On a class of variational-hemivariational inequalities

Nikolaos Halidias ${ }^{1}$
University of the Aegean, Samos, GREECE

Abstract

In this paper we consider a class of variational-hemivariational inequalities. We use the critical point theory for nonsmooth functionals due to Motreanu-Panagiotopoulos [9]. We derive nontrivial solutions using the mountain-pass theorem. Keywords and phrases. Variational-Hemivariational inequalities, discontinuous nonlinearities, critical point theory, mountain pass theorem. 2000 Mathematics Subject Classification. Primary: 35A15. Secondary: 35J85, 35 R 45 .

1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivariational inequalities. Namely, the authors there want to answer the following question:

Find $u \in X$ and $\lambda \in \mathbb{R}$ satisfying the inequality

$$
a(u, v)+\int_{Z} j^{o}(u, v) d x \geq \lambda(u, v) \text { for all } v \in X
$$

where $j: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Lipschitz function and $a(\cdot, \cdot)$ a continuous symmetric bilinear form.

[^0]Our goal here is to have some existence results for such problems with the solution being at a closed, convex subset K of $W^{1, p}(Z)$ and in our case the differential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:
Let $Z \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{1}-boundary Γ. Find $x \in W^{1, p}(Z)$ such that

$$
\begin{equation*}
\int_{Z}\left(\|D x(z)\|^{p-2}(D x(z), D y(z))_{R^{N}} d z+\int_{Z} F^{o}(z, x(z) ; y(z)) d z \geq 0\right. \tag{1}
\end{equation*}
$$

for all $y \in K$. Here $K=\left\{x \in W^{1, p}(Z): x(z) \geq 0\right\}$. Clearly, K is closed and convex on $W^{1, p}(Z)$ and finally $F: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is the potential of some $f: Z \times \mathbb{R} \rightarrow \mathbb{R}$.

2. Preliminaries

Let X be a real Banach space and Y be a subset of X. A function $f: Y \rightarrow \mathbb{R}$ is said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative scalar K, one has

$$
|f(y)-f(x)| \leq K\|y-x\|
$$

for all points $x, y \in Y$. Let f be Lipschitz near a given point x, and let v be any other vector in X. The generalized directional derivative of f at x in the direction v, denoted by $f^{o}(x ; v)$ is defined as follows:

$$
f^{o}(x ; v)=\limsup _{\substack{y \rightarrow x \\ t \downarrow 0}} \frac{f(y+t v)-f(y)}{t}
$$

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x then the function $v \rightarrow f^{o}(x ; v)$ is finite, positively homogeneous, subadditive and satisfies $\left|f^{o}(x ; v)\right| \leq K\|v\|$. In addition f^{o} satisfies $f^{o}(x ;-v)=(-f)^{o}(x ; v)$. Now we are ready to introduce the generalized gradient which denoted by $\partial f(x)$ as follows:

$$
\partial f(x)=\left\{w \in X^{*}: f^{o}(x ; v) \geq\langle w, v\rangle \text { for all } v \in X\right\}
$$

Some basic properties of the generalized gradient of locally Lipschitz functionals are the following:
(a) $\partial f(x)$ is a nonempty, convex, weakly compact subset of X^{*} and $\|w\|_{*} \leq K$ for every w in $\partial f(x)$.
(b) For every v in X, one has

$$
f^{o}(x ; v)=\max \{\langle w, v\rangle: w \in d \partial f(x)\}
$$

If f_{1}, f_{2} are locally Lipschitz functions then

$$
\partial\left(f_{1}+f_{2}\right) \subseteq \partial f_{1}+\partial f_{2}
$$

Moreover, $(x, v) \rightarrow f^{o}(x ; v)$ is upper semicontinuous and as function of v alone, is Lipschitz of rank K on X.

Let us mention the mean-value theorem of Lebourg.
Theorem 1 (Lebourg). Let x and y be points in X, and suppose that f is Lipschitz on an open set containing the line segment $[x, y]$. Then there exists a point $u \in(x, y)$ such that

$$
\begin{equation*}
f(y)-f(x) \in\langle\partial f(u), y-x\rangle \tag{2}
\end{equation*}
$$

Let $R: X \rightarrow \mathbb{R} \cup\{\infty\}$ be such that $R=\Phi+\psi$ where $\Phi: X \rightarrow \mathbb{R}$ be a locally Lipschitz functional while $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a lower semicontinuous, convex but not defined everywhere functional.

