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Two new conjectures concerning
positive Jacobi polynomials sums
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ABsTrACT. A refinement of a conjecture of Gasper concerning the values of
(o, ), =1/2 < B <0, —1 < a+ (B <0, for which the inequalities

SR @)/PP Y1) >0, —1<z<1, n=12,...
k=0

hold, is stated. An algorithm for checking the new conjecture using the package
Mathematica is provided. Numerical results in support of the conjecture are
given and a possible approach to its proof is sketched.
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1. Introduction

The Jacobi polynomials are defined in terms of the hypergeometric function
2F1 by

a+1
(ni,)”zFl(—n,HwM La+l; (1-2)/2),

P (@) =
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where (a), =T (a+ k) /T (a) is the Pochhamer symbol and

oF1(a,b;¢;2) = iMﬁ

z
=0 ©) K
Various special cases of the inequalities
SEM (@) =3 P (@) /PPN (1) >0, -1<a<L,n=1,2,... (1)
k=0

have been proved. Fejér [11, 12] was the first to establish inequalities of this
form for @ = 1/2, § = —1/2 and for o« = = 0. Fejér conjectured that (1)
also hold for & = 8 = 1/2 and this was proved independently by Jackson [16]
and Gronwall [15]. Feldheim [13] proved (1) for o = 8 > 0. Some special cases
of these inequalities were considered by Askey [1, 2] and Askey and Gasper
[4] proved (1) for 8 > 0, « + f > —2. The importance of the latter result is
justified by the fact that de Branges [7] used (1) for 8 =0, a = 2,4,6,... , in
the final step of his proof of the celebrated Bieberbach conjecture. Gasper [14]
proved inequalities (1) for 8 > —1/2, a + 3 > 0.

Note that Bateman’s integral formula (Bateman [6])

P () T (B4t 1) / Pty (1+1)
prreesmqy TE+DT () o1 pP (1) 1 +2)7H

(z —t)" " dt,
(2)

which holds for 4 > 0, and § > —1, implies the following result.

Lemma 1. If the inequalities (1) holds for («, 3), they hold for (o — p, 8 + ),
w > 0 as well. Hence, if (1) fail for some («, 3) they fail for (o + p, 3 —p),
w> 0.

On the other hand SYLB) () =(a+p+2)(1+2)/(2(8+1)). Having in
mind these observations, the above mentioned results of Askey and Gasper [4]
and of Gasper [14] yield: Inequalities (1) hold for a < 0, f > max{0, —a — 2}
and a > 0, 8 > max{—1/2, —a}, and fail for 8 < max{—1/2, —a — 2}.

In 1993 Askey [3] drew attention to (1) for the rest of the (a, 3) —plane,
namely, for (o, ) in the parallelogram Dy = {-1/2< <0, -2 < a+ 3 < 0}.
It was proved in [10] that (1) fail for x = 1 and for sufficiently large n, if
oo —3/2] —1/2 < B < 0. The latter and Bateman’s integral (2) disprove in-
equalities (1) for the left hand half of D; and n large enough. Thus the only
region in the (o, 3) —plane for which inequalities (1) is still to be proved or
disproved is the parallelogram

D={(a,): -1/2< <0, -1 <+ <0}.
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On the other hand, (1) hold for the upper boundary {5 =0, —1 < o < 0} and
fail for the lower boundary{8 = —1/2, —1/2 < o < 1/2} of D. Hence, by Bate-
man’s integral, for any 6 € (—1,0) there exists an (o/,3') € D witha'+3 =6
such that (1) hols for {a+3=6, 3> ('} and fail for {a+8=10, 3<('}.
The curve formed by the points (o, ") with this property will be denoted by
. Also, denote by J, () the Bessel function of the first kind with parameter
a and let j, 2 be the second positive zero of J,(x). The following conjecture is
due to Gasper [14, p. 444].

