On a class of variational-hemivariational inequalities

NIKOLAOS HALIDIAS¹

University of the Aegean, Samos, GREECE

ABSTRACT. In this paper we consider a class of variational-hemivariational inequalities. We use the critical point theory for nonsmooth functionals due to Motreanu-Panagiotopoulos [9]. We derive nontrivial solutions using the mountain-pass theorem.

Keywords and phrases. Variational-Hemivariational inequalities, discontinuous nonlinearities, critical point theory, mountain pass theorem.

2000 Mathematics Subject Classification. Primary: 35A15. Secondary: 35J85, 35R45.

1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivariational inequalities. Namely, the authors there want to answer the following question:

Find $u \in X$ and $\lambda \in \mathbb{R}$ satisfying the inequality

$$a(u,v) + \int_{Z} j^{o}(u,v) dx \ge \lambda(u,v) \text{ for all } v \in X$$

where $j: \mathbb{R} \to \mathbb{R}$ is a locally Lipschitz function and $a(\cdot, \cdot)$ a continuous symmetric bilinear form.

 $^{^1{\}rm This}$ work was supported partially by a postdoctoral scholarship from the State Scholarship Foundation (I.K.Y.) of Greece.

¹⁹

Our goal here is to have some existence results for such problems with the solution being at a closed, convex subset K of $W^{1,p}(Z)$ and in our case the differential operator is the *p*-Laplacian. Moreover, we seek for nontrivial solutions and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:

Let $Z \subseteq \mathbb{R}^N$ be a bounded domain with a C^1 -boundary Γ . Find $x \in W^{1,p}(Z)$ such that

$$\int_{Z} (\|Dx(z)\|^{p-2} (Dx(z), Dy(z))_{R^{N}} dz + \int_{Z} F^{o}(z, x(z); y(z)) dz \ge 0$$
(1)

for all $y \in K$. Here $K = \{x \in W^{1,p}(Z) : x(z) \ge 0\}$. Clearly, K is closed and convex on $W^{1,p}(Z)$ and finally $F : Z \times \mathbb{R} \to \mathbb{R}$ is the potential of some $f : Z \times \mathbb{R} \to \mathbb{R}$.

2. Preliminaries

Let X be a real Banach space and Y be a subset of X. A function $f: Y \to \mathbb{R}$ is said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative scalar K, one has

$$|f(y) - f(x)| \le K ||y - x||$$

for all points $x, y \in Y$. Let f be Lipschitz near a given point x, and let v be any other vector in X. The generalized directional derivative of f at x in the direction v, denoted by $f^o(x; v)$ is defined as follows:

$$f^{o}(x;v) = \limsup_{\substack{y \to x \\ t \mid 0}} \frac{f(y+tv) - f(y)}{t}$$

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x then the function $v \to f^o(x; v)$ is finite, positively homogeneous, subadditive and satisfies $|f^o(x; v)| \leq K ||v||$. In addition f^o satisfies $f^o(x; -v) = (-f)^o(x; v)$. Now we are ready to introduce the generalized gradient which denoted by $\partial f(x)$ as follows:

$$\partial f(x) = \{ w \in X^* : f^o(x; v) \ge \langle w, v \rangle \text{ for all } v \in X \}$$

Some basic properties of the generalized gradient of locally Lipschitz functionals are the following:

- (a) $\partial f(x)$ is a nonempty, convex, weakly compact subset of X^* and $||w||_* \leq K$ for every w in $\partial f(x)$.
- (b) For every v in X, one has

$$f^{o}(x;v) = \max\{\langle w, v \rangle : w \in d\partial f(x)\}.$$

If f_1, f_2 are locally Lipschitz functions then

$$\partial(f_1 + f_2) \subseteq \partial f_1 + \partial f_2.$$

Moreover, $(x, v) \to f^o(x; v)$ is upper semicontinuous and as function of v alone, is Lipschitz of rank K on X.

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let x and y be points in X, and suppose that f is Lipschitz on an open set containing the line segment [x, y]. Then there exists a point $u \in (x, y)$ such that

$$f(y) - f(x) \in \langle \partial f(u), y - x \rangle.$$
⁽²⁾

Let $R : X \to \mathbb{R} \cup \{\infty\}$ be such that $R = \Phi + \psi$ where $\Phi : X \to \mathbb{R}$ be a locally Lipschitz functional while $\psi : X \to \mathbb{R} \cup \{+\infty\}$ is a lower semicontinuous, convex but not defined everywhere functional.

