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ABsTrACT. In this paper we consider a class of variational-hemivariational
inequalities. We use the critical point theory for nonsmooth functionals due
to Motreanu-Panagiotopoulos [9]. We derive nontrivial solutions using the
mountain-pass theorem.
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1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivari-
ational inequalities. Namely, the authors there want to answer the following
question:

Find v € X and X € R satisfying the inequality
a(u,v) —|—/ J°(u,v)dx > Au,v) for all v € X
z

where j : R — R is a locally Lipschitz function and a(-,-) a continuous sym-
metric bilinear form.
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Our goal here is to have some existence results for such problems with the
solution being at a closed, convex subset K of W'?(Z) and in our case the dif-
ferential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions
and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following;:

Let Z C RY be a bounded domain with a C*'-boundary I'. Find z € W1P(Z)
such that

[ De@P 2 0(), Dy vz + [ Foea@iyenizz0 ()
Z Z

for all y € K. Here K = {x € WY?(Z) : z(z) > 0}. Clearly, K is closed
and convex on W1P(Z) and finally F : Z x R — R is the potential of some
f:ZxR—->R.

2. Preliminaries

Let X be a real Banach space and Y be a subset of X. A function f:Y — Ris
said to satisfy a Lipschitz condition (on Y') provided that, for some nonnegative
scalar K, one has

[f(y) — f(@)| < Ky — =
for all points z,y € Y. Let f be Lipschitz near a given point z, and let v be
any other vector in X. The generalized directional derivative of f at x in the
direction v, denoted by f°(x;v) is defined as follows:

fo(x;v) = hri:ﬁllp w

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near
2 then the function v — f°(z;v) is finite, positively homogeneous, subadditive
and satisfies |f°(x;v)| < K|v|. In addition f° satisfies f°(x; —v) = (—f)°(x;v).
Now we are ready to introduce the generalized gradient which denoted by 9 f(z)
as follows:
Of (x) ={w e X" : f(x;v) > (w,v) for all v € X}

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) Of(x) is a nonempty, convex, weakly compact subset of X* and |w|. < K
for every w in Of(z).
(b) For every v in X, one has

f(x;v) = max{(w,v) : w € dof(z)}.
If f1, fo are locally Lipschitz functions then
8(f1 + fz) - 8f1 + afg
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Moreover, (z,v) — f°(x;v) is upper semicontinuous and as function of v alone,
is Lipschitz of rank K on X.

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let x and y be points in X, and suppose that f is
Lipschitz on an open set containing the line segment [x,y]. Then there exists
a point u € (z,y) such that

fly) = f(x) € (0f (w),y — ). (2)

Let R : X — RU {oo} be such that R = ® 4+ ¢ where ® : X — R be a
locally Lipschitz functional while ¢ : X — RU{+4o00} is a lower semicontinuous,
convex but not defined everywhere functional.

A point z in X is said to be a critical point of R if z € D(¢) and if it satisfies
the inequality

P%(z;y — @) +U(y) — Y(z) = 0 for every y € X. (3)

Definition 1. We say that R: X — RU {oco} with R = ® + ¢ satisfies H; is
® is locally Lipschitz and v proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.
(PS) If {z,} is a sequence such that R(x,) — ¢ and
D (zniy — xn) + Y(y) — h(wn) = —enly — zpf for every y € X. (4)
where e, — 0, then {z,,} has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which
satisfies condition H; and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If f : X — R satisfies H; and (PS) on the reflexive Banach space
X and the hypotheses

(i) there exist positive constants p and a such that
f(u) > a for all x € X with |z| = p;
(ii) f(0) =0 and there a point e € X such that
lel > p and f(e) <0,
then there exists a critical value ¢ > a of f determined by

— inf t
¢ glthgl[gﬁ]f(g( )

where

G ={g€C([0,1],X) : g(0) = 0,9(1) = e}
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In what follows we will use the well-known inequality
N
> (ai(m) = a;(m))(m; —n;) = Cln—n'|7, (5)

Jj=1

for 77,77, € RV, with a;(n) = |7]|p’277j.

3. Hemivariational inequalities with constraints

Let f: Z x R — R. Then we introduce the following functions:
fi(z,x) = liminf f(z,2), fao(z,2) = limsup f(z,2).

In this section we state and prove an existence result for a variational-hemi-
variational inequality. So our hypotheses on the data are:
H(f) : f1,f2: Z x R — R is N-measurable (i.e. if 2:(z) is measurable then so
is f1.2(2,2(2));

(i) for almost all 2 € Z and all + € R, |f(z,2)] < a(z) + ¢|z|°~! with

a€L>(Z),c>0,1<60<p;

(i) uniformly for almost all z € Z we have that -2

[z]? 2z
where f, € LY(Z),f+ > 0 with strict inequality on a set of positive
Lebesgue measure.

