn ◦ Pµm = Pµm ◦ Pµn

for all n, m ∈ N with n ≤ m.
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Remark 2. Note that

∥

∥Pµn

∥

∥ = sup
|z|=1

∣

∣Pµn(z)
∣

∣

for all n ∈ N.

Theorem 3. If µ is a sequence in Z, then µ is a Schauder basis for Z if and
only if the following three conditions hold :

(1) µn 6= 0 for all n ∈ N;

(2) the linear hull of {µn}
∞
n=1 is dense in Z;

(3) there exists a nonnegative number C such that

∣

∣Sn(f, µ)
∣

∣ ≤ C
∣

∣Sm(f, µ)
∣

∣

for all n, m ∈ N, with n ≤ m, and for all f ∈ KN.

In order to keep this paper as self-contained as possible, the necessary pre-
requisites concerning the generalized Riemann integrals of [ 11 ] will be briefly
laid out in the subsequent preparatory sections. However, a familiarity with
some basic facts on nets [ 5 ] will be assumed.

1. Integration systems

Definition 1.1. An ordered pair (Ω,S) consisting of a set Ω and a family S
of subsets of Ω will now be called a pre-measurable space.

Remark 1.2. The family S may usually be assumed to be a semi-ring or a
ring in Ω [1].

However, for a preliminary consideration, the reader may assume that S is
the family of all finite subsets of Ω.

Definition 1.3. If (Ω,S) is a pre-measurable space, then a family

N =
(

(σα, τα)
)

α∈Γ
,

where Γ is a directed set, σα = (σαi)i∈Iα
and τα = (ταi)i∈Iα

are finite families
in S and Ω, respectively, will be called a defining net for integration over (Ω,S).

Remark 1.4. To define powerful defining nets for integration, we must usually
assume that Ω is equipped with a generalized uniformity which is compatible,
in a certain sense, with the family S [ 12 ].

However, for a preliminary consideration, the reader may assume that N is
one of the most important particular cases of the following simple defining net
for integration which will actually define summation.
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Example 1.5. Let Ω be a set and S be the family of all finite subsets of Ω.
Suppose that (Aα)α∈Γ is a net in S and, for each α ∈ Γ define

σα = ({i})i∈Aα
and τα = (i)i∈Aα

.

Then N =
(

(σα, τα)
)

α∈Γ
is a defining net for integration over (Ω,S).

Remark 1.6. Note that Γ may, in particular, be S directed by set inclusion.
And Aα may, in particular, be α for all α ∈ Γ.

Moreover, if in particular Ω = N (Ω = Z) and Γ = N, then we may
naturally take Aα = {i}α

i=1

(

Aα = {i}α
i=−α

)

for all α ∈ Γ.

Definition 1.7. An ordered triple (X, Y, Z) of Banach spaces over K, together
with a bilinear map (x, y) 7→ xy from X × Y into Z such that

|xy| ≤ |x||y|

for all x ∈ X and y ∈ Y , will be called a multiplication system with respect
to the above bilinear map.

Remark 1.8. Multiplication systems of Banach spaces play an important role
in advanced calculus [ 6, pp. 135, 372 and 455].

However, for a preliminary consideration, the reader may assume (X, Y, Z)
= (K, Z, Z) with the usual multiplication by scalars.

Definition 1.9. An ordered triple
(

(Ω,S), N, (X, Y, Z)
)

, consisting of a pre-
measurable space (Ω,S), a defining net for integration

N =
(

(

(σαi)i∈Iα
, (ταi)i∈Iα

)

)

α∈Γ

over (Ω,S) and a multiplication system (X, Y, Z) of Banach spaces over K, will
be called an integration system.

Remark 1.10. The above notations will be kept fixed throughout in the se-
quel. They contain all the fixed data necessary for our subsequent integration
process.

2. Net integrals

Definition 2.1. A function f from Ω into X will be called an integrand and
the family of all integrands will be denoted by F(Ω, X). Moreover, a function
µ from S into Y will be called an integrator. And the family of all integrators
will be denoted by M(S, Y ).

Remark 2.2. Note that the families F(Ω, X) and M(S, Y ) are vector spaces
over K under the usual pointwise operations.
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Definition 2.3. If f ∈ F(Ω, X) µ ∈ M(S, Y ) and

Sα(f, µ) =
∑

i∈Iα

f(ταi)µ(σαi)

for all α ∈ Γ , then the limit
∫

Ω

fdµ = lim
α∈Γ

Sα(f, µ),

whenever it exists, will be called the N-integral of f with respect to µ. More-
over, if the above integral exists then we shall say that f is N-integrable with
respect to µ and the family of all such functions f will be denoted by Lµ(Ω, X).

Remark 2.4. Note that under the notations of Example 1.5, we simply have
∫

Ω

fdµ = lim
α∈Γ

∑

i∈Aα

f(i)µ({i})

for all f ∈ F(Ω, X) and µ ∈ M(S, Y ) with f ∈ Lµ.