A point x in X is said to be a critical point of R if $x \in D(\psi)$ and if it satisfies the inequality

$$\Phi^{o}(x; y - x) + \psi(y) - \psi(x) \ge 0 \text{ for every } y \in X.$$
(3)

Definition 1. We say that $R: X \to \mathbb{R} \cup \{\infty\}$ with $R = \Phi + \psi$ satisfies H_1 is Φ is locally Lipschitz and ψ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.

(PS) If $\{x_n\}$ is a sequence such that $R(x_n) \to c$ and

$$\Phi^{o}(x_{n}; y - x_{n}) + \psi(y) - \psi(x_{n}) \ge -\varepsilon_{n} \|y - x_{n}\| \text{ for every } y \in X.$$
(4)

where $\varepsilon_n \to 0$, then $\{x_n\}$ has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which satisfies condition H_1 and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If $f : X \to \mathbb{R}$ satisfies H_1 and (PS) on the reflexive Banach space X and the hypotheses

(i) there exist positive constants ρ and a such that

$$f(u) \ge a$$
 for all $x \in X$ with $||x|| = \rho$;

(ii) f(0) = 0 and there a point $e \in X$ such that

$$\|e\| > \rho$$
 and $f(e) \leq 0$,

then there exists a critical value $c \ge a$ of f determined by

$$c = \inf_{g \in G} \max_{t \in [0,1]} f(g(t))$$

where

$$G = \{g \in C([0,1], X) : g(0) = 0, g(1) = e\}$$

In what follows we will use the well-known inequality

$$\sum_{j=1}^{N} (a_j(\eta) - a_j(\eta'))(\eta_j - \eta'_j) \ge C |\eta - \eta'|^p,$$
(5)

^N, with $a_i(\eta) = |\eta|^{p-2} \eta_i.$

for $\eta, \eta' \in \mathbb{R}^N$, with $a_j(\eta) = |\eta|^2$

3. Hemivariational inequalities with constraints

Let $f: Z \times \mathbb{R} \to \mathbb{R}$. Then we introduce the following functions:

$$f_1(z,x) = \liminf_{x' \to x} f(z,x'), \ f_2(z,x) = \limsup_{x' \to x} f(z,x')$$

In this section we state and prove an existence result for a variational-hemivariational inequality. So our hypotheses on the data are:

 $\mathbf{H}(\mathbf{f}): f_1, f_2: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ is N-measurable (i.e. if x(z) is measurable then so is $f_{1,2}(z, x(z));$

- (i) for almost all $z \in Z$ and all $x \in \mathbb{R}$, $|f(z,x)| \leq a(z) + c|x|^{\theta-1}$ with $a \in L^{\infty}(Z), c > 0, 1 \le \theta < p;$
- (ii) uniformly for almost all $z \in Z$ we have that $\frac{f_{1,2}(z,x)}{|x|^{\theta-2}x} \to f_+(z)$ as $x \to \infty$ where $f_+ \in L^1(Z), f_+ \geq 0$ with strict inequality on a set of positive Lebesgue measure.
- (iii) Uniformly for almost all $z \in Z$ we have that

$$\limsup_{x \to 0} \frac{pF(z,x)}{|x|^p} \le h(z)$$

with $h \in L^{\infty}(Z)$ and $h(z) \leq 0$ with strict inequality on a set of positive measure. Here, by F(z, x) we denote the integral of f, that is F(z, x) = $\int_0^x f(z,r)dr.$

Theorem 3. If H(f) holds then problem (1) has a nontrivial solution $x \in K$. *Proof.* Let $\Phi: W^{1,p}(Z) \to \mathbb{R}$ and $\psi: W^{1,p}(Z) \to \mathbb{R} \cup \{\infty\}$ be defined such that

$$\Phi(x) = -\int_{Z} F(z, x(z)) dz \text{ and } \psi(x) = \frac{1}{p} \|Dx\|_{p}^{p} + I_{K}(x).$$

In the definition of $\Phi(\cdot)$, $F(z,x) = \int_{0}^{x} f(z,r) dr$ and I_{K} is the indicator function of $K = \{x \in W^{1,p}(Z) : x(z) \ge 0 \text{ a.e. on } Z\}$. It is easy to see that K is closed, convex and thus I_K is convex and lower semicontinuous.

Set $R = \Phi + \psi$. Recall that Φ is locally Lipschitz and ψ is lower semicontinuous, proper and convex.

