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Two new conjectures concerning
positive Jacobi polynomials sums

Dimitar K. Dimitrov∗ & Clinton A. Merlo†

Universidade Estadual Paulista, Brasil

Abstract. A refinement of a conjecture of Gasper concerning the values of
(α, β), −1/2 < β < 0, −1 < α + β < 0, for which the inequalities

nX
k=0

P
(α,β)
k (x)/P

(β,α)
k (1) ≥ 0, −1 ≤ x ≤ 1, n = 1, 2, . . .

hold, is stated. An algorithm for checking the new conjecture using the package
Mathematica is provided. Numerical results in support of the conjecture are
given and a possible approach to its proof is sketched.
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1. Introduction

The Jacobi polynomials are defined in terms of the hypergeometric function
2F1 by

P (α,β)
n (x) =

(α + 1)n

n! 2F1(−n, n + α + β + 1; α + 1; (1− x) /2),
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where (a)k = Γ (a + k) /Γ (a) is the Pochhamer symbol and

2F1(a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k

zk

k!
.

Various special cases of the inequalities

S(α,β)
n (x) :=

n∑

k=0

P
(α,β)
k (x)/P (β,α)(1) ≥ 0, −1 ≤ x ≤ 1, n = 1, 2, . . . (1)

have been proved. Fejér [11, 12] was the first to establish inequalities of this
form for α = 1/2, β = −1/2 and for α = β = 0. Fejér conjectured that (1)
also hold for α = β = 1/2 and this was proved independently by Jackson [16]
and Gronwall [15]. Feldheim [13] proved (1) for α = β ≥ 0. Some special cases
of these inequalities were considered by Askey [1, 2] and Askey and Gasper
[4] proved (1) for β ≥ 0, α + β ≥ −2. The importance of the latter result is
justified by the fact that de Branges [7] used (1) for β = 0, α = 2, 4, 6, . . . , in
the final step of his proof of the celebrated Bieberbach conjecture. Gasper [14]
proved inequalities (1) for β ≥ −1/2, α + β ≥ 0.

Note that Bateman’s integral formula (Bateman [6])

P
(α−µ,β+µ)
n (x)

P
(β+µ,α−µ)
n (1)

=
Γ (β + µ + 1)
Γ (β + 1) Γ (µ)

∫ x

−1

P
(α,β)
n (t)

P
(β,α)
n (1)

(1 + t)β

(1 + x)β+µ
(x− t)µ−1

dt,

(2)

which holds for µ > 0, and β > −1, implies the following result.

Lemma 1. If the inequalities (1) holds for (α, β), they hold for (α− µ, β + µ),
µ > 0 as well. Hence, if (1) fail for some (α, β) they fail for (α + µ, β − µ) ,
µ > 0.

On the other hand S
(α,β)
1 (x) = (α + β + 2) (1 + x) / (2 (β + 1)) . Having in

mind these observations, the above mentioned results of Askey and Gasper [4]
and of Gasper [14] yield: Inequalities (1) hold for α ≤ 0, β ≥ max{0,−α− 2}
and α ≥ 0, β ≥ max{−1/2,−α} , and fail for β < max{−1/2,−α− 2}.

In 1993 Askey [3] drew attention to (1) for the rest of the (α, β)−plane,
namely, for (α, β) in the parallelogram D1 = {−1/2 ≤ β < 0, −2 ≤ α + β < 0} .
It was proved in [10] that (1) fail for x = 1 and for sufficiently large n, if
|α− 3/2| − 1/2 ≤ β < 0. The latter and Bateman’s integral (2) disprove in-
equalities (1) for the left hand half of D1 and n large enough. Thus the only
region in the (α, β)−plane for which inequalities (1) is still to be proved or
disproved is the parallelogram

D = {(α, β) : −1/2 < β < 0, −1 ≤ α + β < 0} .
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On the other hand, (1) hold for the upper boundary {β = 0, −1 ≤ α < 0} and
fail for the lower boundary{β = −1/2, −1/2 ≤ α < 1/2} of D. Hence, by Bate-
man’s integral, for any θ ∈ (−1, 0) there exists an (α′, β′) ∈ D with α′+β′ = θ
such that (1) hols for {α + β = θ, β ≥ β′} and fail for {α + β = θ, β < β′} .
The curve formed by the points (α′, β′) with this property will be denoted by
γ. Also, denote by Jα(x) the Bessel function of the first kind with parameter
α and let jα,2 be the second positive zero of Jα(x). The following conjecture is
due to Gasper [14, p. 444].