Theorem 2.5. If f, g ∈ F(Ω, X) and µ, ν ∈ M(S, Y ) such that f, g ∈ Lµ

and f ∈ Lν , and moreover λ ∈ K , then

(1)

∫

Ω

(f + g)dµ =

∫

Ω

fdµ +

∫

Ω

gdµ;

(2)

∫

Ω

fd(µ + ν) =

∫

Ω

fdµ +

∫

Ω

gdν;

(3)

∫

Ω

(λf)dµ = λ

∫

Ω

fdµ =

∫

Ω

fd(λµ).

Sketch of the proof. Note that the approximating sums Sα(f, µ) are bilinear
functions of f and µ. Therefore, by the continuity of the linear operations in
Z, the above assertions are also true.

From Theorem 2.5, we can immediately get the following corollary.

Corollary 2.6. If µ ∈ M(S, Y ), then Lµ(Ω, X) is a linear subspace of
F(Ω, X).

Moreover, in addition to Theorem 2.5, we can also easily establish the following
remark.

Remark 2.7. If f ∈ F(Ω, K) and µ ∈ M(S, Y ) such that f ∈ Lµ, then

(1)

∫

Ω

(fx)dµ = x

∫

Ω

fdµ =

∫

Ω

fd(xµ), for all x ∈ X .

Moreover, if f ∈ F(Ω, X) and µ ∈ M(S, K) such that f ∈ Lµ, then

(2)

∫

Ω

(fy)dµ =

(
∫

Ω

fdµ

)

y =

∫

Ω

fd(µy), for all y ∈ Y .
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3. The supremum µ-norm

Definition 3.1. If f ∈ F(Ω, X) and µ ∈ M(S, Y ), then the extended real
number

∣

∣f
∣

∣

µ
= sup

α∈Γ

∣

∣Sα(f, µ)
∣

∣

will be called the supremum µ-norm of f with respect to the net N.

Theorem 3.2. The above µ-norm | |µ is an extended valued seminorm on
F(Ω, X) such that

∣

∣

∣

∣

∫

Ω

fdµ

∣

∣

∣

∣

≤
∣

∣f
∣

∣

µ

for all f ∈ Lµ(Ω, X).

Proof. By the corresponding definitions, it is clear that

∣

∣λf
∣

∣

µ
= sup

α

∣

∣Sα(λf, µ)
∣

∣ = sup
α

∣

∣λ
∣

∣

∣

∣Sα(f, µ)
∣

∣ ≤
∣

∣λ
∣

∣

∣

∣f
∣

∣

µ

for all λ ∈ K and f ∈ F(Ω, X). Hence, by writing 1/λ in place of λ, and λf
in place of f , we can see that the corresponding equality is also true. Moreover,
we can also easily see that

∣

∣f + g
∣

∣

µ
= sup

α

∣

∣Sα(f + g, µ)
∣

∣

≤ sup
α

(

∣

∣Sα(f, µ)
∣

∣ +
∣

∣Sα(g, µ)
∣

∣

)

≤
∣

∣f
∣

∣

µ
+

∣

∣g
∣

∣

µ

for all f, g ∈ F(Ω, X). Therefore, | |µ is an extended valued seminorm.

On the other hand, it is clear that

∣

∣

∣

∣

∫

Ω

fdµ

∣

∣

∣

∣

=
∣

∣lim
α

Sα(f, µ)
∣

∣ = lim
α

∣

∣Sα(f, µ)
∣

∣ ≤
∣

∣f
∣

∣

µ

for all f ∈ Lµ(Ω, X).

Remark 3.3. Note that if µ ∈ M(S, Y ), then we also have

|fx|µ = |x||f |µ

for all f ∈ F(Ω, K) and x ∈ X .

Moreover, it is also worth noticing that if f ∈ F(Ω, X), then the function
| |f defined by

|µ|f = |f |µ

for all µ ∈ M(S, Y ) is also an extended valued seminorm.

From Theorem 3.2, we can get at once the following corollary.
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Corollary 3.4. The family

Fµ(Ω, X) =
{

f ∈ F(Ω, X) : |f |µ < +∞
}

forms a closed linear subspace of the space F(Ω, X).

In addition to this corollary, we can also prove the following result.

Theorem 3.5. The family Lµ(Ω, X) forms a closed linear subspace of the
space F(Ω, X).