Conjecture 1. The subregion A of D for which the inequalities (1) holds is
given by

A= {(a,ﬁ) €D: B >0 (a), where /ij2 t=P@) g (t) dt = O} .3

It may be pointed out that Gaspers’s conjecture is equivalent to the statement
that

Jo,2
N = {(a,ﬂ(a)) eD: / t=P@ g, (t) dt = o} .
0
The conjecture is based on the well-known formula (see (1.8) in [3])

(e)“ﬁ“ " PP (cos (6/n))

lim (| —
= P )

n—oo

n

0
:2“P(ﬂ+1)/0 tPJ, () dt, B<a+]l,

and on the following theorem.

Theorem 1. Let —1 < aw < 1/2 and 8 > —1/2. Then the inequality

6
/ t=PJ, (t)dt >0
0

holds for any nonnegative 6 if and only if

.jcx,2
/ t=PJ, (t)dt > 0.
0

The proof of this theorem for a € (—1,—1/2) is due to Askey and Steinig [5]
and the case a € (—1/2,1/2) was proved by Makai [17].

Very recently Brown, Koumandos and Wang [8, 9] verified Gasper’s conjec-
ture for the case when (a, 3) lies on the lines a = 8 or a« = —1/2.

The objective of the present paper is to state a slight refinement of Conjec-
ture 1 and to give numerical evidence of its truth.
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2. The new conjecture
For any positive integer n, set
A, = {(a,ﬂ) € D: S (x)>0for x e [-1, 1]} .
Then Gasper’s conjecture can be formulated in the equivalent form

GAn:A,

n=1

where A is defined by (3).
We state

Conjecture 2. For any positive integer n, A, 11 C A,.

Denote by 7, the boundary of A, which passes through D:

Y = {(o,8) € D : s () > 0 for all z € [—1,1] and every (o, )
with a + 8 = a,, + Bn, B > B, and for some = € [—1,1], S,(La’ﬁ) () <0

for (o, B) with a+ =y + B, B < ﬁn}.

The curve 7, is well defined because of Lemma 1.

An equivalent formulation of Conjecture 2 is that ~y, 11 lies above =, for any
positive integer n. The latter conjecture implies that of Gasper, because of (4)

and Theorem 1.

In the next section we give explicit expresions for As and Az or, equivalently,
for 72 and 3. In Section 3 an algorithm to trace the curves ~, is developed.
Tables for the curves =, for n = 4 and 5 are given and the graphs of ~, for
n = 2,3,4,5 are drawn. In Section 4 we discuss an idea of how Conjecture 2

might be proved.

3. The cases n =2 and n =3

In what follows we suppose that («, 3) € D. First we consider the case n = 2.

Straightforward calculations show that
4(B+1)(B+2) Séa’ﬁ) (z) = aga® + 2a12 + ag,
where

as=(a+p+3)(a+3+4),

a1 =2(a+2)(a+B+3)+(a++2)(B+2)—(a+B+3)(a+p+4)

=(a+1)(a+B+4),

ap=2(a+B8+2)(B+2)+4(a+1)(a+2)+(a+F+3)(a+3+4)

—4(a+2)(a+B+3)=a’>+36°+3a+T73+4.
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Obviously Séa”g ) (x) is convex and its minimum value is attained at Zmi, =
—aifas = —(a+1)/(a+8+3). Observe that —1 < oy, < 0. Hence,
Séa’ﬁ) () > 0 for z € [—1,1] if and only if it is non-negative for any real
x. Since its leading coefficient is positive, then Séa’ﬁ ) (z) is non-negative if and
only if its discriminant

(@a+1)*(a+p+4)° —(a+B+3)(a+B+4)(a®+368%+3a+T75+4)

is non-positive. Thus,

_ _ 2
AQ{(a’meD:ﬂZ 30 10+\/2a +36a 52|

The case n = 3 may be treated similarly because SR (=1) = 0 for any odd
n. Set u = (x + 1)/2. Staightforward calculations show in fact that

S5 ()

u

géa’ﬂ) (u) = = byu? — 2byu + by

where

by = (a+ B+4)(a+B+5)(a+B4+6)/(B+1)(B+2)(3+3),
by =(a+B+4)(a+B+6)/(8+1)(B+2),
bo =2(a+B+4)/(B+1),

and we have to characterize the values of («, 8) in D for which gga’ﬁ) (u) >0
for each uw € [0,1]. Since ?éa’ﬁ) (u) attains its minimum at Umin = b1/b2 =