Claim 1 $R(\cdot)$ satisfies the (PS)-condition.

Let
$$\{x_n\}_{n\geq 1} \subseteq W^{1,p}(Z)$$
 such that $R(x_n) \to c$ when $n \to \infty$ and

$$\Phi^{o}(x_{n}; x - x_{n}) + \psi(x) - \psi(x_{n}) \ge -\varepsilon_{n} \|x - x_{n}\|$$

with $\varepsilon_n \to 0$. Note that $\{x_n\} \in K$ because $|R(x_n)| \leq M$. In the above inequality choose $x = x_n + \delta x_n$ and then divide with δ . Also,

$$\frac{1}{p} \|Dx_n\|_p^p - \frac{1}{p} \|Dx_n + \delta Dx_n\| = \frac{1}{p} \|Dx_n\|_p^p (1 - (1 + \delta)^p).$$

So if we divide this with δ and let $\delta \to 0$ we have that is equal with $-\|Dx_n\|_p^p$. Finally there exists $v_n(z) \in [-f_1(z, x_n(z)), -f_2(z, x_n(z))]$ such that $\langle v_n, x_n \rangle = \Phi^o(x_n; x_n)$. So, it follows that

$$\int_{Z} -v_n x_n(z) dz - \|Dx_n\|_p^p \ge -\varepsilon_n \|x_n\|$$

Suppose that $\{x_n\} \subseteq W^{1,p}(Z)$ was unbounded. Then (at least for a subsequence), we may assume that $||x_n|| \to \infty$. Let $y_n = \frac{x_n}{||x_n||}, n \ge 1$. By passing to a subsequence if necessary, we may assume that

$$y_n \xrightarrow{w} y$$
 in $W^{1,p}(Z), y_n \to y$ in $L^p(Z), y_n(z) \to y(z)$ a.e. on Z as $n \to \infty$

and $|y_n(z)| \le k(z)$ a.e. on Z with $k \in L^p(Z)$.

Recall that from the choice of the sequence $\{x_n\}$ we have $|R(x_n)| \le M_1$ for some $M_1 > 0$ and all $n \ge 1$, thus

$$\frac{1}{p} \|Dx_n\|_p^p - \int_Z F(z, x_n(z)) dz \le M_1,$$

(since $I_K \ge 0$). Dividing by $||x_n||^p$ we obtain

$$\frac{1}{p} \|Dy_n\|_p^p - \int_Z \frac{F(z, x_n(z))}{\|x_n\|^p} dz \le \frac{M_1}{\|x_n\|^p}.$$
(6)

But we have

$$\begin{split} \left| \int_{Z} \frac{F(z, x_{n}(z))}{\|x_{n}\|^{p}} dz \right| &\leq \frac{1}{\|x_{n}\|^{p}} \int_{Z} \int_{0}^{|x_{n}(z)|} |f(z, r)| dr dz \\ &\leq \frac{1}{\|x_{n}\|^{p}} (\|\alpha\|_{\infty} \|x_{n}\| + \frac{c}{\theta} \|x_{n}\|^{\theta}) \to 0 \text{ as } n \to \infty. \end{split}$$

So by passing to the limit as $n \to \infty$ in (6), we obtain

$$\lim_{n \to \infty} \frac{1}{p} \|Dy_n\|_p^p = 0$$

from which it follows $||Dy||_p = 0$ (recall that $Dy_n \xrightarrow{w} Dy$ in $L^p(Z, \mathbb{R}^N)$ as $n \to \infty$) and consequently, $y = \xi \in \mathbb{R}$.

Note that $y_n \to \xi$ in $W^{1,p}(Z)$ and since $||y_n|| = 1, n \ge 1$ we infer that $\xi \ne 0$. We deduce that $|x_n(z)| \to +\infty$ a.e. on Z as $n \to \infty$.

