Two new conjectures concerning positive Jacobi polynomials sums

Dimitar K. Dimitrov* \& Clinton A. Merlo ${ }^{\dagger}$
Universidade Estadual Paulista, Brasil

Abstract. A refinement of a conjecture of Gasper concerning the values of $(\alpha, \beta),-1 / 2<\beta<0,-1<\alpha+\beta<0$, for which the inequalities

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, \beta)}(x) / P_{k}^{(\beta, \alpha)}(1) \geq 0, \quad-1 \leq x \leq 1, \quad n=1,2, \ldots
$$

hold, is stated. An algorithm for checking the new conjecture using the package Mathematica is provided. Numerical results in support of the conjecture are given and a possible approach to its proof is sketched.
Keywords and phrases. Jacobi polynomials, positive sums, Bessel functions, discriminant of a polynomial.
1991 Mathematics Subject Classification. Primary 33C45.

1. Introduction

The Jacobi polynomials are defined in terms of the hypergeometric function ${ }_{2} F_{1}$ by

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{2} F_{1}(-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2)
$$

[^0]where $(a)_{k}=\Gamma(a+k) / \Gamma(a)$ is the Pochhamer symbol and
$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!} .
$$

Various special cases of the inequalities

$$
\begin{equation*}
S_{n}^{(\alpha, \beta)}(x):=\sum_{k=0}^{n} P_{k}^{(\alpha, \beta)}(x) / P^{(\beta, \alpha)}(1) \geq 0,-1 \leq x \leq 1, n=1,2, \ldots \tag{1}
\end{equation*}
$$

have been proved. Fejér [11, 12] was the first to establish inequalities of this form for $\alpha=1 / 2, \beta=-1 / 2$ and for $\alpha=\beta=0$. Fejér conjectured that (1) also hold for $\alpha=\beta=1 / 2$ and this was proved independently by Jackson [16] and Gronwall [15]. Feldheim [13] proved (1) for $\alpha=\beta \geq 0$. Some special cases of these inequalities were considered by Askey [1, 2] and Askey and Gasper [4] proved (1) for $\beta \geq 0, \alpha+\beta \geq-2$. The importance of the latter result is justified by the fact that de Branges [7] used (1) for $\beta=0, \alpha=2,4,6, \ldots$, in the final step of his proof of the celebrated Bieberbach conjecture. Gasper [14] proved inequalities (1) for $\beta \geq-1 / 2, \alpha+\beta \geq 0$.

Note that Bateman's integral formula (Bateman [6])

$$
\begin{equation*}
\frac{P_{n}^{(\alpha-\mu, \beta+\mu)}(x)}{P_{n}^{(\beta+\mu, \alpha-\mu)}(1)}=\frac{\Gamma(\beta+\mu+1)}{\Gamma(\beta+1) \Gamma(\mu)} \int_{-1}^{x} \frac{P_{n}^{(\alpha, \beta)}(t)}{P_{n}^{(\beta, \alpha)}(1)} \frac{(1+t)^{\beta}}{(1+x)^{\beta+\mu}}(x-t)^{\mu-1} d t \tag{2}
\end{equation*}
$$

which holds for $\mu>0$, and $\beta>-1$, implies the following result.
Lemma 1. If the inequalities (1) holds for (α, β), they hold for $(\alpha-\mu, \beta+\mu)$, $\mu>0$ as well. Hence, if (1) fail for some (α, β) they fail for $(\alpha+\mu, \beta-\mu)$, $\mu>0$.

On the other hand $S_{1}^{(\alpha, \beta)}(x)=(\alpha+\beta+2)(1+x) /(2(\beta+1))$. Having in mind these observations, the above mentioned results of Askey and Gasper [4] and of Gasper [14] yield: Inequalities (1) hold for $\alpha \leq 0, \beta \geq \max \{0,-\alpha-2\}$ and $\alpha \geq 0, \beta \geq \max \{-1 / 2,-\alpha\}$, and fail for $\beta<\max \{-1 / 2,-\alpha-2\}$.