(6+3)/(a+ B +5) and upin € [0,1], then géa’ﬁ) (u) > 0 for u € [0,1] and

those (a, 8) for which the discriminant

<(a+ﬂ+4)(a+6+6))22(a+ﬂ+4)2(a+6+5)(a+6+6)
B+1)(B+2) (B+1)2(B+2)(B+3)

of ?ﬁf"m (u) is non-negative. Therefore

—a—5+\/a2+6a+17}

Asz{(a,ﬂ)eD:ﬁz 5
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4. An algorithm to find A,

The algorithm for tracing the curves =, is based on the following simple fact.

Lemma 2. If (o, 3,) € Y, then there exists £ € (—1,1) for which
d
S(O‘nvﬁn) — S(anvﬂn) — O
(n0) () = L 5o (¢

Proof. Assume that for some (a,, ;) the polynomial Glernfn) (z) is positive
at the points of local extrema in (—1,1). Then a continuity argument implies
that there exists a neighborhood U of (a, ) such that for every (a, () in
U and for every z € (—1,1) the polynomial Slep) (z) is positive. The latter
contradicts the definition of ~,.

A well known necessary condition for a polynomial

n
p(x) = Z a, ™"
v=0

to have a double root is stated in the following lemma. We recall that the
discriminant D(p) of p is

Dp)=az"* [ (@i—=)°
1<i<j<n
where z1, ... ,x, are the roots (zeros) of p.

Lemma 3. The discriminant D(p) of the polynomial p can be represented as
a (2n — 1) x (2n — 1) determinant in the form

ao a1 e An—1 An,
nag (n—1)ay --- Gp1
aoD(p) _
(=1t aop aq Apn_1  Qp
nag (n—1)ay e Q1
nag (n—1Da -  ap_1

Moreover, D(p) = 0 if and only if p(z) has at least one root of multiplicity at
least two.

We refer to [18, Section 1.3.3] and the references therein for the proof of this
lemma and for additional information about discriminants.

Lemmas 2 and 3 immidiately yield the following result.
Theorem 2. Let Sy(la’m(ac) =Y o ak (an, Bn) 2" K. If (n, By) € Yn, then
Dan, Ba) = D( o)) = 0.
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The basic steps of the algorithm to construct an approximation to the curve
Y are:

1. Choose k € N.

2. Divide the interval [—2,1/2] into k subintervals by the mesh points o) =
—2+425i/k, i =0,k.

3. For any fixed o' find all the solutions ﬁfz)l, - ,ﬁﬁ,i)p € (—1/2,0) of the
equation D (oz,(f), B) =0.

4. Find that s, 1 < s < p, for which

MONIO)
57(1 { ﬁn,s)(x) >0 for z € [—1, 1]

and

NON-O) d (a8
SEHE) (€ = L si ) (€) = 0 for some € € (+1,1).

5. Choose ﬂ,(f) = T(f)s
6. Approximate the data (aﬁf ), Bg)) by a smooth curve.

Table 1 in the next page contains the results of the algorithm for n = 4
and n = 5, for K = 50. The values of ﬂil) and ﬂél) which correspond to
o) = = —240.05i,i=0,... 50, are:

The graphs of the approximations to the curves ~,, for n = 2,3,4 and 5 are
drawn in Figure 1 at the end of the paper.

5. An idea for proving Conjecture 2

The graphs of the curves 72,73,74 and 75 show that Conjecture 2 holds for
n = 2,3 and 4. It is clear that Conjecture 2 would be proved if one proves that
SR i nonnegative on [—1, —1] for any («, 3) for which S,(f_:f) is nonnegative
there. Another possible idea to prove Conjecture 2 is to show that for any

(0tn, Bn) € v the inequality Sr(g"i’ﬂ")(x) > 0 fails for some = € [—1,1]. It turns

out that for n = 2,3 and 4 such x exists. Based on the graphs of S,(La"’ﬁ")(x)
and S,(Li”i’ﬁ ")(:v) for various (ay, B,) € yn We may state an additional conjecture
which implies the truth of Conjecture 2, and thus, of Conjecture 1.

