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Abstract. In this paper we consider a class of variational-hemivariational
inequalities. We use the critical point theory for nonsmooth functionals due
to Motreanu-Panagiotopoulos [9]. We derive nontrivial solutions using the
mountain-pass theorem.
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1. Introduction

Our starting point is the paper of Motreanu-Panagiotopoulos [8] for hemivari-
ational inequalities. Namely, the authors there want to answer the following
question:

Find u ∈ X and λ ∈ R satisfying the inequality

a(u, v) +

∫

Z

jo(u, v)dx ≥ λ(u, v) for all v ∈ X

where j : R → R is a locally Lipschitz function and a(·, ·) a continuous sym-
metric bilinear form.

1This work was supported partially by a postdoctoral scholarship from the State Schol-
arship Foundation (I.K.Y.) of Greece.
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Our goal here is to have some existence results for such problems with the
solution being at a closed, convex subset K of W 1,p(Z) and in our case the dif-
ferential operator is the p-Laplacian. Moreover, we seek for nontrivial solutions
and for that purpose we use the mountain-pass theorem.

The problem under consideration is the following:

Let Z ⊆ R
N be a bounded domain with a C1-boundary Γ. Find x ∈W 1,p(Z)

such that
∫

Z

(||Dx(z)||p−2(Dx(z), Dy(z))RN dz +

∫

Z

F o(z, x(z); y(z))dz ≥ 0 (1)

for all y ∈ K. Here K = {x ∈ W 1,p(Z) : x(z) ≥ 0}. Clearly, K is closed
and convex on W 1,p(Z) and finally F : Z × R → R is the potential of some
f : Z × R → R.

2. Preliminaries

Let X be a real Banach space and Y be a subset of X . A function f : Y → R is
said to satisfy a Lipschitz condition (on Y ) provided that, for some nonnegative
scalar K, one has

|f(y) − f(x)| ≤ K||y − x||

for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be
any other vector in X . The generalized directional derivative of f at x in the
direction v, denoted by fo(x; v) is defined as follows:

fo(x; v) = lim sup
y→x
t↓0

f(y + tv) − f(y)

t

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near
x then the function v → fo(x; v) is finite, positively homogeneous, subadditive
and satisfies |fo(x; v)| ≤ K||v||. In addition fo satisfies fo(x;−v) = (−f)o(x; v).
Now we are ready to introduce the generalized gradient which denoted by ∂f(x)
as follows:

∂f(x) = {w ∈ X∗ : fo(x; v) ≥ 〈w, v〉 for all v ∈ X}

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂f(x) is a nonempty, convex, weakly compact subset of X∗ and ||w||∗ ≤ K

for every w in ∂f(x).
(b) For every v in X , one has

fo(x; v) = max{〈w, v〉 : w ∈ d∂f(x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2.
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Moreover, (x, v) → fo(x; v) is upper semicontinuous and as function of v alone,
is Lipschitz of rank K on X .

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let x and y be points in X , and suppose that f is
Lipschitz on an open set containing the line segment [x, y]. Then there exists
a point u ∈ (x, y) such that

f(y) − f(x) ∈ 〈∂f(u), y − x〉. (2)

Let R : X → R ∪ {∞} be such that R = Φ + ψ where Φ : X → R be a
locally Lipschitz functional while ψ : X → R∪{+∞} is a lower semicontinuous,
convex but not defined everywhere functional.

A point x in X is said to be a critical point of R if x ∈ D(ψ) and if it satisfies
the inequality

Φo(x; y − x) + ψ(y) − ψ(x) ≥ 0 for every y ∈ X. (3)

Definition 1. We say that R : X → R ∪ {∞} with R = Φ + ψ satisfies H1 is
Φ is locally Lipschitz and ψ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.

(PS) If {xn} is a sequence such that R(xn) → c and

Φo(xn; y − xn) + ψ(y) − ψ(xn) ≥ −εn||y − xn|| for every y ∈ X. (4)

where εn → 0, then {xn} has a convergent subsequence.

The following theorem is a mountain-pass theorem for functionals which
satisfies condition H1 and (PS) (see Motreanu-Panagiotopoulos [9], Cor. 3.2).

Theorem 2. If f : X → R satisfies H1 and (PS) on the reflexive Banach space
X and the hypotheses

(i) there exist positive constants ρ and a such that

f(u) ≥ a for all x ∈ X with ||x|| = ρ;

(ii) f(0) = 0 and there a point e ∈ X such that

||e|| > ρ and f(e) ≤ 0,

then there exists a critical value c ≥ a of f determined by

c = inf
g∈G

max
t∈[0,1]

f(g(t))

where

G = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}
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In what follows we will use the well-known inequality

N
∑

j=1

(aj(η) − aj(η
′

))(ηj − η
′

j) ≥ C|η − η
′

|p, (5)

for η, η
′

∈ RN , with aj(η) = |η|p−2ηj .