In 1993 Askey [3] drew attention to (1) for the rest of the (α, β)-plane, namely, for (α, β) in the parallelogram $D_{1}=\{-1 / 2 \leq \beta<0,-2 \leq \alpha+\beta<0\}$. It was proved in [10] that (1) fail for $x=1$ and for sufficiently large n, if $|\alpha-3 / 2|-1 / 2 \leq \beta<0$. The latter and Bateman's integral (2) disprove inequalities (1) for the left hand half of D_{1} and n large enough. Thus the only region in the (α, β)-plane for which inequalities (1) is still to be proved or disproved is the parallelogram

$$
D=\{(\alpha, \beta):-1 / 2<\beta<0,-1 \leq \alpha+\beta<0\}
$$

On the other hand, (1) hold for the upper boundary $\{\beta=0,-1 \leq \alpha<0\}$ and fail for the lower boundary $\{\beta=-1 / 2,-1 / 2 \leq \alpha<1 / 2\}$ of D. Hence, by Bateman's integral, for any $\theta \in(-1,0)$ there exists an $\left(\alpha^{\prime}, \beta^{\prime}\right) \in D$ with $\alpha^{\prime}+\beta^{\prime}=\theta$ such that (1) hols for $\left\{\alpha+\beta=\theta, \beta \geq \beta^{\prime}\right\}$ and fail for $\left\{\alpha+\beta=\theta, \beta<\beta^{\prime}\right\}$. The curve formed by the points $\left(\alpha^{\prime}, \beta^{\prime}\right)$ with this property will be denoted by γ. Also, denote by $J_{\alpha}(x)$ the Bessel function of the first kind with parameter α and let $j_{\alpha, 2}$ be the second positive zero of $J_{\alpha}(x)$. The following conjecture is due to Gasper [14, p. 444].
Conjecture 1. The subregion Δ of D for which the inequalities (1) holds is given by

$$
\begin{equation*}
\Delta=\left\{(\alpha, \beta) \in D: \beta \geq \beta(\alpha), \text { where } \int_{0}^{j_{\alpha, 2}} t^{-\beta(\alpha)} J_{\alpha}(t) d t=0\right\} \tag{3}
\end{equation*}
$$

It may be pointed out that Gaspers's conjecture is equivalent to the statement that

$$
\gamma=\left\{(\alpha, \beta(\alpha)) \in D: \int_{0}^{j_{\alpha, 2}} t^{-\beta(\alpha)} J_{\alpha}(t) d t=0\right\}
$$

The conjecture is based on the well-known formula (see (1.8) in [3])

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{\theta}{n}\right)^{\alpha-\beta+1} \sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(\cos (\theta / n))}{P_{k}^{(\beta, \alpha)}(1)} \\
& \quad=2^{\alpha} \Gamma(\beta+1) \int_{0}^{\theta} t^{-\beta} J_{\alpha}(t) d t, \quad \beta<\alpha+1
\end{aligned}
$$

and on the following theorem.
Theorem 1. Let $-1<\alpha<1 / 2$ and $\beta>-1 / 2$. Then the inequality

$$
\int_{0}^{\theta} t^{-\beta} J_{\alpha}(t) d t \geq 0
$$

holds for any nonnegative θ if and only if

$$
\int_{0}^{j_{\alpha, 2}} t^{-\beta} J_{\alpha}(t) d t \geq 0
$$

The proof of this theorem for $\alpha \in(-1,-1 / 2)$ is due to Askey and Steinig [5] and the case $\alpha \in(-1 / 2,1 / 2)$ was proved by Makai [17].

Very recently Brown, Koumandos and Wang [8, 9] verified Gasper's conjecture for the case when (α, β) lies on the lines $\alpha=\beta$ or $\alpha=-1 / 2$.

The objective of the present paper is to state a slight refinement of Conjecture 1 and to give numerical evidence of its truth.

2. The new conjecture

For any positive integer n, set

$$
\Delta_{n}=\left\{(\alpha, \beta) \in D: S_{n}^{(\alpha, \beta)}(x) \geq 0 \text { for } x \in[-1,1]\right\}
$$

Then Gasper's conjecture can be formulated in the equivalent form

$$
\bigcup_{n=1}^{\infty} \Delta_{n}=\Delta
$$

where Δ is defined by (3).
We state
Conjecture 2. For any positive integer $n, \Delta_{n+1} \subset \Delta_{n}$.
Denote by γ_{n} the boundary of Δ_{n} which passes through D :
$\gamma_{n}=\left\{(\alpha, \beta) \in D: S_{n}^{(\alpha, \beta)}(x) \geq 0\right.$ for all $x \in[-1,1]$ and every (α, β) with $\alpha+\beta=\alpha_{n}+\beta_{n}, \beta \geq \beta_{n}$, and for some $x \in[-1,1], S_{n}^{(\alpha, \beta)}(x)<0$ for (α, β) with $\left.\alpha+\beta=\alpha_{n}+\beta_{n}, \beta<\beta_{n}\right\}$.
The curve γ_{n} is well defined because of Lemma 1.
An equivalent formulation of Conjecture 2 is that γ_{n+1} lies above γ_{n} for any positive integer n. The latter conjecture implies that of Gasper, because of (4) and Theorem 1.