Conjecture 3. Let (ay,3,) € 7. Then there exists a unique &, € (—1,1)
such that

d
Sr(zamﬁn)(g”) _ %S,(La”’ﬁn)(fn) —0.
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i | a® R $ il e | 8 5

0 | —2.00 0 0

1 | —1.95| —0.0124665 | —0.0100482 || 26 | —0.70 | —0.29347 | —0.271235
2 | —1.90 | —0.0248627 | —0.020186 || 27 | —0.65 | —0.303304 | —0.281463
3 | —1.85 | —0.0371837 | —0.0304035 || 28 | —0.60 | —0.313026 | —0.291642
4 | —1.80 | —0.0494251 | —0.0406914 | 29 | —0.55 | —0.322637 | —0.30177
5 | —1.75 | —0.0615829 | —0.051041 || 30 | —0.50 | —0.332137 | —0.311845
6 | —1.70 | —0.0736534 | —0.0614439 || 31 | —0.45 | —0.341526 | —0.321856
7 | —1.65 | —0.0856334 | —0.0718924 || 32 | —0.40 | —0.350807 | —0.331828
8 | —1.60 | —0.0975197 | —0.0823791 || 33 | —0.35 | —0.359997 | —0.341732
9 | —1.55 | —0.10931 | —0.0928969 || 34 | —0.30 | —0.36904 | —0.351576
10 | —1.50 | —0.121001 —0.103439 || 35| —0.25 | —0.377995 | —0.361359
11 | —1.45 | —0.132592 —0.1114 36 | —0.20 | —0.386843 | —0.371079
12 | —1.40 | —0.144079 | —0.124573 || 37 | —0.15 | —0.395585 | —0.380734
13 | —1.35 | —0.155462 | —0.135135 || 38 | —0.10 | —0.404222 | —0.390324
14 | —1.30 | —0.166739 | —0.145734 || 39 | —0.05 | —0.412754 | —0.399847
15 | —1.25 | —0.177909 —0.156312 || 40 | 0.00 | —0.421183 | —0.409303
16 | —1.20 | —0.18897 —0.166881 || 41 | 0.05 | —0.429509 | —0.418691
17 | —1.15 | —0.199922 | —0.177438 || 42 | 0.10 | —0.437734 | —0.428009
18 | —1.10 | —0.210763 | —0.110763 || 43 | 0.15 | —0.445858 | —0.437258
19 | —1.05 | —0.221493 | —0.198469 || 44 | 0.20 | —0.453883 | —0.446436
20 | —1.00 | —0.232112 —0.208989 || 45| 0.25 —0.46181 | —0.455544
21 | —0.95 | —0.242619 | —0.219454 || 46 | 0.30 | —0.469638 | —0.464579
22 | —0.90 | —0.253014 | —0.229886 || 47 | 0.35 | —0.477371 | —0.473543
23 | —0.85 | —0.263296 | —0.240284 || 48 | 0.40 | —0.485008 | —0.482435
24 | —0.80 | —0.273467 | —0.250643 || 49 | 0.45 —0.49225 | —0.491254
25 | —=0.75 | —0.283524 | —0.260961 || 50 | 0.50 -0.5 -0.5

TABLE 1. The curves v4 and s

Moreover, there exist 7/, and 7/ with —1 < &, <1/, <, < 1 such that

S(anﬁn)

n+1

(x) <0 forz € (n,n,)-
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Finally, we recall that Askey [3] conjectured that 3(«) defined by (3) is a

convex function, which is equivalent to assert that the curve v is convex. It
seems that every =, is a convex curve. If so, obviously v would also be convex.

[1]
2]

(3]
(4]
[5]
[6]

7]
(8]

[9]
(10]

(11]

FIGURE 1.  The curves va, v3, Y4 and s.
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