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SERGIO A. CELANI
Universidad Nacional del Centro, Tandil, ARGENTINA

ABSTRACT. In this note we shall generalize some results of the three-
valued Lukasiewicz algebras to three-valued symmetrical Heyting alge-
bras. We prove that a three-valued Heyting algebra with axe is a product
of a Boolean algebra by a three-valued symmetrical Heyting symmetric
algebra with center. We also introduce the involutive rough sets and
we prove a representation theorem for three-valued symmetrical Heyting
algebras by means of rough sets.
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1. Introduction

The class of three-valued symmetrical Heyting algebras (#Hsz-algebras) are a
generalization of three-valued Lukasiewicz algebras (£3-algebras). These alge-
bras were mainly studied by Luisa Iturrioz in [5] and [7] (see also [9] p. 156). In
[10] L. Monteiro proves that the variety of £3-algebras can be characterized as
Hs-algebras such that they verify the Kleene’s axiom: zA ~z <yV ~y. In
this note we obtain some results on the variety of Hs-algebras that generalize
analogous results on L3-algebras. We shall introduce the centered H3-algebras
and Hs-algebras with axe. We prove that all H3-algebras with axe is the prod-
uct of a Boolean algebra by a centered Hsz-algebras. There is an analogous
result for L3-algebras (see [10]).

In [3] (see also [4]) S. Comer proves that every L3-algebra (or regular dou-
ble Stone algebra) can be represented as an algebra of rough subsets of an
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approximation space. In the present paper we shall introduce the involutive
rough sets and we shall show that an H3-algebra is isomorphic to a subalgebra
of rough subsets of an involutive approximation space. We conjecture that a
similar representation result can be proved for other classes of algebras with
weaker operations than the pseudo complementation and dual pseudo comple-
mentation, as for example for some class of double MS-algebras (see [2]). If
we analyze the proof of Theorem 18 below we see that this depends on the
regularity axiom and of a subalgebra that allows, in a certain sense, builds up
the original algebra. Our next task is to investigate this topic.

We assume that the reader is familiarized with the theory of Heyting algebras
and the De Morgan algebras as it is given, for instance, in [1], [9] or in [13].

2. Preliminaries

Definition 1. An Hs3-algebra is an algebra (L, V,A,=,~,0,1) such that: (L,V,
A,=,0,1) is a Heyting algebra, (L,V,A\,~,0,1) is a the De Morgan algebra and
for all x,y,z € L the following axiom is verified:

T. (z=>2)=y)=>(y=>2)=y) >y =1

Let L be an H3-algebra. Recall that z* = z = 0 and 2+ =~ (~ x)* are the
pseudo complement and the dual pseudo complement of x, respectively.

In [7] L. Iturrioz characterized the H3-algebras as algebras (L, V,A,* ,~,0,1)
of type (2,2,1,1,0,0) such that (L,V,A,*,0,1) is a bounded pseudo comple-
mented distributive lattice and (L, V,A,~,0,1) is a De Morgan algebra and
the following conditions are held for all z,y € L,

H:. (zAy)* =z*Vy*.

Hy. Ifz*=y* y (~2)*=(~y)* then z =y (regularity axiom).

We note that Hy may be replaced by the following identity:

H,. (z AzT)A(yVy*) =z Azt for any z,y € L.

Let L be an Hz-algebra. By Hy L, is a Stone algebra and from the duality
given by ~, L is also a double Stone algebra.

For an Hs-algebra L, we define the set D(L) = {z € L: z* = 0} of dense
elements. This set is a filter of L. Dually, the set D(L)* = {zx € L: z* =1}
is an ideal of L.

For an Hs-algebra L let us write R(L) = {« € L: z** = z} to denote the
center of L. It is known that R(L) is a Boolean algebra and that it is a
subalgebra of L. It is easy to prove that

R(L)y={zeL:a*}={zel:a* =z} ={zeLl:x=a"t}.
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The set of all prime filters of L is denoted by X(L). As L is also a De
Morgan algebra, then we can define the application ¢r, : X(L) — X (L) given
by ¢r(P) = X(L)\ ~ P = (~ P)¢, where ~ P = {~ 2z : € P}. It is known
that if P € X (L) then ¢r(P) € X(L) and ¢ (¢r(P)) = P. The filter (ideal)
generated by a set H C L is denoted by F(X) (I(X)). Let us recall that
in any Stone algebra L, if P is maximal prime filter ( i.e. an ultrafilter), then
D(L) C P.

In [7] (see also [9] p.209) was proved that an Hs-algebra L may be charac-
terized by means of the set X (L) as follows:

Theorem 2. A symmetrical Heyting algebra L is an Hs-algebra iff for all P €
X (L), P is an ultrafilter or there is an unique ultrafilter Q such that P C Q.

Hence, for each P € X (L), P is an ultrafilter iff ¢, (P) is a minimal prime
filter. Let us recall that the variety of H3-algebras is semisimple and generated
by the Hs-algebra Sy (see Figure 1) and its subalgebras are S, = {0,1}, S5 =
{0,a,1} and Sy = {0,d,e, 1} (see [5], [7] and [9]).