A point x in X is said to be a critical point of R if $x \in D(\psi)$ and if it satisfies the inequality

$$
\begin{equation*}
\Phi^{o}(x ; y-x)+\psi(y)-\psi(x) \geq 0 \text { for every } y \in X \tag{3}
\end{equation*}
$$

Definition 1. We say that $R: X \rightarrow \mathbb{R} \cup\{\infty\}$ with $R=\Phi+\psi$ satisfies H_{1} is Φ is locally Lipschitz and ψ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.
(PS) If $\left\{x_{n}\right\}$ is a sequence such that $R\left(x_{n}\right) \rightarrow c$ and

$$
\begin{equation*}
\Phi^{o}\left(x_{n} ; y-x_{n}\right)+\psi(y)-\psi\left(x_{n}\right) \geq-\varepsilon_{n}\left\|y-x_{n}\right\| \text { for every } y \in X \tag{4}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$, then $\left\{x_{n}\right\}$ has a convergent subsequence.
The following theorem is a mountain-pass theorem for functionals which satisfies condition H_{1} and ($P S$) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If $f: X \rightarrow \mathbb{R}$ satisfies H_{1} and (PS) on the reflexive Banach space X and the hypotheses
(i) there exist positive constants ρ and a such that

$$
f(u) \geq a \text { for all } x \in X \text { with }\|x\|=\rho ;
$$

(ii) $f(0)=0$ and there a point $e \in X$ such that

$$
\|e\|>\rho \text { and } f(e) \leq 0
$$

then there exists a critical value $c \geq a$ of f determined by

$$
c=\inf _{g \in G} \max _{t \in[0,1]} f(g(t))
$$

where

$$
G=\{g \in C([0,1], X): g(0)=0, g(1)=e\}
$$

In what follows we will use the well-known inequality

$$
\begin{equation*}
\sum_{j=1}^{N}\left(a_{j}(\eta)-a_{j}\left(\eta^{\prime}\right)\right)\left(\eta_{j}-\eta_{j}^{\prime}\right) \geq C\left|\eta-\eta^{\prime}\right|^{p} \tag{5}
\end{equation*}
$$

for $\eta, \eta^{\prime} \in R^{N}$, with $a_{j}(\eta)=|\eta|^{p-2} \eta_{j}$.

3. Hemivariational inequalities with constraints

Let $f: Z \times \mathbb{R} \rightarrow \mathbb{R}$. Then we introduce the following functions:

$$
f_{1}(z, x)=\liminf _{x^{\prime} \rightarrow x} f\left(z, x^{\prime}\right), f_{2}(z, x)=\limsup _{x^{\prime} \rightarrow x} f\left(z, x^{\prime}\right) .
$$

In this section we state and prove an existence result for a variational-hemivariational inequality. So our hypotheses on the data are:
$\mathbf{H}(\mathbf{f}): f_{1}, f_{2}: Z \times \mathbb{R} \rightarrow \mathbb{R}$ is N-measurable (i.e. if $x(z)$ is measurable then so is $f_{1,2}(z, x(z))$;
(i) for almost all $z \in Z$ and all $x \in \mathbb{R},|f(z, x)| \leq a(z)+c|x|^{\theta-1}$ with $a \in L^{\infty}(Z), c>0,1 \leq \theta<p ;$
(ii) uniformly for almost all $z \in Z$ we have that $\frac{f_{1,2}(z, x)}{|x|^{\theta-2} x} \rightarrow f_{+}(z)$ as $x \rightarrow \infty$ where $f_{+} \in L^{1}(Z), f_{+} \geq 0$ with strict inequality on a set of positive Lebesgue measure.
(iii) Uniformly for almost all $z \in Z$ we have that

$$
\limsup _{x \rightarrow 0} \frac{p F(z, x)}{|x|^{p}} \leq h(z)
$$

with $h \in L^{\infty}(Z)$ and $h(z) \leq 0$ with strict inequality on a set of positive measure. Here, by $F(z, x)$ we denote the integral of f, that is $F(z, x)=$ $\int_{o}^{x} f(z, r) d r$.
Theorem 3. If $\boldsymbol{H}(\boldsymbol{f})$ holds then problem (1) has a nontrivial solution $x \in K$.
Proof. Let $\Phi: W^{1, p}(Z) \rightarrow \mathbb{R}$ and $\psi: W^{1, p}(Z) \rightarrow \mathbb{R} \cup\{\infty\}$ be defined such that

$$
\Phi(x)=-\int_{Z} F(z, x(z)) d z \text { and } \psi(x)=\frac{1}{p}\|D x\|_{p}^{p}+I_{K}(x) .
$$