Conjecture 1. The subregion ∆ of D for which the inequalities (1) holds is
given by

∆ =
{

(α, β) ∈ D : β ≥ β (α) , where
∫ jα,2

0

t−β(α)Jα(t) dt = 0
}

. (3)

It may be pointed out that Gaspers’s conjecture is equivalent to the statement
that

γ =
{

(α, β (α)) ∈ D :
∫ jα,2

0

t−β(α)Jα(t) dt = 0
}

.

The conjecture is based on the well-known formula (see (1.8) in [3])

lim
n→∞

(
θ

n

)α−β+1 n∑

k=0

P
(α,β)
k (cos (θ/n))

P
(β,α)
k (1)

= 2αΓ (β + 1)
∫ θ

0

t−βJα (t) dt, β < α + 1,

and on the following theorem.

Theorem 1. Let −1 < α < 1/2 and β > −1/2. Then the inequality
∫ θ

0

t−βJα (t) dt ≥ 0

holds for any nonnegative θ if and only if
∫ jα,2

0

t−βJα (t) dt ≥ 0.

The proof of this theorem for α ∈ (−1,−1/2) is due to Askey and Steinig [5]
and the case α ∈ (−1/2, 1/2) was proved by Makai [17].

Very recently Brown, Koumandos and Wang [8, 9] verified Gasper’s conjec-
ture for the case when (α, β) lies on the lines α = β or α = −1/2.

The objective of the present paper is to state a slight refinement of Conjec-
ture 1 and to give numerical evidence of its truth.
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2. The new conjecture
For any positive integer n, set

∆n =
{

(α, β) ∈ D : S(α,β)
n (x) ≥ 0 for x ∈ [−1, 1]

}
.

Then Gasper’s conjecture can be formulated in the equivalent form
∞⋃

n=1

∆n = ∆,

where ∆ is defined by (3).
We state

Conjecture 2. For any positive integer n, ∆n+1 ⊂ ∆n.

Denote by γn the boundary of ∆n which passes through D:

γn =
{
(α, β) ∈ D : S

(α,β)
n (x) ≥ 0 for all x ∈ [−1, 1] and every (α, β)

with α + β = αn + βn, β ≥ βn, and for some x ∈ [−1, 1] , S
(α,β)
n (x) < 0

for (α, β) with α + β = αn + βn, β < βn

}
.

The curve γn is well defined because of Lemma 1.
An equivalent formulation of Conjecture 2 is that γn+1 lies above γn for any

positive integer n. The latter conjecture implies that of Gasper, because of (4)
and Theorem 1.

In the next section we give explicit expresions for ∆2 and ∆3 or, equivalently,
for γ2 and γ3. In Section 3 an algorithm to trace the curves γn is developed.
Tables for the curves γn for n = 4 and 5 are given and the graphs of γn for
n = 2, 3, 4, 5 are drawn. In Section 4 we discuss an idea of how Conjecture 2
might be proved.

3. The cases n = 2 and n = 3

In what follows we suppose that (α, β) ∈ D. First we consider the case n = 2.
Straightforward calculations show that

4 (β + 1) (β + 2) S
(α,β)
2 (x) = a2x

2 + 2a1x + a0,

where

a2 = (α + β + 3) (α + β + 4) ,

a1 = 2 (α + 2) (α + β + 3) + (α + β + 2) (β + 2)− (α + β + 3) (α + β + 4)

= (α + 1) (α + β + 4) ,

a0 = 2 (α + β + 2) (β + 2) + 4 (α + 1) (α + 2) + (α + β + 3) (α + β + 4)

− 4 (α + 2) (α + β + 3) = α2 + 3β2 + 3α + 7β + 4.
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Obviously S
(α,β)
2 (x) is convex and its minimum value is attained at xmin =

−a1/a2 = − (α + 1) / (α + β + 3). Observe that −1 < xmin < 0. Hence,
S

(α,β)
2 (x) ≥ 0 for x ∈ [−1, 1] if and only if it is non-negative for any real

x. Since its leading coefficient is positive, then S
(α,β)
2 (x) is non-negative if and

only if its discriminant

(α + 1)2 (α + β + 4)2 − (α + β + 3) (α + β + 4)
(
α2 + 3β2 + 3α + 7β + 4

)

is non-positive. Thus,

∆2 =

{
(α, β) ∈ D : β ≥ −3α− 10 +

√
9α2 + 36α + 52
6

}
.