In the next section we give explicit expresions for Δ_{2} and Δ_{3} or, equivalently, for γ_{2} and γ_{3}. In Section 3 an algorithm to trace the curves γ_{n} is developed. Tables for the curves γ_{n} for $n=4$ and 5 are given and the graphs of γ_{n} for $n=2,3,4,5$ are drawn. In Section 4 we discuss an idea of how Conjecture 2 might be proved.

3. The cases $n=2$ and $n=3$

In what follows we suppose that $(\alpha, \beta) \in D$. First we consider the case $n=2$. Straightforward calculations show that

$$
4(\beta+1)(\beta+2) S_{2}^{(\alpha, \beta)}(x)=a_{2} x^{2}+2 a_{1} x+a_{0}
$$

where

$$
\begin{aligned}
a_{2}= & (\alpha+\beta+3)(\alpha+\beta+4), \\
a_{1}= & 2(\alpha+2)(\alpha+\beta+3)+(\alpha+\beta+2)(\beta+2)-(\alpha+\beta+3)(\alpha+\beta+4) \\
= & (\alpha+1)(\alpha+\beta+4), \\
a_{0}= & 2(\alpha+\beta+2)(\beta+2)+4(\alpha+1)(\alpha+2)+(\alpha+\beta+3)(\alpha+\beta+4) \\
& -4(\alpha+2)(\alpha+\beta+3)=\alpha^{2}+3 \beta^{2}+3 \alpha+7 \beta+4 .
\end{aligned}
$$

Obviously $S_{2}^{(\alpha, \beta)}(x)$ is convex and its minimum value is attained at $x_{\min }=$ $-a_{1} / a_{2}=-(\alpha+1) /(\alpha+\beta+3)$. Observe that $-1<x_{\min }<0$. Hence, $S_{2}^{(\alpha, \beta)}(x) \geq 0$ for $x \in[-1,1]$ if and only if it is non-negative for any real x. Since its leading coefficient is positive, then $S_{2}^{(\alpha, \beta)}(x)$ is non-negative if and only if its discriminant

$$
(\alpha+1)^{2}(\alpha+\beta+4)^{2}-(\alpha+\beta+3)(\alpha+\beta+4)\left(\alpha^{2}+3 \beta^{2}+3 \alpha+7 \beta+4\right)
$$

is non-positive. Thus,

$$
\Delta_{2}=\left\{(\alpha, \beta) \in D: \beta \geq \frac{-3 \alpha-10+\sqrt{9 \alpha^{2}+36 \alpha+52}}{6}\right\}
$$

The case $n=3$ may be treated similarly because $S_{n}^{(\alpha, \beta)}(-1)=0$ for any odd n. Set $u=(x+1) / 2$. Staightforward calculations show in fact that

$$
\bar{S}_{3}^{(\alpha, \beta)}(u)=\frac{S_{3}^{(\alpha, \beta)}(x)}{u}=b_{2} u^{2}-2 b_{1} u+b_{0}
$$

where

$$
\begin{aligned}
& b_{2}=(\alpha+\beta+4)(\alpha+\beta+5)(\alpha+\beta+6) /(\beta+1)(\beta+2)(\beta+3), \\
& b_{1}=(\alpha+\beta+4)(\alpha+\beta+6) /(\beta+1)(\beta+2) \\
& b_{0}=2(\alpha+\beta+4) /(\beta+1)
\end{aligned}
$$

and we have to characterize the values of (α, β) in D for which $\bar{S}_{3}^{(\alpha, \beta)}(u) \geq 0$ for each $u \in[0,1]$. Since $\bar{S}_{3}^{(\alpha, \beta)}(u)$ attains its minimum at $u_{\text {min }}=b_{1} / b_{2}=$ $(\beta+3) /(\alpha+\beta+5)$ and $u_{\text {min }} \in[0,1]$, then $\bar{S}_{3}^{(\alpha, \beta)}(u) \geq 0$ for $u \in[0,1]$ and those (α, β) for which the discriminant