In the definition of $\Phi(\cdot), \quad F(z, x)=\int_{o}^{x} f(z, r) d r$ and I_{K} is the indicator function of $K=\left\{x \in W^{1, p}(Z): x(z) \geq 0\right.$ a.e. on $\left.Z\right\}$. It is easy to see that K is closed, convex and thus I_{K} is convex and lower semicontinuous.

Set $R=\Phi+\psi$. Recall that Φ is locally Lipschitz and ψ is lower semicontinuous, proper and convex.

Claim $1 R(\cdot)$ satisfies the (PS)-condition.
Let $\left\{x_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(Z)$ such that $R\left(x_{n}\right) \rightarrow c$ when $n \rightarrow \infty$ and

$$
\Phi^{o}\left(x_{n} ; x-x_{n}\right)+\psi(x)-\psi\left(x_{n}\right) \geq-\varepsilon_{n}\left\|x-x_{n}\right\|
$$

with $\varepsilon_{n} \rightarrow 0$. Note that $\left\{x_{n}\right\} \in K$ because $\left|R\left(x_{n}\right)\right| \leq M$. In the above inequality choose $x=x_{n}+\delta x_{n}$ and then divide with δ. Also,

$$
\frac{1}{p}\left\|D x_{n}\right\|_{p}^{p}-\frac{1}{p}\left\|D x_{n}+\delta D x_{n}\right\|=\frac{1}{p}\left\|D x_{n}\right\|_{p}^{p}\left(1-(1+\delta)^{p}\right) .
$$

So if we divide this with δ and let $\delta \rightarrow 0$ we have that is equal with $-\left\|D x_{n}\right\|_{p}^{p}$. Finally there exists $v_{n}(z) \in\left[-f_{1}\left(z, x_{n}(z)\right),-f_{2}\left(z, x_{n}(z)\right)\right]$ such that $\left\langle v_{n}, x_{n}\right\rangle=$ $\Phi^{o}\left(x_{n} ; x_{n}\right)$. So, it follows that

$$
\int_{Z}-v_{n} x_{n}(z) d z-\left\|D x_{n}\right\|_{p}^{p} \geq-\varepsilon_{n}\left\|x_{n}\right\|
$$

Suppose that $\left\{x_{n}\right\} \subseteq W^{1, p}(Z)$ was unbounded. Then (at least for a subsequence), we may assume that $\left\|x_{n}\right\| \rightarrow \infty$. Let $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}, n \geq 1$. By passing to a subsequence if necessary, we may assume that

$$
y_{n} \xrightarrow{w} y \text { in } W^{1, p}(Z), y_{n} \rightarrow y \text { in } L^{p}(Z), y_{n}(z) \rightarrow y(z) \text { a.e. on } Z \text { as } n \rightarrow \infty
$$

and $\left|y_{n}(z)\right| \leq k(z)$ a.e. on Z with $k \in L^{p}(Z)$.
Recall that from the choice of the sequence $\left\{x_{n}\right\}$ we have $\left|R\left(x_{n}\right)\right| \leq M_{1}$ for some $M_{1}>0$ and all $n \geq 1$, thus

$$
\frac{1}{p}\left\|D x_{n}\right\|_{p}^{p}-\int_{Z} F\left(z, x_{n}(z)\right) d z \leq M_{1}
$$

(since $I_{K} \geq 0$). Dividing by $\left\|x_{n}\right\|^{p}$ we obtain

$$
\begin{equation*}
\frac{1}{p}\left\|D y_{n}\right\|_{p}^{p}-\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{p}} d z \leq \frac{M_{1}}{\left\|x_{n}\right\|^{p}} \tag{6}
\end{equation*}
$$