The case n = 3 may be treated similarly because S
(α,β)
n (−1) = 0 for any odd

n. Set u = (x + 1)/2. Staightforward calculations show in fact that

S
(α,β)

3 (u) =
S

(α,β)
3 (x)

u
= b2u

2 − 2b1u + b0

where

b2 = (α + β + 4)(α + β + 5)(α + β + 6)/(β + 1)(β + 2)(β + 3),

b1 = (α + β + 4)(α + β + 6)/(β + 1)(β + 2),

b0 = 2(α + β + 4)/(β + 1),

and we have to characterize the values of (α, β) in D for which S
(α,β)

3 (u) ≥ 0
for each u ∈ [0, 1] . Since S

(α,β)

3 (u) attains its minimum at umin = b1/b2 =
(β + 3)/(α + β + 5) and umin ∈ [0, 1] , then S

(α,β)

3 (u) ≥ 0 for u ∈ [0, 1] and
those (α, β) for which the discriminant

(
(α + β + 4) (α + β + 6)

(β + 1)(β + 2)

)2

− 2
(α + β + 4)2(α + β + 5)(α + β + 6)

(β + 1)2(β + 2)(β + 3)

of S
(α,β)

3 (u) is non-negative. Therefore

∆3 =

{
(α, β) ∈ D : β ≥ −α− 5 +

√
α2 + 6α + 17
2

}
.
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4. An algorithm to find ∆n

The algorithm for tracing the curves γn is based on the following simple fact.

Lemma 2. If (αn,βn) ∈ γn, then there exists ξ ∈ (−1, 1) for which

S(αn,βn)
n (ξ) =

d

dx
S(αn,βn)

n (ξ) = 0.

Proof. Assume that for some (αn, βn) the polynomial S
(αn,βn)
n (x) is positive

at the points of local extrema in (−1, 1) . Then a continuity argument implies
that there exists a neighborhood U of (αn, βn) such that for every (α, β) in
U and for every x ∈ (−1, 1) the polynomial S

(α,β)
n (x) is positive. The latter

contradicts the definition of γn. ¤X
A well known necessary condition for a polynomial

p(x) =
n∑

ν=0

aνxn−ν

to have a double root is stated in the following lemma. We recall that the
discriminant D(p) of p is

D(p) = a2n−2
0

∏

1≤i<j≤n

(xi − xj)2,

where x1, . . . , xn are the roots (zeros) of p.

Lemma 3. The discriminant D(p) of the polynomial p can be represented as
a (2n− 1)× (2n− 1) determinant in the form

a0D(p)
(−1)n−1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an

na0 (n− 1) a1 · · · an−1

. . .
. . .

. . .
. . .

a0 a1 · · · an−1 an

na0 (n− 1) a1 · · · an−1

na0 (n− 1) a1 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Moreover, D(p) = 0 if and only if p(x) has at least one root of multiplicity at
least two.

We refer to [18, Section 1.3.3] and the references therein for the proof of this
lemma and for additional information about discriminants.

Lemmas 2 and 3 immidiately yield the following result.

Theorem 2. Let S
(α,β)
n (x) =

∑n
k=0 ak (αn, βn)xn−k. If (αn, βn) ∈ γn, then

D(αn, βn) := D
(
S(αn,βn)

n

)
= 0.
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The basic steps of the algorithm to construct an approximation to the curve
γn are:

1. Choose k ∈ N.
2. Divide the interval [−2, 1/2] into k subintervals by the mesh points α

(i)
n =

−2 + 2.5i/k, i = 0, k.

3. For any fixed α
(i)
n find all the solutions β

(i)
n,1, . . . , β

(i)
n,p ∈ (−1/2, 0) of the

equation D
(
α

(i)
n , β

)
= 0.

4. Find that s, 1 ≤ s ≤ p, for which

S
(α(i)

n ,β(i)
n,s)

n (x) ≥ 0 for x ∈ [−1, 1]

and

S
(α(i)

n ,β(i)
n,s)

n (ξ) =
d

dx
S

(α(i)
n ,β(i)

n,s)
n (ξ) = 0 for some ξ ∈ (−1, 1) .

5. Choose β
(i)
n = β

(i)
n,s.

6. Approximate the data
(
α

(i)
n , β

(i)
n

)
by a smooth curve.