Proof. Note that if (fn) is a sequence in Lµ(Ω, X) and f ∈ F(Ω, X) , then
we have

lim
(α,β)

∣

∣Sα(f, µ) − Sβ(f, µ)
∣

∣

≤ lim
(α,β)

(

∣

∣Sα(f, µ) − Sα(fn, µ)
∣

∣ +
∣

∣Sα(fn, µ) − Sβ(fn, µ)
∣

∣

+
∣

∣Sβ(fn, µ) − Sβ(f, µ)
∣

∣

)

≤ lim
(α,β)

∣

∣Sα(f, µ) − Sα(fn, µ)
∣

∣ + lim
(α,β)

∣

∣Sα(fn, µ) − Sβ(fn, µ)
∣

∣

+ lim
(α,β)

∣

∣Sβ(fn, µ) − Sβ(f, µ)
∣

∣

= 2 lim
α

∣

∣Sα(fn, µ) − Sα(f, µ)
∣

∣

= 2 lim
α

∣

∣Sα(fn − f, µ)
∣

∣ ≤ 2
∣

∣fn − f
∣

∣

µ

for all n ∈ N. Hence, if lim
n

|fn − f |µ = 0 , it follows that

lim
(α,β)

∣

∣Sα(f, µ) − Sβ(f, µ)
∣

∣ = 0.

Therefore,
(

Sα(f, µ)
)

is a Cauchy net in Z. And thus, by the completeness
of Z , we have f ∈ Lµ(Ω, X).

Now, combining Theorem 3.5 and Corollary 3.4, we can also state

Corollary 3.6. The family

L∗
µ(Ω, X) = Lµ(Ω, X) ∩ Fµ(Ω, X)

forms a closed linear subspace of the space F(Ω, X).

Remark 3.7. Note that if in particular Γ = N with its natural order, then
we simply have L∗

µ(Ω, X) = Lµ(Ω, X).



36 I. KOVÁCS & Á. SZÁZ

4. Admissible integrators

Definition 4.1. An integrator µ ∈ M(S, Y ) will be called N-admissible if
there exists a nonnegative c ∈ F(Ω, R) such that

∣

∣f(t)
∣

∣ ≤ c(t)
∣

∣f
∣

∣

µ

for all t ∈ Ω and f ∈ F(Ω, X).

Remark 4.2. If in addition to the notations of Example 1.5 for each t ∈ Ω
there exist αt, βt ∈ Γ such that {t} = Aαt

\ Aβt
, and moreover |xy| = |x||y|

for all x ∈ X and y ∈ Y , then each µ ∈ M(S, Y ) , with µ({t}) 6= 0 for all
t ∈ Ω , is N-admissible.

In this case, we have

∣

∣f(t)
∣

∣ =
∣

∣µ({t})
∣

∣

−1∣
∣f(t)µ({t})

∣

∣

=
∣

∣µ({t})
∣

∣

−1
∣

∣

∣

∣

∑

i∈Aαt

f(i)µ({i})−
∑

i∈Aβt

f(i)µ({i})

∣

∣

∣

∣

=
∣

∣µ({t})
∣

∣

−1∣
∣Sαt

(f, µ) − Sβt
(f, µ)

∣

∣

≤
∣

∣µ({t})
∣

∣

−1(∣
∣Sαt

(f, µ)
∣

∣+
∣

∣Sβt
(f, µ)

∣

∣

)

2
∣

∣µ({t})
∣

∣

−1∣
∣f

∣

∣

µ

for all t ∈ Ω and f ∈ F(Ω, X).

The importance of admissible integrators is apparent from the following
theorem.

Theorem 4.3. If µ ∈ M(S, Y ) is an N-admissible, then the µ-norm | |µ is a
complete extended valued norm on F(Ω, X).

Proof. If f ∈ F(Ω, X) such that |f |µ = 0, then by the above definition we
have

|f(t)| ≤ c(t)|f |µ = 0

for all t ∈ Ω, and hence f = 0. Therefore, by Theorem 3.2, | |µ is an extended
valued norm.

On the other, if (fn) is a Cauchy sequence in F(Ω, X), then for each ε > 0
there exists an no such that

|fn − fm|µ < ε for all n, m ≥ no.

Hence, by Definition 4.1, it follows that

|fn(t) − fm(t)| ≤ |(fn − fm)(t)| ≤ c(t)|fn − fm|µ ≤ c(t)ε
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for all t ∈ Ω and n, m ≥ no. Therefore, (fn(t)) is a Cauchy sequence in
X for all t ∈ Ω. Thus, by the completeness of X , we may define a function
f ∈ F(Ω, X) such that

f(t) = lim
n

fn(t)

for all t ∈ Ω. Now, since

lim
n

Sα(fn, µ) = lim
n

∑

i∈Iα

fn(ταi)µ(σαi)

=
∑

i∈Iα

f(ταi)µ(σαi) = Sα(f, µ),

we can also state that
∣

∣Sα(fn − f, µ)
∣

∣ = lim
m

∣

∣Sα(fn − fm, µ)
∣

∣ ≤
∣

∣fn − fm

∣

∣

µ
< ε

for all α ∈ Γ and n ≥ no, and hence |fn−f |µ ≤ ε for all n ≥ no. Therefore,

lim
n

|fn − f |µ = 0.

From Theorem 4.3, by Corollaries 3.6 and 3.4, we can get at once the fol-
lowing corollary.