$$
\left(\frac{(\alpha+\beta+4)(\alpha+\beta+6)}{(\beta+1)(\beta+2)}\right)^{2}-2 \frac{(\alpha+\beta+4)^{2}(\alpha+\beta+5)(\alpha+\beta+6)}{(\beta+1)^{2}(\beta+2)(\beta+3)}
$$

of $\bar{S}_{3}^{(\alpha, \beta)}(u)$ is non-negative. Therefore

$$
\Delta_{3}=\left\{(\alpha, \beta) \in D: \beta \geq \frac{-\alpha-5+\sqrt{\alpha^{2}+6 \alpha+17}}{2}\right\}
$$

4. An algorithm to find Δ_{n}

The algorithm for tracing the curves γ_{n} is based on the following simple fact.
Lemma 2. If $\left(\alpha_{n}, \beta_{n}\right) \in \gamma_{n}$, then there exists $\xi \in(-1,1)$ for which

$$
S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(\xi)=\frac{d}{d x} S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(\xi)=0 .
$$

Proof. Assume that for some $\left(\alpha_{n}, \beta_{n}\right)$ the polynomial $S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(x)$ is positive at the points of local extrema in $(-1,1)$. Then a continuity argument implies that there exists a neighborhood U of $\left(\alpha_{n}, \beta_{n}\right)$ such that for every (α, β) in U and for every $x \in(-1,1)$ the polynomial $S_{n}^{(\alpha, \beta)}(x)$ is positive. The latter contradicts the definition of γ_{n}. $\quad \square$

A well known necessary condition for a polynomial

$$
p(x)=\sum_{\nu=0}^{n} a_{\nu} x^{n-\nu}
$$

to have a double root is stated in the following lemma. We recall that the discriminant $D(p)$ of p is

$$
D(p)=a_{0}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2},
$$

where x_{1}, \ldots, x_{n} are the roots (zeros) of p.
Lemma 3. The discriminant $D(p)$ of the polynomial p can be represented as a $(2 n-1) \times(2 n-1)$ determinant in the form

$$
\frac{a_{0} D(p)}{(-1)^{n-1}}=\left|\begin{array}{ccccccc}
a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} & & \\
n a_{0} & (n-1) a_{1} & \cdots & a_{n-1} & & & \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} \\
& & n a_{0} & (n-1) a_{1} & \cdots & a_{n-1} & \\
& & & n a_{0} & (n-1) a_{1} & \cdots & a_{n-1}
\end{array}\right|
$$

Moreover, $D(p)=0$ if and only if $p(x)$ has at least one root of multiplicity at least two.

We refer to [18, Section 1.3.3] and the references therein for the proof of this lemma and for additional information about discriminants.

Lemmas 2 and 3 immidiately yield the following result.
Theorem 2. Let $S_{n}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n} a_{k}\left(\alpha_{n}, \beta_{n}\right) x^{n-k}$. If $\left(\alpha_{n}, \beta_{n}\right) \in \gamma_{n}$, then

$$
D\left(\alpha_{n}, \beta_{n}\right):=D\left(S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}\right)=0 .
$$

The basic steps of the algorithm to construct an approximation to the curve γ_{n} are:

1. Choose $k \in \mathbb{N}$.
2. Divide the interval $[-2,1 / 2]$ into k subintervals by the mesh points $\alpha_{n}^{(i)}=$ $-2+2.5 i / k, i=0, k$.
3. For any fixed $\alpha_{n}^{(i)}$ find all the solutions $\beta_{n, 1}^{(i)}, \ldots, \beta_{n, p}^{(i)} \in(-1 / 2,0)$ of the equation $D\left(\alpha_{n}^{(i)}, \beta\right)=0$.
4. Find that $s, 1 \leq s \leq p$, for which

$$
S_{n}^{\left(\alpha_{n}^{(i)}, \beta_{n, s}^{(i)}\right)}(x) \geq 0 \text { for } x \in[-1,1]
$$

and

$$
S_{n}^{\left(\alpha_{n}^{(i)}, \beta_{n, s}^{(i)}\right)}(\xi)=\frac{d}{d x} S_{n}^{\left(\alpha_{n}^{(i)}, \beta_{n, s}^{(i)}\right)}(\xi)=0 \text { for some } \xi \in(-1,1)
$$

5. Choose $\beta_{n}^{(i)}=\beta_{n, s}^{(i)}$.
6. Approximate the data $\left(\alpha_{n}^{(i)}, \beta_{n}^{(i)}\right)$ by a smooth curve.

