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ABsTrRACT. In this paper we present some results on the global stability of the
trivial solutions z = 0 of the system z’ = f(¢,). Our main results are then
applied to various systems.
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1. Introduction

Liapunov’s principal theorems give sufficient conditions for the stability, asymp-
totic stability and instability of systems. In the last few years these stability
concepts have been refined and further generalized in several directions, one of
these being the asymptotic stability in the whole.

This paper is concerned with sufficient conditions guaranteeing that the
trivial solution z = 0 of the system

a = f(tax)a (1)
where the prime marks indicate differentiation with respect to ¢, is asymptoti-
cally stable in the whole.

Throughout this paper, the following notations will be used. With I we
denote the interval 0 < t < oo,and R™ will stand for Euclidean m-space; || - ||
will be an arbitrary norm in R™, and S, = {x € R™ : ||z|| < r}.
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A solution of (1) through a point (¢g,z0) in I x R™ will be denoted by
x(t; xg, to),with x(to; zo, to) = o.

With C(R) and CI(R) we respectively denote the families of continuous
functions and increasing continuous functions defined on R, and

CS(R) = {h € C(R) : zh(z) > 0 for x # 0},

CC(R) =CI(R)n CS(R),

CPE(R) ={h € C*R) : h(z) > b> 0 for all z}, CP, := CPY.
Finally, by F we denote the class of non decreasing continuous functions ¢ on
I such p(u) > 0 for all w € I and

/ < du
o o)
We consider system (1) for f € C(I x S,) and f(¢,0) = 0.

With V (¢, 2) we denote an arbitrary continuous scalar function defined on an
open set S C I x R™. In all what follows it is assumed that all these functions
V (t, ) have continuous partial derivatives with respect to all arguments. These

functions will be called Liapunov’s functions. Corresponding to V(t,x), we
define the function

Vi (t2) o= limsup L H 2+ 1/ (8:2)) = Vit,2)

: (2)

called the total derivative of V (t,z) for system (1). Under the above conditions,

ov. oV
/ —

We need the following definitions (cf. [3], [14]).

Definition 1. The solution z(t) = 0 of (1) is stable if for any € > 0 and any
to € I there exists a d(to,e) < 0 such that if 29 € S, <) then z(t; 20, t0) € Se
for all £ > tg.

Definition 2. asymptotically stable if it is stable and there exists a d(tp) > 0
such that ||2(t; zo,20)|| — 0 as t — oo for all zg € Ss,).

Definition 3. The solution z(t) = 0 of (1) is asymptotically stable in the whole
if it is stable and every solution of (1) tends to zero as t — oo.

Definition 4. The solution x(t) = 0 of (1) is quasi equiasymptotically stable in
the whole if for any « > 0, any € > 0 and any ¢ € I, there exists T'(tg, e, ) > 0
such that if ¢ € S, then x(t; g, t0) € Se for all t > tg + T'(to, €, ).

Definition 5. The solution z(t) = 0 of (1) is equiasymtotically stable in the
whole if it is stable and quasi-equiasymptotically stable in the whole.
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The distinction between asymptotic stability in the large and asymptotic
stability in the whole has often been obliterated by inaccurate translation of
the Russian terminology.

Definition 6. A solution z(¢; xg, ) of (1) is bounded if there exists a 3 > 0
such that z(t; zo,t0) € Sg for all t > t(,, where § may depend on the solution.

Definition 7. The solutions of (1) are equibounded if for any o > 0 and ¢y €
I there exists 3(tg, o) > 0 such that if xy € S, then z(t;zo,t0) € Ss(to, o) for
all t > 1.

We now mention some theorems which will play an important role in the
proofs of our main results.

Theorem A. Suppose that there exists a Liapunov’s function V (t,x) defined
on I x S, satisfying the following conditions:

1. V(,0) = 0.
2. a(||z]]) < V(t,x), where a(t) is a positive definite function in CI(R).
3. V() (t,x) 0.

Then, the trivial solution of (1) is stable.