Corollary 4.4. If µ ∈ M(S, Y ) is N-admissible, then L∗
µ(Ω, X) and Fµ(Ω, X)

are Banach spaces.

Remark 4.5. The supremum µ-norm | |µ could throughout be replaced by
the limit superior µ-norm

∣

∣f
∣

∣

∗

µ
= lim

α∈Γ

∣

∣Sα(f, µ)
∣

∣.

However, since we have
∣

∣f
∣

∣

∗

µ
=

∣

∣

∣

∣

∫

Ω

fdµ

∣

∣

∣

∣

for all f ∈ Lµ(Ω, X), the limit superior µ-norm | |∗µ cannot, in general, be an
extended valued norm.

5. Generalized bases

Definition 5.1. An integrator µ ∈ M(S, Y ) will be called an N-basis
(resp. N

∗-basis) for the multiplication system (X, Y, Z) if for each z ∈ Z
there exists a unique ẑ ∈ Lµ(Ω, X)

(

resp. ẑ ∈ L∗
µ(Ω, X)

)

such that

z =

∫

Ω

ẑdµ.
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Remark 5.2. Note that if N is as in Example 1.5 and (X, Y, Z) is as in
Remark 1.8, then by Remark 2.4 the above definition already gives a substantial
generalization of the notions of the Schauder and the Hamel bases of Z.

Simple applications of Definition 5.1 and Theorem 2.5 yield the following

Lemma 5.3. An integrator µ ∈ M(S, Y ) is an N-basis (resp. N
∗-basis) for

(X, Y, Z) if and only if

(1) for each z ∈ Z there exists f ∈ Lµ(Ω, X)
(

resp.f ∈ L∗
µ(Ω, X)

)

such

that z =
∫

Ω
fdµ;

(2)
∫

Ω fdµ = 0 implies f = 0 for all f ∈ Lµ(Ω, X)
(

resp.

f ∈ L∗
µ(Ω, X)

)

.

Moreover, by using Theorems 2.5 and 3.2 we can also easily verify the following

Theorem 5.4. If µ is an N-basis (resp. N
∗-basis) for (X, Y, Z) then the map-

ping z 7→ ẑ is a linear injection of Z onto Lµ(Ω, X)
(

resp. L∗
µ(Ω, X)

)

such
that |z| ≤ |ẑ|µ for all z ∈ Z.

Sketch of the proof. To prove that Ẑ = Lµ(Ω, X), note that if f ∈ Lµ(Ω, X),
then z =

∫

Ω
fdµ is in Z. Therefore, we also have z =

∫

Ω
ẑdµ. And hence, by

the uniqueness property of ẑ, it follows that f = ẑ ∈ Ẑ.

Remark 5.5. In the sequel, an N-basis or N
∗-basis µ will usually be said to

have a property P if it has this property as an integrator.

Note that if µ is an admissible N-basis or N
∗-basis for (X, Y, Z), then by

Definition 4.1 we also have |ẑ(t)| ≤ c(t)|ẑ|µ for all z ∈ Z and t ∈ Ω.

Moreover, in the latter particular case, we can also easily prove the next
important

Theorem 5.6. If µ is an admissible N
∗-basis for (X, Y, Z), then there exists

a nonnegative number C such that |ẑ|µ ≤ C|z| for all z ∈ Z.

Proof. In this case, by Corollary 4.4, L∗
µ(Ω, X) is also a Banach space. More-

over, by Theorem 5.4, the mapping ẑ 7→ z is a continuous linear injection of
L∗

µ(Ω, X) onto Z. Therefore, by Banach’s isomorphism theorem [ 3, p. 68 ],
the inverse linear mapping z 7→ ẑ is also continuous. And thus, the assertion
of the theorem is also true.

Remark 5.7. Note that if µ is as in Theorem 5.6, then by Remark 5.5 not only
the ‘Fourier-transform’ z 7→ ẑ, but also the ‘coefficient functionals’ z 7→ ẑ(t)
are continuous.

Definition 5.8. If µ is a N-basis or an N
∗-basis for (X, Y, Z), then the ex-

tended real number
Cµ = sup

|z|=1

|ẑ|µ

will be called the basis constant of µ.

By Theorems 5.4 and 5.6, we evidently have the following
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Theorem 5.9. If µ is an admissible N
∗-basis for (X, Y, Z), then |ẑ|µ ≤ Cµ|z|

for all z ∈ Z. Moreover 1 ≤ Cµ < +∞.

Sketch of the proof. To prove that 1 ≤ Cµ, note that |z| ≤ |ẑ|µ ≤ Cµ|z| for
all z ∈ Z. Moreover, since Z 6= {0}, there exists a z ∈ Z such that |z| 6= 0.
Therefore, the required inequality is also true.

Definition 5.10. If µ is an N-basis or N
∗-basis for (X, Y, Z), then for each

α ∈ Γ the function Pµα defined by

Pµα(z) = Sα(ẑ, µ)

for all z ∈ Z will be called the αth µ-projection of Z.