But we have

$$
\begin{aligned}
\left|\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{p}} d z\right| & \leq \frac{1}{\left\|x_{n}\right\|^{p}} \int_{Z} \int_{0}^{\left|x_{n}(z)\right|}|f(z, r)| d r d z \\
& \leq \frac{1}{\left\|x_{n}\right\|^{p}}\left(\|\alpha\|_{\infty}\left\|x_{n}\right\|+\frac{c}{\theta}\left\|x_{n}\right\|^{\theta}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

So by passing to the limit as $n \rightarrow \infty$ in (6), we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{p}\left\|D y_{n}\right\|_{p}^{p}=0
$$

from which it follows $\|D y\|_{p}=0$ (recall that $D y_{n} \xrightarrow{w} D y$ in $L^{p}\left(Z, R^{N}\right)$ as $n \rightarrow \infty)$ and consequently, $y=\xi \in R$.

Note that $y_{n} \rightarrow \xi$ in $W^{1, p}(Z)$ and since $\left\|y_{n}\right\|=1, n \geq 1$ we infer that $\xi \neq 0$. We deduce that $\left|x_{n}(z)\right| \rightarrow+\infty$ a.e. on Z as $n \rightarrow \infty$.

From the choice of the sequence $\left\{x_{n}\right\} \subseteq W^{1, p}(Z)$, we have

$$
\begin{equation*}
\int_{Z}-v_{n}(z) x_{n}(z) d z-\left\|D x_{n}\right\|_{p}^{p} \geq-\varepsilon_{n}\left\|x_{n}\right\| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|D x_{n}\right\|_{p}^{p}-p \int_{Z} F\left(z, x_{n}(z)\right) d z \geq-p M_{1} . \tag{8}
\end{equation*}
$$

Adding (7) and (8), we obtain

$$
\left.\int_{Z}\left(-v_{n}(z)\right) x_{n}(z)-p F\left(z, x_{n}(z)\right)\right) d z \geq-p M_{1}-\varepsilon_{n}\left\|x_{n}\right\| .
$$

Dividing this inequality by $\left\|x_{n}\right\|^{\theta}$ we have

$$
\begin{equation*}
\int_{Z} \frac{-v_{n}(z)}{\left\|x_{n}\right\|^{\theta-1}} y_{n}(z) d z-\int_{Z} \frac{p F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{\theta}} d z \geq-\frac{1}{\left\|x_{n}\right\|^{\theta}} p M_{1}-\frac{\varepsilon_{n}}{\left\|x_{n}\right\|^{\theta-1}} \tag{9}
\end{equation*}
$$

Note that

$$
\int_{Z} \frac{-v_{n}(z)}{\left\|x_{n}\right\|^{\theta-1}} y_{n}(z) d z=\int_{Z} \frac{-v_{n}(z)}{\left|x_{n}(z)\right|^{\theta-2} x_{n}(z)}\left|y_{n}(z)\right|^{\theta} d z \rightarrow|\xi|^{\theta} \int_{Z} f_{+}(z) d z
$$

as $n \rightarrow \infty$.
Also by virtue of hypothesis $\mathbf{H}(\mathbf{f})$ (ii), given $z \in Z \backslash N,|N|=0(|C|$ denotes the Lebesgue measure of a measurable set $C \subseteq Z$) and $\varepsilon>0$, we can find $M_{\varepsilon}>0$ such that for all $|r| \geq M_{\varepsilon}$ we have $\left|f_{+}(z)-\frac{f_{1,2}(z, r)}{|r|^{\theta-2} r}\right| \leq \varepsilon$. Then, if $x_{n}(z) \rightarrow+\infty$, we have

$$
\begin{aligned}
\frac{1}{\left|x_{n}(z)\right|^{\theta}} F\left(z, x_{n}(z)\right) d z \geq & \frac{1}{\left|x_{n}(z)\right|^{\theta}} F\left(z, M_{\varepsilon}\right) d z \\
& +\frac{1}{\left|x_{n}(z)\right|^{\theta}} \int_{M_{\varepsilon}}^{x_{n}(z)}\left(f_{+}(z)|r|^{\theta-2} r-\varepsilon|r|^{\theta-2} r\right) d r \\
= & \frac{1}{\left|x_{n}(z)\right|^{\theta}} \eta(z)+\frac{\left|x_{n}(z)\right|^{\theta}-M_{\varepsilon}^{\theta}}{\theta\left|x_{n}(z)\right|^{\theta}}\left(f_{+}(z)-\varepsilon\right)
\end{aligned}
$$

for some $\eta \in L^{1}(Z)$. It follows that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{F\left(z, x_{n}(z)\right)}{\left|x_{n}(z)\right|^{\theta}} \geq \frac{1}{\theta}\left(f_{+}(z)-\varepsilon\right) \tag{10}
\end{equation*}
$$