Table 1 in the next page contains the results of the algorithm for n = 4
and n = 5, for k = 50. The values of β

(i)
4 and β

(i)
5 which correspond to

α
(i)
n = α(i) = −2 + 0.05i, i = 0, . . . , 50, are:

The graphs of the approximations to the curves γn for n = 2, 3, 4 and 5 are
drawn in Figure 1 at the end of the paper.

5. An idea for proving Conjecture 2

The graphs of the curves γ2, γ3, γ4 and γ5 show that Conjecture 2 holds for
n = 2, 3 and 4. It is clear that Conjecture 2 would be proved if one proves that
S

(α,β)
n is nonnegative on [−1,−1] for any (α, β) for which S

(α,β)
n+1 is nonnegative

there. Another possible idea to prove Conjecture 2 is to show that for any
(αn, βn) ∈ γn the inequality S

(αn,βn)
n+1 (x) ≥ 0 fails for some x ∈ [−1, 1] . It turns

out that for n = 2, 3 and 4 such x exists. Based on the graphs of S
(αn,βn)
n (x)

and S
(αn,βn)
n+1 (x) for various (αn, βn) ∈ γn we may state an additional conjecture

which implies the truth of Conjecture 2, and thus, of Conjecture 1.

Conjecture 3. Let (αn, βn) ∈ γn. Then there exists a unique ξn ∈ (−1, 1)
such that

S(αn,βn)
n (ξn) =

d

dx
S(αn,βn)

n (ξn) = 0.
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i α(i) β
(i)
4 β

(i)
5 i α(i) β

(i)
4 β

(i)
5

0 −2.00 0 0

1 −1.95 −0.0124665 −0.0100482 26 −0.70 −0.29347 −0.271235

2 −1.90 −0.0248627 −0.020186 27 −0.65 −0.303304 −0.281463

3 −1.85 −0.0371837 −0.0304035 28 −0.60 −0.313026 −0.291642

4 −1.80 −0.0494251 −0.0406914 29 −0.55 −0.322637 −0.30177

5 −1.75 −0.0615829 −0.051041 30 −0.50 −0.332137 −0.311845

6 −1.70 −0.0736534 −0.0614439 31 −0.45 −0.341526 −0.321856

7 −1.65 −0.0856334 −0.0718924 32 −0.40 −0.350807 −0.331828

8 −1.60 −0.0975197 −0.0823791 33 −0.35 −0.359997 −0.341732

9 −1.55 −0.10931 −0.0928969 34 −0.30 −0.36904 −0.351576

10 −1.50 −0.121001 −0.103439 35 −0.25 −0.377995 −0.361359

11 −1.45 −0.132592 −0.1114 36 −0.20 −0.386843 −0.371079

12 −1.40 −0.144079 −0.124573 37 −0.15 −0.395585 −0.380734

13 −1.35 −0.155462 −0.135135 38 −0.10 −0.404222 −0.390324

14 −1.30 −0.166739 −0.145734 39 −0.05 −0.412754 −0.399847

15 −1.25 −0.177909 −0.156312 40 0.00 −0.421183 −0.409303

16 −1.20 −0.18897 −0.166881 41 0.05 −0.429509 −0.418691

17 −1.15 −0.199922 −0.177438 42 0.10 −0.437734 −0.428009

18 −1.10 −0.210763 −0.110763 43 0.15 −0.445858 −0.437258

19 −1.05 −0.221493 −0.198469 44 0.20 −0.453883 −0.446436

20 −1.00 −0.232112 −0.208989 45 0.25 −0.46181 −0.455544

21 −0.95 −0.242619 −0.219454 46 0.30 −0.469638 −0.464579

22 −0.90 −0.253014 −0.229886 47 0.35 −0.477371 −0.473543

23 −0.85 −0.263296 −0.240284 48 0.40 −0.485008 −0.482435

24 −0.80 −0.273467 −0.250643 49 0.45 −0.49225 −0.491254

25 −0.75 −0.283524 −0.260961 50 0.50 −0.5 −0.5

Table 1. The curves γ4 and γ5

Moreover, there exist η′n and η′′n with −1 < ξn < η′n < η
′′
n < 1 such that

S
(αn,βn)
n+1 (x) < 0 for x ∈ (η′n, η′′n).
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Finally, we recall that Askey [3] conjectured that β(α) defined by (3) is a
convex function, which is equivalent to assert that the curve γ is convex. It
seems that every γn is a convex curve. If so, obviously γ would also be convex.

Figure 1. The curves γ2, γ3, γ4 and γ5.
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