Theorem 5.11. If is an admissible N
∗-basis for (X, Y, Z), then Pµα is a con-

tinuous linear map of Z into itself for all α ∈ Γ such that

Cµ = sup
α∈Γ

‖Pµα‖.

Sketch of the proof. To prove the latter equality, note that under the notation

‖Pµα‖ = sup
|z|=1

∣

∣Pµα(z)
∣

∣

we have

Cµ = sup
|z|=1

|ẑ|µ = sup
|z|=1

sup
α∈Γ

∣

∣Sα(ẑ, µ)
∣

∣

= sup
|z|=1

sup
α∈Γ

∣

∣Pµα(z)
∣

∣ = sup
α∈Γ

sup
|z|=1

∣

∣Pµα(z)
∣

∣ = sup
α∈Γ

‖Pµα‖.

Remark 5.12. Later we shall see that, under some natural conditions on µ
and N, the µ-projections Pµα are also idempotent.

6. Regular integrators

Definition 6.1. An integrator µ ∈ M(S, Y ) will be called finitely additive
if

µ

(

⋃

k∈K

Ak

)

=
∑

k∈K

µ(Ak)

for any finite disjoint family (Ak)k∈K in S with
⋃

k∈K Ak ∈ S. And the family
of all such integrators µ will be denoted by Mo(S, Y ).
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Remark 6.2. Note that the family Mo(S, Y ) forms a linear subspace of
M(S, Y ).

Definition 6.3. An integrator µ ∈ M(S, Y ) will be called N-regular if

µ(A) =

∫

Ω

χ
A
dµ

for all A ∈ S. And the family of all such integrators µ will be denoted by
M

N
(S, Y ).

Remark 6.4. Note that by the corresponding definitions we have
∫

Ω

χ
A
dµ = lim

α∈Γ

∑

ταi∈A

µ(σαi)

for all A ∈ S with χ
A
∈ Lµ.

Simple applications of the above definitions and Theorem 2.5 give

Theorem 6.5. The family M
N

(S, Y ) forms a linear subspace of Mo(S, Y ).

Sketch of the proof. Note that if µ ∈ M
N

(S, Y ) and (Ak)k∈K is as in
Definition 6.1, then

µ

(

⋃

k∈K

Ak

)

=

∫

Ω

χ ⋃

k∈K

Ak
dµ

=

∫

Ω

(

∑

k∈K

χ
Ak

)

dµ =
∑

k∈K

∫

Ω

χ
Ak

dµ =
∑

k∈K

µ(Ak).

Therefore, µ ∈ Mo(S, Y ) is also true.

Remark 6.6. In this respect, it is also worth mentioning that under the no-
tations Example 1.5 the following assertions are equivalent:

(1) Ω = lim
α∈Γ

Aα; (2) M
N

(S, Y ) = Mo(S, Y ).

To prove the implication (2) =⇒ (1), note that if y ∈ Y and µ(A) = card(A)y
for all A ∈ S, then we have µ ∈ Mo(S, Y ). Therefore, if the assertion (2)
holds, then we also have µ ∈ M

N
(S, Y ). Hence, in particular, it follows that

for each t ∈ Ω we have

y = µ({t}) =

∫

Ω

χ
{t}

dµ = lim
α

∑

i∈Aα

χ
{t}

(i)µ({i}) = lim
α

χ
Aα

(t)y.

Therefore, if y 6= 0, then there exists an α ∈ Γ such that for each β ≥ α we
have

∣

∣y − χ
Aβ

(t)y
∣

∣ <
∣

∣y
∣

∣,

and hence t ∈ Aβ . Consequently, t ∈ lim
α

Aα, and thus the assertion (1) also
holds.

The importance of regular integrators is apparent from the following theo-
rem.
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Theorem 6.7. If µ ∈ M
N

(S, Y ), and moreover (Ak)k∈K and (xk)k∈K are
finite families in S and X , respectively, then

∫

Ω

(

∑

k∈K

χ
Ak

xk

)

dµ =
∑

k∈K

xkµ(Ak).

Proof. By Theorem 2.5 and Remark 2.7, we evidently have

∑

k∈K

xkµ(Ak) =
∑

k∈K

xk

∫

Ω

χ
Ak

dµ

=
∑

k∈K

∫

Ω

χ
Ak

xkdµ =

∫

Ω

(

∑

k∈K

χ
Ak

xk

)

dµ.

Remark 6.8. To establish a certain converse to Theorem 6.7, note that if
µ ∈ M(S, Y ) such that

∫

Ω
χ

A
xdµ = xµ(A) for all A ∈ S and x ∈ X , and

there exists a finite family (xk)k∈K in X such that |y| ≤
∑

k∈K |xky| for all
y ∈ Y , then we can also state that µ is N-regular.