Similarly we obtain that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{F\left(z, x_{n}(z)\right)}{\left|x_{n}(z)\right|^{\theta}} \leq \frac{1}{\theta}\left(f_{+}(z)+\varepsilon\right) \tag{11}
\end{equation*}
$$

From (10) and (11) and since $\varepsilon>0$ and $z \in Z \backslash N$ were arbitrary, we infer that

$$
\frac{F\left(z, x_{n}(z)\right)}{\left|x_{n}(z)\right|^{\theta}} \rightarrow \frac{1}{\theta} f_{+}(z) \text { a.e. on } Z \text { as } n \rightarrow \infty
$$

whence

$$
\begin{align*}
\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{\theta}} d z & =\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left|x_{n}(z)\right|^{\theta}} \frac{\left|x_{n}(z)\right|^{\theta}}{\|\left. x_{n}\right|^{\theta}} d z \\
& =\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left|x_{n}(z)\right|^{\theta}}\left|y_{n}(z)\right|^{\theta} d z \rightarrow \xi^{\theta} \int_{Z} \frac{1}{\theta} f_{+}(z) \text { as } n \rightarrow \infty \tag{12}
\end{align*}
$$

Thus by passing to the limit in (9), we obtain

$$
\left(1-\frac{p}{\theta}\right) \xi^{\theta} \int_{Z} f_{+}(z) \geq 0
$$

a contradiction to hypothesis $\mathbf{H}(\mathbf{f})$ (ii) (recall $p>\theta$). If $x_{n}(z) \rightarrow-\infty$, with similar arguments as above we show that

$$
\int_{Z} \frac{F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{\theta}} d z \rightarrow \xi^{\theta} \int_{Z} \frac{1}{\theta} f_{+}(z) \text { as } n \rightarrow \infty
$$

Therefore, it follows that $\left\{x_{n}\right\} \subseteq W^{1, p}(Z)$ is bounded. Hence we may assume that $x_{n} \xrightarrow{w} x$ in $W^{1, p}(Z), x_{n} \rightarrow x$ in $L^{p}(Z), x_{n}(z) \rightarrow x(z)$ a.e. on Z as $n \rightarrow \infty$ and $\left|x_{n}(z)\right| \leq k(z)$ a.e. on Z with $k \in L^{p}(Z)$. Note that K is closed and convex so it is weakly closed; thus $x \in K$.

So we have

$$
-\varepsilon_{n}\left\|x-x_{n}\right\| \leq\left\langle A x_{n}, x-x_{n}\right\rangle-\int_{Z} v_{n}(z)\left(x-x_{n}(z)\right) d z
$$

with $v_{n}(z) \in\left[f_{1}\left(z, x_{n}(z)\right), f_{2}\left(z, x_{n}(z)\right)\right]$ and $A: W^{1, p}(Z) \rightarrow W^{1, p}(Z)^{*}$ such that $\langle A x, y\rangle=\int_{Z}\left(\|D x(z)\|^{p-2}(D x(z), D y(z))_{R^{N}} d z\right.$. But $x_{n} \xrightarrow{w} x$ in $W^{1, p}(Z)$, so $x_{n} \rightarrow x$ in $L^{p}(Z)$ and $x_{n}(z) \rightarrow x(z)$ a.e. on Z by virtue of the compact embedding $W^{1, p}(Z) \subseteq L^{p}(Z)$. Then we have that $\lim \sup \left\langle A x_{n}, x_{n}-x\right\rangle=0$ (note that v_{n} is bounded). By virtue of the inequality (5) we have that $D x_{n} \rightarrow$ $D x$ in $L^{p}(Z)$. So we have $x_{n} \rightarrow x$ in $W^{1, p}(Z)$. The claim is proved.