Table 1 in the next page contains the results of the algorithm for $n=4$ and $n=5$, for $k=50$. The values of $\beta_{4}^{(i)}$ and $\beta_{5}^{(i)}$ which correspond to $\alpha_{n}^{(i)}=\alpha^{(i)}=-2+0.05 i, i=0, \ldots, 50$, are:

The graphs of the approximations to the curves γ_{n} for $n=2,3,4$ and 5 are drawn in Figure 1 at the end of the paper.

5. An idea for proving Conjecture 2

The graphs of the curves $\gamma_{2}, \gamma_{3}, \gamma_{4}$ and γ_{5} show that Conjecture 2 holds for $n=2,3$ and 4 . It is clear that Conjecture 2 would be proved if one proves that $S_{n}^{(\alpha, \beta)}$ is nonnegative on $[-1,-1]$ for any (α, β) for which $S_{n+1}^{(\alpha, \beta)}$ is nonnegative there. Another possible idea to prove Conjecture 2 is to show that for any $\left(\alpha_{n}, \beta_{n}\right) \in \gamma_{n}$ the inequality $S_{n+1}^{\left(\alpha_{n}, \beta_{n}\right)}(x) \geq 0$ fails for some $x \in[-1,1]$. It turns out that for $n=2,3$ and 4 such x exists. Based on the graphs of $S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(x)$ and $S_{n+1}^{\left(\alpha_{n}, \beta_{n}\right)}(x)$ for various $\left(\alpha_{n}, \beta_{n}\right) \in \gamma_{n}$ we may state an additional conjecture which implies the truth of Conjecture 2, and thus, of Conjecture 1.
Conjecture 3. Let $\left(\alpha_{n}, \beta_{n}\right) \in \gamma_{n}$. Then there exists a unique $\xi_{n} \in(-1,1)$ such that

$$
S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}\left(\xi_{n}\right)=\frac{d}{d x} S_{n}^{\left(\alpha_{n}, \beta_{n}\right)}\left(\xi_{n}\right)=0
$$

i	$\alpha^{(i)}$	$\beta_{4}^{(i)}$	$\beta_{5}^{(i)}$	i	$\alpha^{(i)}$	$\beta_{4}^{(i)}$	$\beta_{5}^{(i)}$
0	-2.00	0	0				
1	-1.95	-0.0124665	-0.0100482	26	-0.70	-0.29347	-0.271235
2	-1.90	-0.0248627	-0.020186	27	-0.65	-0.303304	-0.281463
3	-1.85	-0.0371837	-0.0304035	28	-0.60	-0.313026	-0.291642
4	-1.80	-0.0494251	-0.0406914	29	-0.55	-0.322637	-0.30177
5	-1.75	-0.0615829	-0.051041	30	-0.50	-0.332137	-0.311845
6	-1.70	-0.0736534	-0.0614439	31	-0.45	-0.341526	-0.321856
7	-1.65	-0.0856334	-0.0718924	32	-0.40	-0.350807	-0.331828
8	-1.60	-0.0975197	-0.0823791	33	-0.35	-0.359997	-0.341732
9	-1.55	-0.10931	-0.0928969	34	-0.30	-0.36904	-0.351576
10	-1.50	-0.121001	-0.103439	35	-0.25	-0.377995	-0.361359
11	-1.45	-0.132592	-0.1114	36	-0.20	-0.386843	-0.371079
12	-1.40	-0.144079	-0.124573	37	-0.15	-0.395585	-0.380734
13	-1.35	-0.155462	-0.135135	38	-0.10	-0.404222	-0.390324
14	-1.30	-0.166739	-0.145734	39	-0.05	-0.412754	-0.399847
15	-1.25	-0.177909	-0.156312	40	0.00	-0.421183	-0.409303
16	-1.20	-0.18897	-0.166881	41	0.05	-0.429509	-0.418691
17	-1.15	-0.199922	-0.177438	42	0.10	-0.437734	-0.428009
18	-1.10	-0.210763	-0.110763	43	0.15	-0.445858	-0.437258
19	-1.05	-0.221493	-0.198469	44	0.20	-0.453883	-0.446436
20	-1.00	-0.232112	-0.208989	45	0.25	-0.46181	-0.455544
21	-0.95	-0.242619	-0.219454	46	0.30	-0.469638	-0.464579
22	-0.90	-0.253014	-0.229886	47	0.35	-0.477371	-0.473543
23	-0.85	-0.263296	-0.240284	48	0.40	-0.485008	-0.482435
24	-0.80	-0.273467	-0.250643	49	0.45	-0.49225	-0.491254
25	-0.75	-0.283524	-0.260961	50	0.50	-0.5	-0.5