3. Hemivariational inequalities with constraints

Let f : Z × R → R. Then we introduce the following functions:

f1(z, x) = lim inf
x
′→x

f(z, x
′

), f2(z, x) = lim sup
x
′→x

f(z, x
′

).

In this section we state and prove an existence result for a variational-hemi-
variational inequality. So our hypotheses on the data are:

H(f) : f1, f2 : Z × R → R is N -measurable (i.e. if x(z) is measurable then so
is f1,2(z, x(z));

(i) for almost all z ∈ Z and all x ∈ R, |f(z, x)| ≤ a(z) + c|x|θ−1 with
a ∈ L∞(Z), c > 0, 1 ≤ θ < p;

(ii) uniformly for almost all z ∈ Z we have that
f1,2(z,x)
|x|θ−2x

→ f+(z) as x → ∞

where f+ ∈ L1(Z), f+ ≥ 0 with strict inequality on a set of positive
Lebesgue measure.

(iii) Uniformly for almost all z ∈ Z we have that

lim sup
x→0

pF (z, x)

|x|p
≤ h(z),

with h ∈ L∞(Z) and h(z) ≤ 0 with strict inequality on a set of positive
measure. Here, by F (z, x) we denote the integral of f , that is F (z, x) =
∫ x

o
f(z, r)dr.

Theorem 3. If H(f) holds then problem (1) has a nontrivial solution x ∈ K.

Proof. Let Φ : W 1,p(Z) → R and ψ : W 1,p(Z) → R∪{∞} be defined such that

Φ(x) = −

∫

Z

F (z, x(z))dz and ψ(x) =
1

p
||Dx||pp + IK(x).

In the definition of Φ(·), F (z, x) =
∫ x

o
f(z, r)dr and IK is the indicator

function of K = {x ∈ W 1,p(Z) : x(z) ≥ 0 a.e. on Z}. It is easy to see that K
is closed, convex and thus IK is convex and lower semicontinuous.

Set R = Φ + ψ. Recall that Φ is locally Lipschitz and ψ is lower semicon-
tinuous, proper and convex.

Claim 1 R(·) satisfies the (PS)-condition.

Let {xn}n≥1 ⊆W 1,p(Z) such that R(xn) → c when n→ ∞ and

Φo(xn;x− xn) + ψ(x) − ψ(xn) ≥ −εn||x− xn||
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with εn → 0. Note that {xn} ∈ K because |R(xn)| ≤ M . In the above
inequality choose x = xn + δxn and then divide with δ. Also,

1

p
||Dxn||

p
p −

1

p
||Dxn + δDxn|| =

1

p
||Dxn||

p
p(1 − (1 + δ)p).

So if we divide this with δ and let δ → 0 we have that is equal with −||Dxn||
p
p.

Finally there exists vn(z) ∈ [−f1(z, xn(z)),−f2(z, xn(z))] such that 〈vn, xn〉 =
Φo(xn;xn). So, it follows that

∫

Z

−vnxn(z)dz − ||Dxn||
p
p ≥ −εn||xn||.

Suppose that {xn} ⊆ W 1,p(Z) was unbounded. Then (at least for a subse-
quence), we may assume that ||xn|| → ∞. Let yn = xn

||xn|| , n ≥ 1. By passing to

a subsequence if necessary, we may assume that

yn
w
→ y in W 1,p(Z), yn → y in Lp(Z), yn(z) → y(z) a.e. onZ as n→ ∞

and |yn(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z).

Recall that from the choice of the sequence {xn} we have |R(xn)| ≤M1 for
some M1 > 0 and all n ≥ 1, thus

1

p
||Dxn||

p
p −

∫

Z

F (z, xn(z))dz ≤M1,

(since IK ≥ 0). Dividing by ||xn||
p we obtain

1

p
||Dyn||

p
p −

∫

Z

F (z, xn(z))

||xn||p
dz ≤

M1

||xn||p
. (6)

But we have
∣

∣

∣

∣

∣

∫

Z

F (z, xn(z))

||xn||p
dz

∣

∣

∣

∣

∣

≤
1

||xn||p

∫

Z

∫ |xn(z)|

0

|f(z, r)|drdz

≤
1

||xn||p
(||α||∞||xn|| +

c

θ
||xn||

θ) → 0 as n→ ∞.

So by passing to the limit as n→ ∞ in (6), we obtain

lim
n→∞

1

p
||Dyn||

p
p = 0

from which it follows ||Dy||p = 0 (recall that Dyn
w
→ Dy in Lp(Z,RN ) as

n→ ∞) and consequently, y = ξ ∈ R.