Definition 6.9. If f ∈ F(Ω, X) , then the function

fα =
∑

i∈Iα

χσαi
f(ταi)

will be called the αth N-trace of f .

Now, as an immediate consequence of Theorem 6.7, we can also state

Corollary 6.10. If µ ∈ M
N

(S, Y ), then

Sα(f, µ) =

∫

Ω

fαdµ

for all α ∈ Γ and f ∈ F(Ω, X).

7. Normal integrators

Definition 7.1. An integrator µ ∈ M(S, Y ) will be called S-finite if

|χ
A
|µ < +∞

for all A ∈ S. And the family of all such integrators µ will be denoted by
M∗(S, Y ).
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Remark 7.2. Note that by the corresponding definitions we have

∣

∣χ
A

∣

∣

µ
= sup

α∈Γ

∣

∣

∣

∣

∑

ταi∈A

µ(σαi)

∣

∣

∣

∣

for all A ∈ S.

Theorem 7.3. The family M∗(S, Y ) forms a linear subspace of M(S, Y ).

Sketch of the proof. Recall that, by Remark 3.3, the function | |A defined by

|µ|A = |µ|χ
A

for all µ ∈ M(S, Y ) is an extended valued seminorm for every A ∈ S.

Definition 7.4. An integrand f ∈ F(Ω, X) will be called S-simple if

f =
∑

k∈K

χ
Ak

xk

for some finite families (Ak)k∈K and (xk)k∈K in S and X , respectively. And
the family of all such integrands f will be denoted by FS(Ω, X).

Remark 7.5. Note that the family FS(Ω, X) is a linear subspace of F(Ω, X).

The importance of S-finite integrators is apparent from the following theo-
rem.

Theorem 7.6. If µ ∈ M(S, Y ), then the following assertions are equivalent:

(1) µ ∈ M∗(S, Y ); (2) FS(Ω, X) ⊂ Fµ(Ω, X).

Sketch of the proof. Recall that, by Remark 3.3, we have

|χ
A
x|µ = |x||χ

A
|µ

for all A ∈ S and x ∈ X .

Therefore, if (Ak)k∈K and (xk)k∈K are finite families in S and X , respecti-
vely, and the assertion (1) holds, then by Theorem 3.2 we also have

∣

∣

∣

∣

∑

k∈K

χ
Ak

xk

∣

∣

∣

∣

µ

≤
∑

k∈K

∣

∣χ
Ak

xk

∣

∣

µ
=

∑

k∈K

∣

∣xk

∣

∣

∣

∣χ
Ak

∣

∣

µ
< +∞.

Consequently, the function
∑

k∈K χ
Ak

xk is in Fµ(Ω, X), and thus the assertion

(2) also holds.
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Definition 7.7. An integrator µ ∈ M(S, Y ) will be called N-normal if it is
N-regular and S-finite. And the family of all such integrators µ will be denoted
by M∗

N
(S, Y ).

Remark 7.8. Note that thus we have

M∗
N

(S, Y ) = M
N

(S, Y ) ∩M∗(S, Y ).

Therefore, M∗
N

(S, Y ) is also a linear subspace of M(S, Y ).

Now, as a useful consequence of Theorems 6.7 and 7.6, we can also state

Theorem 7.9. If µ is a regular N-basis or a normal N
∗-basis for (X, Y, Z),

and moreover (Ak)k∈K and (xk)k∈K are finite families in S and X , respectively,
then

(

∑

k∈K

xkµ(Ak)

)∧

=
∑

k∈K

χ
Ak

xk.

Proof. If µ ∈ M
N

(S, Y ), then by Theorem 6.7 we have

∑

k∈K

xkµ(Ak) =

∫

Ω

(

∑

k∈K

χ
Ak

xk

)

dµ.

While, if µ ∈ M∗
N

(S, Y ), then in addition to the above equality, by Theorem
7.6, we also have

∑

k∈K

χ
Ak

xk ∈ L∗
µ(Ω, X).

Therefore, by Definition 5.1, the required assertion is also true.

Corollary 7.10. If µ is a regular N-basis or a normal N
∗-basis for (X, Y, Z),

then

fα = Sα(f, µ)∧

for all α ∈ Γ and f ∈ F(Ω, X).

Proof. By the corresponding definitions and Theorem 7.9, we evidently have

fα =
∑

i∈Iα

χ
σαi

f(ταi) =

(

∑

i∈Iα

f(ταi)µ(σαi)

)∧

= Sα(f, µ)∧

for all α ∈ Γ and f ∈ F(Ω, X).
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8. Stable defining nets

Definition 8.1. The defining net N will be called lower stable if for each
α ∈ Γ and i ∈ Iα there exists a unique j ∈ Iα such that ταi ∈ σαj , and for
this j we have ταi = ταj .

Moreover, the defining net N will be called upper stable if for each α ∈ Γ
and i ∈ Iα there exists a unique j ∈ Iα such that ταj ∈ σαi, and for this j
we have σαi = σαj .