TABLE 1. The curves γ_{4} and γ_{5}
Moreover, there exist η_{n}^{\prime} and $\eta_{n}^{\prime \prime}$ with $-1<\xi_{n}<\eta_{n}^{\prime}<\eta_{n}^{\prime \prime}<1$ such that

$$
S_{n+1}^{\left(\alpha_{n}, \beta_{n}\right)}(x)<0 \quad \text { for } x \in\left(\eta_{n}^{\prime}, \eta_{n}^{\prime \prime}\right)
$$

Finally, we recall that Askey [3] conjectured that $\beta(\alpha)$ defined by (3) is a convex function, which is equivalent to assert that the curve γ is convex. It seems that every γ_{n} is a convex curve. If so, obviously γ would also be convex.

Figure 1. The curves $\gamma_{2}, \gamma_{3}, \gamma_{4}$ and γ_{5}.

References

[1] R. Askey, Jacobi polinomial sums, Tôhoku Math. J. 24 (1972), 109-119.
[2] R. Askey, Orthogonal polynomials and special functions, Regional Conf. Lect Appl. Math. 48, SIAM, Philadelphia, 1975.
[3] R. Askey, Problems which interest and/or annoy me, J. Comp. Appl. Math. 48 (1993), 3-15.
[4] R. Askey and G. Gasper, Positive Jacobi polynomial sums, II, Amer. J. Math. 98 (1976), 709-737.
[5] R. Askey and Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307.
[6] H. Bateman, The solution of linear differential equations by means of definite integrals, Trans. Camb. Phil. Soc. 21 (1909), 171-196.
[7] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
[8] G. Brown, S. Koumandos and K. Y. Wang, Positivity of more Jacobi polynomial sums, Math. Proc. Camb. Phil. Soc. 119 (1996), 681-694.
[9] G. Brown, S. Koumandos and K. Y. Wang, Positivity of basic sums of ultraspherical polynomials, (submitted).
[10] D. K. Dimitrov and G. M. Phillips, A note on convergence of Newton interpolating polynomials, J. Comp. Appl. Math. 51 (1994), 127-130; Erratum 51 (1994), 411.
[11] L. Fejer, Sur les functions bornée et integrables, C. R. Acad. Sci. Paris 131 (1900), 984-987.
[12] L. Fejer, Sur le développement d'une function arbitraire suivant les functions de Laplace, C. R. Acad. Sci. Paris 146 (1908), 224-227.
[13] E. Feldheim, On the positivity of certain sums of ultraspherical polynomials, J. Analyse Math. 11 (1963), 275-284.
[14] G. Gasper, Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. 8 (1977), 423-447.
[15] T. H. Gronwall, Über die Gibbssche Erscheinung und die trigonometrischen Summen $\sin x+\frac{1}{2} \sin 2 x+\cdots+\frac{1}{n} \sin n x$, Math. Ann. 72 (1912), 228-243.
[16] D. Jackson, Über eine trigonometrische Summe, Rend. Circ. Mat. Palermo 32 (1911), 257-262.
[17] E. Makai, An integral inequality satisfied by Bessel functions, Acta Math. Acad. Sci. Hungar. 25 (1974), 387-380.
[18] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore 1994.
(Recibido en febrero de 1998; revisado por los autores en septiembre de 1998)

Departamento de Ciências; Computaçao; Estatística, IBILCE
Universidade Estadual Paulista
15054-000 São José do Rio Preto, SP, Brasil
dimitrov@nimitz.dcce.ibilce.unesp.br
merlo@nimitz.dcce.ibilce.unesp.br

[^0]: *Research supported by Brazilian Science Fundation CNPq under Grant 300645/95-3.
 ${ }^{\dagger}$ Research supported by a fellowship of the Brazilian Science Fundation CAPES.