From the choice of the sequence $\{x_n\} \subseteq W^{1,p}(Z)$, we have

$$\int_{Z} -v_n(z)x_n(z)dz - \|Dx_n\|_p^p \ge -\varepsilon_n\|x_n\|$$
(7)

NIKOLAOS HALIDIAS

and

$$\|Dx_n\|_p^p - p \int_Z F(z, x_n(z)) dz \ge -pM_1.$$
(8)

Adding (7) and (8), we obtain

$$\int_{Z} (-v_n(z)) x_n(z) - pF(z, x_n(z))) dz \ge -pM_1 - \varepsilon_n \|x_n\|.$$

Dividing this inequality by $||x_n||^{\theta}$ we have

$$\int_{Z} \frac{-v_n(z)}{\|x_n\|^{\theta-1}} y_n(z) dz - \int_{Z} \frac{pF(z, x_n(z))}{\|x_n\|^{\theta}} dz \ge -\frac{1}{\|x_n\|^{\theta}} pM_1 - \frac{\varepsilon_n}{\|x_n\|^{\theta-1}}$$
(9)

Note that

$$\int_{Z} \frac{-v_n(z)}{\|x_n\|^{\theta-1}} y_n(z) dz = \int_{Z} \frac{-v_n(z)}{|x_n(z)|^{\theta-2} x_n(z)} |y_n(z)|^{\theta} dz \to |\xi|^{\theta} \int_{Z} f_+(z) dz$$
as $n \to \infty$.

Also by virtue of hypothesis $\mathbf{H}(\mathbf{f})$ (ii), given $z \in Z \setminus N, |N| = 0$ (|C| denotes the Lebesgue measure of a measurable set $C \subseteq Z$) and $\varepsilon > 0$, we can find $M_{\varepsilon} > 0$ such that for all $|r| \ge M_{\varepsilon}$ we have $|f_{+}(z) - \frac{f_{1,2}(z,r)}{|r|^{\theta-2}r}| \le \varepsilon$. Then, if $x_n(z) \to +\infty$, we have

$$\frac{1}{|x_n(z)|^{\theta}}F(z,x_n(z))dz \geq \frac{1}{|x_n(z)|^{\theta}}F(z,M_{\varepsilon})dz + \frac{1}{|x_n(z)|^{\theta}}\int_{M_{\varepsilon}}^{x_n(z)} (f_+(z)|r|^{\theta-2}r - \varepsilon|r|^{\theta-2}r)dr \\ = \frac{1}{|x_n(z)|^{\theta}}\eta(z) + \frac{|x_n(z)|^{\theta} - M_{\varepsilon}^{\theta}}{\theta|x_n(z)|^{\theta}}(f_+(z) - \varepsilon)$$

for some $\eta \in L^1(Z)$. It follows that

$$\liminf_{n \to \infty} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \ge \frac{1}{\theta} (f_+(z) - \varepsilon)$$
(10)

Similarly we obtain that

$$\limsup_{n \to \infty} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \le \frac{1}{\theta} (f_+(z) + \varepsilon)$$
(11)

From (10) and (11) and since $\varepsilon > 0$ and $z \in Z \setminus N$ were arbitrary, we infer that $\frac{F(z, x_n(z))}{\sum 1} \xrightarrow{1} f_{+}(z) \text{ a e } \text{ on } Z \text{ as } n \to \infty$

$$\frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \to \frac{1}{\theta} f_+(z) \text{ a.e. on } Z \text{ as } n \to \infty$$

whence

$$\int_{Z} \frac{F(z, x_n(z))}{\|x_n\|^{\theta}} dz = \int_{Z} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} \frac{|x_n(z)|^{\theta}}{||x_n||^{\theta}} dz$$
$$= \int_{Z} \frac{F(z, x_n(z))}{|x_n(z)|^{\theta}} |y_n(z)|^{\theta} dz \to \xi^{\theta} \int_{Z} \frac{1}{\theta} f_+(z) \text{ as } n \to \infty$$
(12)

24

Thus by passing to the limit in (9), we obtain

$$(1 - \frac{p}{\theta})\xi^{\theta} \int_{Z} f_{+}(z) \ge 0,$$

a contradiction to hypothesis $\mathbf{H}(\mathbf{f})$ (ii) (recall $p > \theta$). If $x_n(z) \to -\infty$, with similar arguments as above we show that

$$\int_{Z} \frac{F(z, x_n(z))}{\|x_n\|^{\theta}} dz \to \xi^{\theta} \int_{Z} \frac{1}{\theta} f_+(z) \text{ as } n \to \infty$$

Therefore, it follows that $\{x_n\} \subseteq W^{1,p}(Z)$ is bounded. Hence we may assume that $x_n \xrightarrow{w} x$ in $W^{1,p}(Z), x_n \to x$ in $L^p(Z), x_n(z) \to x(z)$ a.e. on Z as $n \to \infty$ and $|x_n(z)| \leq k(z)$ a.e. on Z with $k \in L^p(Z)$. Note that K is closed and convex so it is weakly closed; thus $x \in K$.