(iii) Uniformly for almost all z € Z we have that

. pF(z,x)
limsup ————= < h(z),
msup = < (2)

— fi(z) asz —

with h € L>(Z) and h(z) < 0 with strict inequality on a set of positive
measure. Here, by F(z,2) we denote the integral of f, that is F'(z,z) =

ff f(z,r)dr.
Theorem 3. If H(f) holds then problem (1) has a nontrivial solution x € K.

Proof. Let ® : WYP(Z) — R and ¢ : WHP(Z) — RU{oo} be defined such that
1
O(z) = —/ F(z,2(2))dz and 9(x) = ;||Dx||§ + Ik (x).
z

In the definition of ®(:), F(z,2) = [ f(z,r)dr and I is the indicator
function of K = {z € W'P(Z) : x(2) > 0 a.e. on Z}. It is easy to see that K
is closed, convex and thus [x is convex and lower semicontinuous.

Set R = ® + 9. Recall that ® is locally Lipschitz and 1 is lower semicon-
tinuous, proper and convex.

Claim 1 R(-) satisfies the (PS)-condition.
Let {zy}n>1 € WHP(Z) such that R(z,) — ¢ when n — oo and

% (zn; 2 — zn) + (@) — Y(an) = —en|z — 20|
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with €, — 0. Note that {z,} € K because |R(z,)] < M. In the above
inequality choose x = x.,, + 0z, and then divide with §. Also,

1 1 1
;||D$n||§ - ;HD% +0Dz,| = ;||D$n||£(1 —(1+9)").

So if we divide this with § and let § — 0 we have that is equal with —|Dz,[}.
Finally there exists v, (2) € [—f1(z, 2n(2)), — f2(2, xn(2))] such that (v,,z,) =
DO (xp; ). So, it follows that

[ ~onn()dz = Dzl = el
zZ

Suppose that {z,} C W!P(Z) was unbounded. Then (at least for a subse-
quence), we may assume that |z, | — co. Let y, = ﬁ, n > 1. By passing to
a subsequence if necessary, we may assume that

Yn —yin WHP(Z),y, — yin LP(Z),yn(2) — y(2) a.e. onZ as n — oo
and |y, (2)| < k(z) a.e. on Z with k € LP(Z).

Recall that from the choice of the sequence {z,} we have |R(x,)| < M; for
some M7 >0 and all n > 1, thus

1
L1Da | - /Z Pz, 20(2))dz < M,

(since Ix > 0). Dividing by |z,|? we obtain
F (z xn M,
z <

IIP e

IID ynlp —

But we have

Z T raz
z ||90n||” - ||90n||”

<

B ||p(||0<||oo||96n|| +5 IIwnII ) =0 asn — oo
n

So by passing to the limit as n — oo in (6), we obtain
o1
lim —|Dy,[h =0
n—oo p

from which it follows |Dy|, = 0 (recall that Dy, — Dy in LP(Z, RY) as
n — 00) and consequently, y = £ € R.

Note that y, — & in WHP(Z) and since |y,| = 1,n > 1 we infer that & # 0.
We deduce that |z, (z)] — 400 a.e. on Z as n — oc.

From the choice of the sequence {z,,} C W1P(Z), we have

/Z—Un(Z)wn(Z)dZ —[Dzal} = —enln] (7)
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and
IDal? — p / F(z,2n(2))dz > —pM. (8)
7
Adding (7) and (8), we obtain
/Z (—0n(2))n(2) — PF (2, 20 (2)))dz > —pMy — ],

Dividing this inequality by [2,]° we have

PE (2, 20(2)) | ‘.
() — [ PR s - - S (0)
/ ||xn||9 ; ;e [2a]? ]P0
Note that
yn(2)dz = / lyn(2) Pz — |€]° / filz
/ux o1 ERElETmE] 2x<>
as n — oQ.

Also by virtue of hypothesis H(f) (ii), given z € Z ~ N,|N| = 0 (|C]
denotes the Lebesgue measure of a measurable set C' C Z) and € > 0, we can
find M, > 0 such that for all |r| > M. we have |f,(z) — L& fg(ZJ | <e. Then, if
Zn(z) = 400, we have

1 1

———F(z,2,(2))dz —

|2 (2)]° |z (2)]°

1 Tn(2) B B
o L el e

T (2 0 _ 9

Y

F(z,M.)dz

for some n € L*(Z). Tt follows that

.. F(z (2 1
lim inf W g(f+(2) —2) (10)
Similarly we obtain that
. F(z,zn(2)) 1
llﬂsong gf+(2) +e) (11)

From (10) and (11) and since € > 0 and z € Z \ N were arbitrary, we infer
that

MH%er(z) a.e. on Z as n — oo

|25 ()
Whence
d = dz
IISCnII" Ifcn I" IIanI"
F(van(z)) 0 6 1
= yn(2)["dz — & —fi(z) asn — o0
P |SCn(Z>|6 | ( )| Z9 +( )
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Thus by passing to the limit in (9), we obtain

-0 [ 1.

a contradiction to hypothesis H(f) (ii) (recall p > 6 ). If x,(z) — —oo, with
similar arguments as above we show that

F(z,x,
/Z ]xiﬂe 50/ —f+(2) as n — co.