Now let $W^{1, p}(Z)=X_{1} \oplus X_{2}$ with $X_{1}=\mathbb{R}$ and $X_{2}=\left\{y \in W^{1, p}(Z)\right.$: $\left.\int_{Z} y(z) d z=0\right\}$. For every $\xi \geq 0$ we have

$$
R(\xi)=\Phi(\xi)+I_{K}(\xi)=-\int_{Z} F(z, \xi) d z
$$

By virtue of hypothesis $\mathbf{H}(\mathbf{f})_{2}$ (ii) we conclude that $R(\xi) \rightarrow-\infty$ as $\xi \rightarrow \infty$. On the other hand for $y \in X_{2}$, we have

$$
\begin{aligned}
R(y) & \geq \frac{1}{p}\|D y\|_{p}^{p}-\int_{Z} F(z, y(z)) d z \quad\left(\text { since } I_{K}(y) \geq 0\right) \\
& \geq \frac{1}{p}\|D y\|_{p}^{p}-c_{2}\|y\|_{p}-c_{3}\|y\|_{p}^{\theta}
\end{aligned}
$$

for some $c_{2}, c_{3}>0$ (since $\theta<p$, see $\mathbf{H}(\mathbf{f})_{3}$ (i))
From the Poincare-Wirtinger inequality we know that $\|D y\|_{p}$ is an equivalent norm on X_{2}. So we have

$$
R(y) \geq \frac{1}{p}\|D y\|_{p}^{p}-c_{4}\|D y\|_{p}-c_{5}\|D y\|_{p}^{\theta}
$$

for some $c_{4}, c_{5}>0$. So, $R(\cdot)$ is coercive on X_{2} (recall $\theta<p$) hence, bounded below on X_{2}.

In order to use the mountain-pass theorem it remains to show that there exists $\rho>0$ such that for $\|x\|=\rho$ we have that $R(x) \geq a>0$. In fact, we will
show that for every sequence $\left\{x_{n}\right\} \subseteq W^{1, p}(Z)$ with $\left\|x_{n}\right\|=\rho_{n} \downarrow 0$ we have that $R\left(x_{n}\right)>0$. Indeed, suppose not. Then there exists some sequence $\left\{x_{n}\right\}$ such that $R\left(x_{n}\right) \leq 0$. Thus, we have

$$
\frac{1}{p}\left\|D x_{n}\right\|_{p}^{p} \leq \int_{Z} F\left(z, x_{n}(z)\right) d z
$$

Recall that $I_{K} \geq 0$. Divide this inequality with $\left\|x_{n}\right\|^{p}$. Let $y_{n}(z)=\frac{x_{n}(z)}{\left\|x_{n}\right\|}$. Then we have

$$
\left\|D y_{n}\right\|_{p}^{p} \leq \int_{Z} p \frac{F\left(z, x_{n}(z)\right)}{\left\|x_{n}\right\|^{p}} d z
$$

From $\mathbf{H}(\mathbf{f})$ (iii) we have that for almost all $z \in Z$ for any $\varepsilon>0$ we can find $\delta>0$ such that for $|x| \leq \delta$ we have

$$
p F(z, x) \leq(h(z)+\varepsilon)|x|^{p}
$$

On the other hand, for almost all $z \in Z$ and all $|x| \geq \delta$ we have

$$
p|F(z, x)| \leq c_{1}|x|+c_{2}|x|^{\theta}+c_{3} \leq c_{1}|x|^{p}+c_{2}|x|^{p^{*}}+c_{4}
$$

Thus we can always find $\gamma>0$ such that $p|F(z, x)| \leq(h(z)+\varepsilon)|x|^{p}+\gamma|x|^{p^{*}}$ for all $x \in R$. Indeed, choose $\gamma \geq c_{2}+\frac{c_{4}}{|\delta|^{p^{*}}}+\left|h(z)+\varepsilon-c_{1}\right||\delta|^{p-p^{*}}$. Therefore, we obtain

$$
\begin{align*}
\left\|D y_{n}\right\|_{p}^{p} & \leq \int_{Z}(h(z)+\varepsilon)\left|y_{n}(z)\right|^{p} d z+\gamma \int_{Z} \frac{\left|x_{n}(z)\right|^{p^{*}}}{\left\|x_{n}\right\|^{p}} d z \tag{13}\\
& \leq \int_{Z}(h(z)+\varepsilon)\left|y_{n}(z)\right|^{p} d z+\gamma_{1}\left\|x_{n}\right\|^{p^{*}-p}
\end{align*}
$$