Note that yn → ξ in W 1,p(Z) and since ||yn|| = 1, n ≥ 1 we infer that ξ 6= 0.
We deduce that |xn(z)| → +∞ a.e. on Z as n→ ∞.

From the choice of the sequence {xn} ⊆W 1,p(Z), we have
∫

Z

−vn(z)xn(z)dz − ||Dxn||
p
p ≥ −εn||xn|| (7)
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and

||Dxn||
p
p − p

∫

Z

F (z, xn(z))dz ≥ −pM1. (8)

Adding (7) and (8), we obtain
∫

Z

(−vn(z))xn(z) − pF (z, xn(z)))dz ≥ −pM1 − εn||xn||.

Dividing this inequality by ||xn||
θ we have

∫

Z

−vn(z)

||xn||θ−1
yn(z)dz −

∫

Z

pF (z, xn(z))

||xn||θ
dz ≥ −

1

||xn||θ
pM1 −

εn

||xn||θ−1
(9)

Note that
∫

Z

−vn(z)

||xn||θ−1
yn(z)dz =

∫

Z

−vn(z)

|xn(z)|θ−2xn(z)
|yn(z)|θdz → |ξ|θ

∫

Z

f+(z)dz

as n→ ∞.

Also by virtue of hypothesis H(f) (ii), given z ∈ Z r N, |N | = 0 (|C|
denotes the Lebesgue measure of a measurable set C ⊆ Z) and ε > 0, we can

find Mε > 0 such that for all |r| ≥Mε we have |f+(z)−
f1,2(z,r)
|r|θ−2r

| ≤ ε. Then, if

xn(z) → +∞, we have

1

|xn(z)|θ
F (z, xn(z))dz ≥

1

|xn(z)|θ
F (z,Mε)dz

+
1

|xn(z)|θ

∫ xn(z)

Mε

(f+(z)|r|θ−2r − ε|r|θ−2r)dr

=
1

|xn(z)|θ
η(z) +

|xn(z)|θ −Mθ
ε

θ|xn(z)|θ
(f+(z) − ε)

for some η ∈ L1(Z). It follows that

lim inf
n→∞

F (z, xn(z))

|xn(z)|θ
≥

1

θ
(f+(z) − ε) (10)

Similarly we obtain that

lim sup
n→∞

F (z, xn(z))

|xn(z)|θ
≤

1

θ
(f+(z) + ε) (11)

From (10) and (11) and since ε > 0 and z ∈ Z r N were arbitrary, we infer
that

F (z, xn(z))

|xn(z)|θ
→

1

θ
f+(z) a.e. on Z as n→ ∞

whence
∫

Z

F (z, xn(z))

||xn||θ
dz =

∫

Z

F (z, xn(z))

|xn(z)|θ
|xn(z)|θ

||xn||θ
dz

=

∫

Z

F (z, xn(z))

|xn(z)|θ
|yn(z)|θdz → ξθ

∫

Z

1

θ
f+(z) as n→ ∞

(12)
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Thus by passing to the limit in (9), we obtain

(1 −
p

θ
)ξθ

∫

Z

f+(z) ≥ 0,

a contradiction to hypothesis H(f) (ii) (recall p > θ ). If xn(z) → −∞, with
similar arguments as above we show that

∫

Z

F (z, xn(z))

||xn||θ
dz → ξθ

∫

Z

1

θ
f+(z) as n→ ∞.

Therefore, it follows that {xn} ⊆ W 1,p(Z) is bounded. Hence we may assume

that xn
w
→ x in W 1,p(Z), xn → x in Lp(Z), xn(z) → x(z) a.e. on Z as n → ∞

and |xn(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z). Note that K is closed and convex
so it is weakly closed; thus x ∈ K.

So we have

−εn||x − xn|| ≤ 〈Axn, x− xn〉 −

∫

Z

vn(z)(x− xn(z))dz

with vn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))] and A : W 1,p(Z) → W 1,p(Z)∗ such

that 〈Ax, y〉 =
∫

Z
(||Dx(z)||p−2(Dx(z), Dy(z))RN dz. But xn

w
→ x in W 1,p(Z),

so xn → x in Lp(Z) and xn(z) → x(z) a.e. on Z by virtue of the compact
embedding W 1,p(Z) ⊆ Lp(Z). Then we have that lim sup〈Axn, xn − x〉 = 0
(note that vn is bounded). By virtue of the inequality (5) we have that Dxn →
Dx in Lp(Z). So we have xn → x in W 1,p(Z). The claim is proved.