Remark 8.2. Note that if in particular ταi ∈ σαi for all α ∈ Γ and i ∈ Iα,
and the family (σαi)i∈Iα

is disjoint for all α ∈ Γ, then the defining net N is
already both lower and upper stable.

Definition 8.3. The defining net N will be called lower superstable if for each
α, β ∈ Γ, with α ≤ β, and for each i ∈ Iα there exists a unique j ∈ Iβ such
that ταi ∈ σβj , and for this j we have ταi = τβj .

Moreover, the defining net N will be called upper superstable if for each
α, β ∈ Γ, with α ≤ β, and for each i ∈ Iα there exists a unique j ∈ Iβ such
that τβj ∈ σαi, and for this j we have σαi = σβj .

Remark 8.4. Note that the defining net N given in Example 1.5 is lower or
upper superstable if and only if the net (Aα)α∈Γ is nondecreasing.

The appropriateness of the above definitions is apparent from the following
theorem.

Theorem 8.5. If µ ∈ M(S, Y ) and the defining net N is lower or upper
stable, then

Sα(f, µ) = Sα(fα, µ)

for all α ∈ Γ and f ∈ F(Ω, X).

Moreover, if the defining net N is lower, resp. upper superstable, then

Sα(f, µ) = Sα(fβ , µ), resp. Sα(f, µ) = Sβ(fα, µ)

for all α, β ∈ Γ, with α ≤ β, and for all f ∈ F(Ω, X).

Proof. If α, β ∈ Γ are such that for each i ∈ Iα there exists a unique j ∈ Iβ

such that ταi ∈ σβj , and for this j we have ταi = τβj , then it is clear that

Sα(fβ , µ) =
∑

i∈Iα

fβ(ταi)µ(σαi)

=
∑

i∈Iα

(

∑

j∈Iβ

χσβj
(ταi)f(τβj)

)

µ(σαi)

=
∑

i∈Iα

(

∑

ταi∈σβj

f(τβj)

)

µ(σαi)

=
∑

i∈Iα

f(ταi)µ(σαi) = Sα(f, µ)
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for all f ∈ F(Ω, X).

While if α, β ∈ Γ such that for each i ∈ Iα there exists a unique j ∈ Iβ

such that τβj ∈ σαi, and for this j we have σαi = σβj , then it is clear that

Sβ(fα, µ) =
∑

j∈Iβ

fα(τβj)µ(σβj)

=
∑

j∈Iβ

(

∑

i∈Iα

χσαi
(τβj)f(ταi)

)

µ(σβj)

=
∑

i∈Iα

f(ταi)

(

∑

j∈Iβ

χσαi
(τβj)µ(σβj)

)

=
∑

i∈Iα

f(ταi)

(

∑

τβj∈σαi

µ(σβj)

)

=
∑

i∈Iα

f(ταi)µ(σαi) = Sα(f, µ)

for all f ∈ F(Ω, X).

Corollary 8.6. If µ is a regular N-basis or a normal N
∗-basis for (X, Y, Z)

and the defining net N is lower or upper stable, then

Sα(f, µ) = Pµα

(

Sα(f, µ)
)

for all α ∈ Γ and f ∈ F(Ω, X). Moreover, if the defining net N is lower, resp.
upper superstable, then

Sα(f, µ) = Pµα

(

Sβ(f, µ)
)

, resp. Sα(f, µ) = Pµβ

(

Sα(f, µ)
)

for all α ∈ Γ, with α ≤ β, and for all f ∈ F(Ω, X).

Sketch of the proof. If the defining net N is, for instance, lower superstable, by
Theorem 8.5 and Corollary 7.10, we have

Sα(f, µ) = Sα(fβ , µ) = Sα

(

Sβ(f, µ)∧, µ
)

= Pµα

(

Sβ(f, µ)
)

for all α ∈ Γ, with α ≤ β, and for all f ∈ F(Ω, X).

Corollary 8.7. If µ is a regular N-basis or a normal N
∗-basis for (X, Y, Z)

and the defining net N is lower or upper stable, then

Pµα = Pµα ◦ Pµα

for all α ∈ Γ. Moreover, if the defining net N is lower, resp. upper superstable,
then

Pµα = Pµα ◦ Pµβ , resp. Pµα = Pµβ ◦ Pµα
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for all α ∈ Γ with α ≤ β.

Sketch of the proof. If the defining net N is, for instance, lower superstable, by
the corresponding definitions and Corollary 8.6, we have

Pµα(z) = §α(ẑ, µ) = Pµα

(

Sβ(ẑ, µ)
)

= Pµα

(

Pµβ(z)
)

for all α ∈ Γ, with α ≤ β, and for all z ∈ Z.

Remark 8.8. Note that if µ ∈ M(S, Y ) and the defining net N is upper
superstable, then by Theorem 8.5 we also have

Sα(f, µ) =

∫

Ω

fαdµ

for all α ∈ Γ and f ∈ F(Ω, X).