Theorem B. Suppose that there exists a Liapunov’s function V (t,x) defined
on I x R™ which satisfies the following conditions:
1. a(||lz])) < V(t,z),where a(r) € CC(R) and a(r) — o0 as r — 0.
2. V(’l)(t,x) <0.
Then, the solutions of (1) are equi-bounded.

For the proof of the above results, see Theorems 8.1 and 10.1 of [14].

Theorem C (Barbashin and Krasovskii). If there exists a function V(t,z)
which is everywhere positive definite, radially unbounded, decreasing, and
whose total derivative (2) for system (1) is negative definite, then solution
z(t) =0 of (1) is asymptotically stable in the whole.

For the proof, see [3, p. 248].

2. Main results

Theorem 1. Suppose that there exists a continuous, positive definite function
a(r) such that a(r)— oo as 1 — o0, and that the following conditions are
fulfilled:
1. There exists a Liapunov’s function V (t,x) such that a(z) < V (¢, ).
2. Viy(t,x) < =A@V (t, @) — u(t)W (L, x), where A, p € CPy(I) and W(t, )
is a positive definite function.
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Then, the trivial solution x = 0 of (1) is equi-asymptotically stable in the
whole.

Proof. The conditions of Theorems A and B are satisfied, so that the solutions
of (1) are stable and equibounded.

Let x(t;to xo) be a unique solution of (1) satisfying x¢ € S for € sufficiently
small.

Since p is non-negative, we have
Vv(/l)(ta x) < *)\(t)V(t, x)
From the above inequality and the comparison theorem we obtain that

V(t, z(t;to,x0)) < V(to,x0) exp(—L(t)),

where
L(t) = /t A(s) ds.
to
Now define
M(to, £) = max {V(to, z) : [lz]) < e}
and

T(ty,7,e) = L' (m‘]w(t”)) .

a(r)
Observe that since L(t) is strictly increasing then L~
for t > to + T'(to, 7,¢),

I exists. Then we have,

V(t, 2(t o, z0)) < M(to,g)Ma(Z)g) = a(7).

Since a(r) is increasing, and by condition 1 we have
lx(t; to, xo)|| < T for t > to + T(to, T, €),

which implies the equi-asymptotic stability in the whole of the trivial solution,
the theorem is proved.
Theorem 2. Suppose that the functions a, b defined on S, and W (t, x) defined
on I x R™are positive definite and that the following two conditions hold:

1. a(|jz|)) < V(t,z) < b(||z|),a(r) — oo as r — oo.

2. Viy(t,x) < =A(t)o(V(t,2)) — p(t))W(t,x), where ¢ € CI(RT) and is

positive definite.

Then the trivial solution x = 0 of the system (1) is asymptotically stable in
the whole.



ASYMTOTIC STABILITY IN THE WHOLE OF NON-AUTONOMOUS SYSTEMS 5

Proof. If

V(t,x)
U(t,z) := /0 du/¢(u),

where ¢ € F(RY), then U(t,z) satisfies the conditions of the Barbashin-
Krasovski theorem (Theorem C above), and the proof of the theorem is com-
plete. ™

Remark 1. Observe the advantage of resorting to the inequalities for V(I1) (t,x)
obtained in Theorems 1 and 2, not only for applications (Theorems 3 and 4
below), but also to render account of previous results (see [2], [3], [9] and [14]).

3. Applications and related results

The damped linear oscillator of one degree of freedom is described by the
second order differential equation

" 4+ h(t)a’ +mPr =0t €, (3)
where m > 0 is a constant, the “damping” coefficient h : I — I being mea-
surable and locally integrable.

It is an old problem to find conditions on h guaranteeing the asymptotic
stability of the equilibrium z = 2’ = 0, which means that for every solution

of (3),
1tlim x(t) = tlim 2'(t) =0 (4)
holds. It is known (see e.g., [5], [13]) that the condition

/Oo h(t)dt = oo (5)
0

is necessary for asymptotic stability. It is also known that if h(t) = hg > 0,
where hg is constant, then the equilibrium is asymptotically stable. Results in
(1], [4], [7], [8], [10] [11], [13] show that the condition

h € CPy(I) (6)

is not necessary for asymptotic stability: it can be essentially weakened. Hale
in [4] proved that if h(t) = 2 + €’,the equilibrium of (2) with ¥ = 1 is not
asymptotically stable.