Therefore, it follows that {x,,} € W1?(Z) is bounded. Hence we may assume
that z,, = x in WhP(Z),z, — x in Lp(Z),zn(z) — x(z) a.e. on Z as n — o0
and |z, (z)| < k(2) a.e. on Z with k € LP(Z). Note that K is closed and convex
so it is weakly closed; thus = € K.

So we have
—enle — xn| < (Axp,x — x,) — / v (2)(x — xn(2))dz
z

with v,(2) € [fi(z,2n(2)), fo(z,2,(2))] and A : WLP(Z) — WLP(Z)* such
that (Az,y) = [,(|Dz(2)|P~3(Dz(z), Dy(z))gvdz. But z, = z in WHP(Z),
so &, — x in LP(Z) and x,(z) — x(z) a.e. on Z by virtue of the compact
embedding W1P(Z) C LP(Z). Then we have that limsup(Az,,z, —z) = 0
(note that v, is bounded). By virtue of the inequality (5) we have that Dz, —
Dz in LP(Z). So we have z,, — x in WYP(Z). The claim is proved.

Now let WhP(Z) = X; @& Xy with X3 = R and Xo = {y € WiP(2) :
ny )dz = 0}. For every £ > 0 we have

R(€) = () + Ixc () = — /Z F(z,€)dz.

By virtue of hypothesis H(f)2 (ii) we conclude that R(§) — —oo as £ — oo.
On the other hand for y € X5, we have

R(y) > }juDyng - / F(z,y(=))dz (since Irc(y) > 0)

1 0
2 Z;IIDylli = alyly — eslyly

for some ¢, c3 > 0 (since § < p, see H(f)3 (1))

From the Poincare-Wirtinger inequality we know that |Dy], is an equivalent
norm on Xs. So we have

1 0
R(y) > EIIDylli — ca| Dylp — es| Dyl

for some c4,c5 > 0. So, R(-) is coercive on X5 (recall § < p) hence, bounded
below on Xs.

In order to use the mountain-pass theorem it remains to show that there
exists p > 0 such that for || = p we have that R(z) > a > 0. In fact, we will
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show that for every sequence {z,,} C WYP(Z) with |z, | = pn | 0 we have that
R(x,) > 0. Indeed, suppose not. Then there exists some sequence {z, } such
that R(x,) < 0. Thus, we have

1

LDl < [ Fma(e)dz.

p z

Recall that Ix > 0. Divide this inequality with |z,[|P. Let y,(z) = nlz)

F n
IDyal? < / pLEen@)) ;.
7

lzn P

Then we have

From H(f) (iii) we have that for almost all z € Z for any ¢ > 0 we can find
d > 0 such that for |z| < 6 we have

pF(z,2) < (h(z) +&)|z|P.
On the other hand, for almost all z € Z and all |z| > ¢ we have
p|F(z,2)| < cr)z| + ealz]® + s < er|x|P + colzlP + ca.
Thus we can always find v > 0 such that p|F(z,z)| < (h(z) + ¢)|z[P + v|z|P”

for all z € R. Indeed, choose v > co + % +|h(2) 4+ € — c1] [8[P~P". Therefore,

we obtain
Tn(z P
IDualy < [ () +eln(Paz + [ 2T
z z  [znl (13)
= / (h(2) + &) lyn(2)[Pdz + 1 lza]” 7.
z
Here we have used the fact that WP (Z) embeds continuously in L?" (Z). So
we obtain
0 < |Dyn ||g <elyn ||g + 71 ||zn||p* ~P recall that h(z) <0.

Therefore in the limit we have that |Dy,|, — 0. Recall that y,, — y weakly
in WhP(Z). So |Dyl|, < liminf|Dy,|, < limsup [Dy,[, — 0. So |Dy], = 0,
thus y = £ € R. Note that Dy,, — Dy weakly in LP(Z) and |Dyn|, — |Dyl,
0 yn — y in WLP(Z). Since |y,| = 1 we have that |y| = 1 so £ # 0. Suppose
that £ > 0. Going back to (13) we have

0= / (h(2) + &)y (2)dz + 1 |wn P 7.
7
In the limit we have

0< / (h(z) + €)&Pdz < €€P|Z| recall that h(z) < 0.
z

Thus we obtain that [, h(z)£Pdz = 0. But this is a contradiction. The same
holds when ¢ < 0. So the claim is proved. Now, by mountain pass theorem we



ON A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES 27

have that there exists x € W1P(Z) such that

D%(z;y —x) +(y) —Y(z) 2 0
for all y € WHP(Z). Choose y = z + tv with v € K. Dividing by ¢ > 0 we have
in the limit

/ZFO(z,x(z);v(z))dz + (Az,v) > D°(x;0) + (Az,v) >0

forallv € K. o

Remark 1. Note that if K = W?(Z) then from above we have that —Az €
0% (z) and the subdifferential is in the sense of Clarke.
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