So we have

$$-\varepsilon_n \|x - x_n\| \le \langle Ax_n, x - x_n \rangle - \int_Z v_n(z)(x - x_n(z))dz$$

with $v_n(z) \in [f_1(z, x_n(z)), f_2(z, x_n(z))]$ and $A : W^{1,p}(Z) \to W^{1,p}(Z)^*$ such that $\langle Ax, y \rangle = \int_Z (\|Dx(z)\|^{p-2}(Dx(z), Dy(z))_{R^N} dz$. But $x_n \xrightarrow{w} x$ in $W^{1,p}(Z)$, so $x_n \to x$ in $L^p(Z)$ and $x_n(z) \to x(z)$ a.e. on Z by virtue of the compact embedding $W^{1,p}(Z) \subseteq L^p(Z)$. Then we have that $\limsup \langle Ax_n, x_n - x \rangle = 0$ (note that v_n is bounded). By virtue of the inequality (5) we have that $Dx_n \to Dx$ in $L^p(Z)$. So we have $x_n \to x$ in $W^{1,p}(Z)$. The claim is proved.

Now let $W^{1,p}(Z) = X_1 \oplus X_2$ with $X_1 = \mathbb{R}$ and $X_2 = \{y \in W^{1,p}(Z) : \int_Z y(z) dz = 0\}$. For every $\xi \ge 0$ we have

$$R(\xi) = \Phi(\xi) + I_K(\xi) = -\int_Z F(z,\xi)dz.$$

By virtue of hypothesis $\mathbf{H}(\mathbf{f})_2$ (ii) we conclude that $R(\xi) \to -\infty$ as $\xi \to \infty$. On the other hand for $y \in X_2$, we have

$$R(y) \ge \frac{1}{p} \|Dy\|_{p}^{p} - \int_{Z} F(z, y(z)) dz \quad (\text{since } I_{K}(y) \ge 0)$$
$$\ge \frac{1}{p} \|Dy\|_{p}^{p} - c_{2} \|y\|_{p} - c_{3} \|y\|_{p}^{\theta}$$

for some $c_2, c_3 > 0$ (since $\theta < p$, see $\mathbf{H}(\mathbf{f})_3$ (i))

From the Poincare-Wirtinger inequality we know that $||Dy||_p$ is an equivalent norm on X_2 . So we have

$$R(y) \ge \frac{1}{p} \|Dy\|_p^p - c_4 \|Dy\|_p - c_5 \|Dy\|_p^\theta$$

for some $c_4, c_5 > 0$. So, $R(\cdot)$ is coercive on X_2 (recall $\theta < p$) hence, bounded below on X_2 .

In order to use the mountain-pass theorem it remains to show that there exists $\rho > 0$ such that for $||x|| = \rho$ we have that $R(x) \ge a > 0$. In fact, we will

NIKOLAOS HALIDIAS

show that for every sequence $\{x_n\} \subseteq W^{1,p}(Z)$ with $||x_n|| = \rho_n \downarrow 0$ we have that $R(x_n) > 0$. Indeed, suppose not. Then there exists some sequence $\{x_n\}$ such that $R(x_n) \leq 0$. Thus, we have

$$\frac{1}{p} \|Dx_n\|_p^p \le \int_Z F(z, x_n(z)) dz$$

Recall that $I_K \ge 0$. Divide this inequality with $||x_n||^p$. Let $y_n(z) = \frac{x_n(z)}{||x_n||}$. Then we have

$$||Dy_n||_p^p \le \int_Z p \frac{F(z, x_n(z))}{||x_n||^p} dz.$$

From **H(f)** (iii) we have that for almost all $z \in Z$ for any $\varepsilon > 0$ we can find $\delta > 0$ such that for $|x| \leq \delta$ we have

$$pF(z,x) \le (h(z) + \varepsilon)|x|^p$$
.