It is therefore natural to pose the problem of when the null solution of (3) is
asymptotically stable in the large, or, in other words, when each solution curve
of (3) approaches 0 as t — oo. This problem is of paramount importance for
applications of stability theory.
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A. Castro and R. Alonso [2] considered the special case
2" + h(t)s' +z =0, (7)

of equation (3), under condition (6) with b = 2a (a sufficiently small, i.e.,
a < %) and h € C'(I). Letting y = 2’,we obtain the system

y=a'
y'=—z—h(t)y,
defined on I x S, with r > 0. Further they required that the condition

(8)

ah/(t) + 2h(t) < 4a

be fulfilled, and applying Theorem 4 of [2] obtained results on the asymptotic
stability of the trivial solution of (8) (and consequently of (7)). In the next
theorem we shall prove that condition (6) with b = 2a,h € C'(I) and

<\/1—a3—|—1

a

h 9)

are sufficient for the asymptotic stability in the whole of the trivial solution
of (8).

We consider the functions

() = exp (- [ his)ds).

2 + y2
R(z,y) = 5

V(t,z,y) = (H(t) + 2)R(x,y) + axy.

Taking a(z,y) = R(z,y), b(z,y) = 3R(x,y), \(t) = a, u(t) = (H(t)+1)h(t) and
c(x,y) = 2R(x,y), all assumptions of Theorem 2 with ¢(u) = u are satisfied.
Thus, we obtain the following result.

Theorem 3. Assume that h € C(I) and that conditions (5) and (9) hold.
Then, the equilibrium of (3) is asymptotically stable in the whole.

Remark 2. In the case of asymptotic stability, our conditions(6) and (9) and
Theorem 3 are consistent with results in [2], [6], [7], [8], [9], [11], [13] and [14].

We now consider the system

+ = aly) - Bly) () (10)
Y = ~a(t)g(x)
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where a, 8, f and ¢ are continuous real valued functions and a(t) is a positive
continuously differentiable function on I. We define

G(x) = /Omg(r) dr, A(y) = /Oy a(s)ds, (11)

and assume that the conditions
(a) a € CC(R),
(b) B € CP(R),
(c) f.9 € CS(R),
(d) a € CPy(R)
hold. In [12] we prove that under these assumptions all solutions of (10) are
continuable toward the future.
If a(y) = y,B(y) = 1,a(t) = 1, then system (10) is the well known Liénard’s
equation.
Theorem 4. Under conditions (a)—(d) above, suppose in addition that
1. G(z) < bf(x)g(x), for all z,
2. G(To0) = +o0,

3. L;,((tt)) > 1 for all t,

where G is as in (11). Then the trivial solution of (10) is equi-asymptotically
stable in the whole.

Proof. Let a(x,y) = B(x), bz, y) = 44 + B(x), V(t,2,y) = A(y) + a(t)G(x)
and b(t) = %. Let W(t,z,y) = (b(t) + 1)V (¢,z,y). We observe that
W(IIO) (t7 €, y) S _W(ta x, y) - b(t)V(t, x, y)

where
a(0)
Wiy (t,2,y) = — %b(t)‘/(t,x,y)
+ (b(t) + 1) (a(y)y’ + d'(t)b(z) + a(t)g(z)z")
(see [9], [12] and [14] for more details) satisfies the requirements of Theorem 1
with A(t) = 1 and p(t) = b(t). Thus, we obtain the desired result.

Remark 3. In the special case a(y) =y, B(y) = 1, f(x) = z, a(t) = 1 and
g(x) = z, of (10), conditions 1, 2 and 3 are easily verified, and system (10)
becomes z” + 2’ + = 0, which satisfies the Routh-Hurwitz criterion for as-
ymptotic stability in the whole.

Remark 4. From condition 3 of Theorem 4, we have that a’(t) > 0,for all ¢ €
I. Thus, this theorem gives the author previous result [9, Theorem 2] on
asymptotic stability in the whole.
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