9. Characterization of admissible normal N
∗-bases

The importance of superstable defining nets is apparent from the following two
theorems which give a natural generalization of Theorem 3.

Theorem 9.1. If µ is an admissible normal N
∗-basis for (X, Y, Z) and the

defining net N is lower superstable, then the following two assertions hold:

(1) The set
{

Sα(f, µ) : α ∈ Γ, f ∈ L∗
µ(Ω, X)

}

is dense in Z;

(2)
∣

∣Sα(f, µ)
∣

∣ ≤ Cµ

∣

∣Sβ(f, µ)
∣

∣ for all α ∈ Γ, with α ≤ β, and for all
f ∈ F(Ω, X).

Proof. By Definitions 5.1 and 2.3, it is clear that the assertion (1) holds. More-
over, by using Corollary 8.6 and Theorem 5.11, we can easily see that

∣

∣Sα(f, µ)
∣

∣ =
∣

∣Pµα

(

Sβ(f, µ)
)∣

∣ ≤
∥

∥Pµα

∥

∥

∣

∣Sβ(f, µ)
∣

∣ ≤ Cµ

∣

∣Sβ(f, µ)
∣

∣

for all α ∈ Γ, with α ≤ β, and for all f ∈ F(Ω, X).

Remark 9.2. By the above theorem, an admissible normal N
∗-basis µ for

(X, Y, Z) may be called monotone if Cµ = 1.

Theorem 9.3. If µ ∈ M∗
N

(S, Y ) is N-admissible and the defining net N is
upper superstable, then µ is an admissible normal N

∗-basis for (X, Y, Z) if the
following two conditions hold:

(1) The set
{

Sα(f, µ) : α ∈ Γ, f ∈ F(Ω, X)
}

is dense in Z;
(2) There exists a nonnegative number C such that

∣

∣Sα(f, µ)
∣

∣ ≤ C
∣

∣Sβ(f, µ)
∣

∣

for all α ∈ Γ, with α ≤ β, and for all f ∈ L∗
µ(Ω, X).
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Proof. If z ∈ Z, then by condition (1) there exist sequences (αn) and (fn) in
Γ and F(Ω, X) respectively, such that

z = lim
n

Sαn
(fn, µ).

Since the integrator µ is N-normal, by theorems 6.7 and 7.6, we have

fnαn
= (fn)αn

∈ L∗
µ(Ω, X)

for all n ∈ N. Moreover, if m, n ∈ N, then by condition (2) and Theorem 8.5,
it is clear that

∣

∣Sα(fmαm
− fnαn

, µ)
∣

∣ ≤ C
∣

∣Sβ(fmαm
− fnαn

, µ)
∣

∣

= C
∣

∣Sβ(fmαm
, µ) − Sβ(fnαn

, µ)
∣

∣

= C
∣

∣Sαm
(fm, µ) − Sαn

(fn, µ)
∣

∣

for all α, β ∈ Γ with αm ≤ β and αn ≤ β. Hence, it follows that
∣

∣fmαm
− fnαn

∣

∣

µ
≤ C

∣

∣Sαm
(fm, µ) − Sαn

(fn, µ)
∣

∣.

Therefore, (fnαn
) is a a Cauchy sequence in L∗

µ(S, Y ). Thus, by Corollary 4.4,
there exists an f ∈ L∗

µ(S, Y ) such that

lim
n

∣

∣fnαn
− f

∣

∣

µ
= 0.

Hence, by Corollary 6.10 and Theorem 3.2, it is clear that

z = lim
n

Sαn
(fn, µ) = lim

n

∫

Ω

fnαn
dµ =

∫

Ω

fdµ.

Now, by Lemma 5.3, it remains to show only that if h ∈ L∗
µ(Ω, X) is such

that
∫

Ω hdµ = 0, then h = 0. For this, note that by condition (2) we have
∣

∣Sα(h, µ)
∣

∣ ≤ C
∣

∣Sβ(h, µ)
∣

∣

for all α ∈ Γ, with α ≤ β. Therefore,

∣

∣Sα(h, µ)
∣

∣ ≤ C lim
β

∣

∣Sβ(h, µ)
∣

∣ =

∣

∣

∣

∣

∫

Ω

hdµ

∣

∣

∣

∣

= 0,

and hence Sα(h, µ) = 0 for all α ∈ Γ. Thus, in particular, we have |h|µ = 0.
Hence, since the integrator µ is now N-admissible, it is clear that h = 0.

Now, as an immediate consequence of Theorems 9.1 and 9.3, we can also
state

Corollary 9.4. If µ ∈ M∗
N

(S, Y ) is N-admissible and the defining net N is
both lower and upper superstable, then the conditions (1) and (2) of Theorem
9.3 imply the assertions (1) and (2) of Theorem 9.1.
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References

[1] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, North Holland,
New York, 1981.

[2] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin, 1984.
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