On the other hand, for almost all $z \in Z$ and all $|x| \ge \delta$ we have

$$p|F(z,x)| \le c_1|x| + c_2|x|^{\theta} + c_3 \le c_1|x|^p + c_2|x|^{p^*} + c_4.$$

Thus we can always find $\gamma > 0$ such that $p|F(z,x)| \leq (h(z) + \varepsilon)|x|^p + \gamma |x|^{p^*}$ for all $x \in R$. Indeed, choose $\gamma \geq c_2 + \frac{c_4}{|\delta|^{p^*}} + |h(z) + \varepsilon - c_1| |\delta|^{p-p^*}$. Therefore, we obtain

$$\|Dy_{n}\|_{p}^{p} \leq \int_{Z} (h(z) + \varepsilon) |y_{n}(z)|^{p} dz + \gamma \int_{Z} \frac{|x_{n}(z)|^{p^{*}}}{\|x_{n}\|^{p}} dz$$

$$\leq \int_{Z} (h(z) + \varepsilon) |y_{n}(z)|^{p} dz + \gamma_{1} \|x_{n}\|^{p^{*}-p}.$$
(13)

Here we have used the fact that $W^{1,p}(Z)$ embeds continuously in $L^{p^*}(Z)$. So we obtain

$$0 \le \|Dy_n\|_p^p \le \varepsilon \|y_n\|_p^p + \gamma_1 \|x_n\|^{p^*-p} \text{ recall that } h(z) \le 0$$

Therefore in the limit we have that $||Dy_n||_p \to 0$. Recall that $y_n \to y$ weakly in $W^{1,p}(Z)$. So $||Dy||_p \leq \liminf ||Dy_n||_p \leq \limsup ||Dy_n||_p \to 0$. So $||Dy||_p = 0$, thus $y = \xi \in \mathbb{R}$. Note that $Dy_n \to Dy$ weakly in $L^p(Z)$ and $||Dy_n||_p \to ||Dy||_p$ so $y_n \to y$ in $W^{1,p}(Z)$. Since $||y_n|| = 1$ we have that ||y|| = 1 so $\xi \neq 0$. Suppose that $\xi > 0$. Going back to (13) we have

$$0 \leq \int_Z (h(z) + \varepsilon) y_n^p(z) dz + \gamma_1 \|x_n\|^{p^* - p}.$$

In the limit we have

$$0 \le \int_{Z} (h(z) + \varepsilon) \xi^{p} dz \le \varepsilon \xi^{p} |Z| \text{ recall that } h(z) \le 0.$$

Thus we obtain that $\int_Z h(z)\xi^p dz = 0$. But this is a contradiction. The same holds when $\xi < 0$. So the claim is proved. Now, by mountain pass theorem we

26

$$\Phi^o(x; y - x) + \psi(y) - \psi(x) \ge 0$$

for all $y \in W^{1,p}(Z)$. Choose y = x + tv with $v \in K$. Dividing by t > 0 we have in the limit

$$\int_{Z} F^{o}(z, x(z); v(z)) dz + \langle Ax, v \rangle \ge \Phi^{o}(x; v) + \langle Ax, v \rangle \ge 0$$

for all $v \in K$.

Remark 1. Note that if $K = W^{1,p}(Z)$ then from above we have that $-Ax \in \partial \Phi(x)$ and the subdifferential is in the sense of Clarke.

References

- K. C. CHANG, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.
- [2] F. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- [3] D. G. DE FIGUEIREDO, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Springer, Bombay, 1989.
- [4] D. G. COSTA-J. V. GONCALVES, Critical point theory for nondifferentiable functionals and applications, Journal of Math. Anal. Appl. 153 (1990), 470–485.
- [5] S. HU & N.S. PAPAGEORGIOU, Handbook of Multivalued Analysis Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.
- [6] S. HU & N.S. PAPAGEORGIOU, Handbook of Multivalued Analysis Volume II: Applications, Kluwer Academic Publishers, Dordrecht, 2000.
- [7] N. KENMOCHI, Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan 27 (1975), No. 1, 121–149.
- [8] D. MOTREANU & P. D. PANAGIOTOPOULOS, A Minimax Approach to the eigenvalue Problem of Hemivariational Inequalities and Applications, Applicable Analysis, 58 (1995), 53–76.
- [9] D. Motreanu & P. D. Panagiotopoulos: Minimax Theorems and Qualitative Properties of Hemivariational Inequalities, Kluwer, Dordrecht, 1999.
- [10] R. SHOWALTER, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations Math. Surveys, vol. 49, AMS, Providence, R. I., 1997.
- [11] A. SZULKIN, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Annales Inst. H. Poincare-Analyse Nonlineaire 3 (1986), 77–109.

(Recibido en febrero de 2002)

DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE UNIVERSITY OF THE AEGEAN KARLOVASSI, 83200 SAMOS, GREECE *e-mail:* nick@aegean.gr

 $\overline{\mathbf{v}}$