Now let W 1,p(Z) = X1 ⊕ X2 with X1 = R and X2 = {y ∈ W 1,p(Z) :
∫

Z
y(z)dz = 0}. For every ξ ≥ 0 we have

R(ξ) = Φ(ξ) + IK(ξ) = −

∫

Z

F (z, ξ)dz.

By virtue of hypothesis H(f)2 (ii) we conclude that R(ξ) → −∞ as ξ → ∞.
On the other hand for y ∈ X2, we have

R(y) ≥
1

p
||Dy||pp −

∫

Z

F (z, y(z))dz (since IK(y) ≥ 0)

≥
1

p
||Dy||pp − c2||y||p − c3||y||

θ
p

for some c2, c3 > 0 (since θ < p, see H(f)3 (i))

From the Poincare-Wirtinger inequality we know that ||Dy||p is an equivalent
norm on X2. So we have

R(y) ≥
1

p
||Dy||pp − c4||Dy||p − c5||Dy||

θ
p

for some c4, c5 > 0. So, R(·) is coercive on X2 (recall θ < p) hence, bounded
below on X2.

In order to use the mountain-pass theorem it remains to show that there
exists ρ > 0 such that for ||x|| = ρ we have that R(x) ≥ a > 0. In fact, we will
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show that for every sequence {xn} ⊆W 1,p(Z) with ||xn|| = ρn ↓ 0 we have that
R(xn) > 0. Indeed, suppose not. Then there exists some sequence {xn} such
that R(xn) ≤ 0. Thus, we have

1

p
||Dxn||

p
p ≤

∫

Z

F (z, xn(z))dz.

Recall that IK ≥ 0. Divide this inequality with ||xn||
p. Let yn(z) = xn(z)

||xn|| .

Then we have

||Dyn||
p
p ≤

∫

Z

p
F (z, xn(z))

||xn||p
dz.

From H(f) (iii) we have that for almost all z ∈ Z for any ε > 0 we can find
δ > 0 such that for |x| ≤ δ we have

pF (z, x) ≤ (h(z) + ε)|x|p.

On the other hand, for almost all z ∈ Z and all |x| ≥ δ we have

p|F (z, x)| ≤ c1|x| + c2|x|
θ + c3 ≤ c1|x|

p + c2|x|
p∗

+ c4.

Thus we can always find γ > 0 such that p|F (z, x)| ≤ (h(z) + ε)|x|p + γ|x|p
∗

for all x ∈ R. Indeed, choose γ ≥ c2 + c4

|δ|p∗ + |h(z)+ ε− c1| |δ|
p−p∗

. Therefore,

we obtain

||Dyn||
p
p ≤

∫

Z

(h(z) + ε)|yn(z)|pdz + γ

∫

Z

|xn(z)|p
∗

||xn||p
dz

≤

∫

Z

(h(z) + ε)|yn(z)|pdz + γ1||xn||
p∗−p.

(13)

Here we have used the fact that W 1,p(Z) embeds continuously in Lp∗

(Z). So
we obtain

0 ≤ ||Dyn||
p
p ≤ ε||yn||

p
p + γ1||xn||

p∗−p recall that h(z) ≤ 0.

Therefore in the limit we have that ||Dyn||p → 0. Recall that yn → y weakly
in W 1,p(Z). So ||Dy||p ≤ lim inf ||Dyn||p ≤ lim sup ||Dyn||p → 0. So ||Dy||p = 0,
thus y = ξ ∈ R. Note that Dyn → Dy weakly in Lp(Z) and ||Dyn||p → ||Dy||p
so yn → y in W 1,p(Z). Since ||yn|| = 1 we have that ||y|| = 1 so ξ 6= 0. Suppose
that ξ > 0. Going back to (13) we have

0 ≤

∫

Z

(h(z) + ε)yp
n(z)dz + γ1||xn||

p∗−p.

In the limit we have

0 ≤

∫

Z

(h(z) + ε)ξpdz ≤ εξp|Z| recall that h(z) ≤ 0.

Thus we obtain that
∫

Z
h(z)ξpdz = 0. But this is a contradiction. The same

holds when ξ < 0. So the claim is proved. Now, by mountain pass theorem we
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have that there exists x ∈ W 1,p(Z) such that

Φo(x; y − x) + ψ(y) − ψ(x) ≥ 0

for all y ∈ W 1,p(Z). Choose y = x+ tv with v ∈ K. Dividing by t > 0 we have
in the limit

∫

Z

F o(z, x(z); v(z))dz + 〈Ax, v〉 ≥ Φo(x; v) + 〈Ax, v〉 ≥ 0

for all v ∈ K. �X

Remark 1. Note that if K = W 1,p(Z) then from above we have that −Ax ∈
∂Φ(x) and the subdifferential is in the sense of Clarke.
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