Here we have used the fact that $W^{1, p}(Z)$ embeds continuously in $L^{p^{*}}(Z)$. So we obtain

$$
0 \leq\left\|D y_{n}\right\|_{p}^{p} \leq \varepsilon\left\|y_{n}\right\|_{p}^{p}+\gamma_{1}\left\|x_{n}\right\|^{p^{*}-p} \text { recall that } h(z) \leq 0
$$

Therefore in the limit we have that $\left\|D y_{n}\right\|_{p} \rightarrow 0$. Recall that $y_{n} \rightarrow y$ weakly in $W^{1, p}(Z)$. So $\|D y\|_{p} \leq \liminf \left\|D y_{n}\right\|_{p} \leq \limsup \left\|D y_{n}\right\|_{p} \rightarrow 0$. So $\|D y\|_{p}=0$, thus $y=\xi \in \mathbb{R}$. Note that $D y_{n} \rightarrow D y$ weakly in $L^{p}(Z)$ and $\left\|D y_{n}\right\|_{p} \rightarrow\|D y\|_{p}$ so $y_{n} \rightarrow y$ in $W^{1, p}(Z)$. Since $\left\|y_{n}\right\|=1$ we have that $\|y\|=1$ so $\xi \neq 0$. Suppose that $\xi>0$. Going back to (13) we have

$$
0 \leq \int_{Z}(h(z)+\varepsilon) y_{n}^{p}(z) d z+\gamma_{1}\left\|x_{n}\right\|^{p^{*}-p}
$$

In the limit we have

$$
0 \leq \int_{Z}(h(z)+\varepsilon) \xi^{p} d z \leq \varepsilon \xi^{p}|Z| \text { recall that } h(z) \leq 0
$$

Thus we obtain that $\int_{Z} h(z) \xi^{p} d z=0$. But this is a contradiction. The same holds when $\xi<0$. So the claim is proved. Now, by mountain pass theorem we
have that there exists $x \in W^{1, p}(Z)$ such that

$$
\Phi^{o}(x ; y-x)+\psi(y)-\psi(x) \geq 0
$$

for all $y \in W^{1, p}(Z)$. Choose $y=x+t v$ with $v \in K$. Dividing by $t>0$ we have in the limit

$$
\int_{Z} F^{o}(z, x(z) ; v(z)) d z+\langle A x, v\rangle \geq \Phi^{o}(x ; v)+\langle A x, v\rangle \geq 0
$$

for all $v \in K$.
Remark 1. Note that if $K=W^{1, p}(Z)$ then from above we have that $-A x \in$ $\partial \Phi(x)$ and the subdifferential is in the sense of Clarke.

References

[1] K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
[2] F. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[3] D. G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Springer, Bombay, 1989.
[4] D. G. Costa-J. V. Goncalves, Critical point theory for nondifferentiable functionals and applications, Journal of Math. Anal. Appl. 153 (1990), 470-485.
[5] S. Hu \& N.S. Papageorgiou, Handbook of Multivalued Analysis Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.
[6] S. Hu \& N.S. Papageorgiou, Handbook of Multivalued Analysis Volume II: Applications, Kluwer Academic Publishers, Dordrecht, 2000.
[7] N. Kenmochi, Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan 27 (1975), No. 1, 121-149.
[8] D. Motreanu \& P. D. Panagiotopoulos, A Minimax Approach to the eigenvalue Problem of Hemivariational Inequalities and Applications, Applicable Analysis, 58 (1995), 53-76.
[9] D. Motreanu \& P. D. Panagiotopoulos: Minimax Theorems and Qualitative Properties of Hemivariational Inequalities, Kluwer, Dordrecht, 1999.
[10] R. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations Math. Surveys, vol. 49, AMS, Providence, R. I., 1997.
[11] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Annales Inst. H. Poincare-Analyse Nonlineaire 3 (1986), 77-109.
(Recibido en febrero de 2002)

Department of Statistics and Actuarial Science
University of the Aegean
Karlovassi, 83200 Samos, GREECE
e-mail: nick@aegean.gr

[^0]: ${ }^{1}$ This work was supported partially by a postdoctoral scholarship from the State Scholarship Foundation (I.K.Y.) of Greece