0
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3. Algebras with center

Definition 3. An Hs-algebra L is centered if there is an element c, called the
center of L, such that ¢** =1 and ¢+ = 0.

We note that if ¢ is the center of L, ~ ¢ = ¢.
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Lemma 4. Let L be an Hz-algebra.

1. L is centered, where c denotes the center, iff D(L) N D(L)T = {¢} . Con-
sequently ¢ is unique .

2. If L is centered, then D(L) = F(c) , D(L)* = I(c) and D(L) =~ D(L)*.

3. If L is centered, then R(L) = D(L) = D(L)*.

Proof. 1. We will suppose that L is centered. Let z € D(L) N D(L)", then
2zt =0 and 2** = 1. By Hs, z = c. The converse is immediate.

2. We prove that D(L) = F(c). By 1. and as D(L) is a filter, F'(c) C D(L).
Suppose that there is z € D(L) such that z ¢ F(c). Then there is a prime
filter P such that c € Py z ¢ P. If P is an ultrafilter, D(L) C P and this
implies that z € P, which is a contradiction. Suppose that P is minimal. As
~c=c¢, c ¢ ¢r(P), which is also a contradiction, since ¢r(P) is an ultrafilter.
Therefore F'(¢) = D(L). The other equalities are easy to check.

3. Tt is enough to prove that I (c) = R(L). Let the application f : I(c) —
R(L) be given by f(z) = z**. It is clear that f is a lattice homomorphism. We
check that is one-one. Let f(x) = f(y). Then z** = y** and as 0 = zt+ = y++,
then by condition Hs, x = y. Therefore f is one-one. Let z € R(L) and let
zAc € I(c). Clearly f(z Ac) =z . Consequently f is onto. Therefore f is an
isomorphism.

The following result is a generalization of a result given by L. Monteiro [11].

Theorem 5. Let L be Hs-algebra. If L is centered, with center c, then for all
elementx € L, x = (z** Ac)VztT, or in an equivalent way x = (z7T V) Az**.

Proof. Suppose that z £ (z** A ¢) V 2tT. Then there is a prime filter P such
that x € P and (z** Ac)VatT ¢ P. As z < z**, then ¢ ¢ P. If P is an
ultrafilter, F'(¢) C P, which is impossible. Then P is a minimal prime filter.
Asaztvaett =1€ P, 2t =~ (~ x)* € P. Consequently, (~ z)* ¢ ¢r(P). As
¢L(P) is an ultrafilter, ~ x € ¢, (P) and this implies that « ¢ P, which is a
contradiction.

Suppose that (z** A¢) Vo™t £ . Then there is a prime filter P such that
z¢ Py (x**Ac)Vztt € P.Sinceztt <z, 27t ¢ P. Thus z**,c€ P.If P is
an ultrafilter, z* € P. Then z* A 2** = 0 € P, a contradiction. Consequently
P is a minimal prime filter and ¢, (P) is an ultrafilter. Since ¢ € P, ¢ ¢ ¢ (P),
but this is impossible because F(c) C ¢ (P). Therefore z = (z** Ac) VxtT.
The other equality is derived in an analogous way.

Theorem 6. The only finite and centered Hz-algebras are the products S¥x S§,
with k,r € w.

Proof. It is easy to see that S¥ x S§ is centered. Let L be a finite and
centered Hs-algebra. As L is semisimple then it is a product of simple algebras,
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L = ] L;. We prove that L; = S3 or L; =2 Sy, for ¢ = 1,..,n. Suppose that

i=1
there is a j such that L; = Sy or L; = S4. If II; is the projection onto L;,
then II; (L) = L;. If ¢ is the center of L, then by the above Lemma, II;(c) is
the center of L;, which is a contradiction. Therefore L; = S3 or L; = Sy. uf

We end this section with a representation theorem. An analogous result was
given in [9] (p. 199) for three-valued Lukasiewicz algebras.

Let L be an Hs-algebra and let R(L) be the center of L. We define the set
R* = {(z,y) € R(L) x R(L) : = <y}

and the operations:

(a,b) A (¢,d) = (aAc,bAd),
(a,b) V (¢c,d) = (aVe,bVvd),
~ (a,b) = (~ b,~a),
(a,0)* = (b%,0%),
0=(0,0),
1=(1,1),

for all (a, b), (¢,d) € R*. It is easy to check that (R*,V,A,*,~,0,1) is a centered
‘Hs-algebra with center ¢ = (0,1).

Theorem 7. Every Hz—algebra L is isomorphic to a subalgebra of R*. If L
is centered, then L = R*.

Proof. We define the function a : L — R* given by a(z) = (z*+,z**). Since
gt = g+ (z7F,2**) € R*. It is easy to see that « is a homomorphism of
‘Hs-algebras. By the condition Hj it follows that « is one-one. Then a(L) is a
subalgebra of R*.

Suppose that L is centered with center c. Let (a,b) € R*. Then it is clear
that 2 =aV (bAc) € L and o(z) = (a,b). Then a is onto and L = R*.

4. Algebras with axe

We shall generalize the concept of three-valued Lukasiewicz algebra with axe
studied by L. Monteiro in [11] (see also [9]).

Definition 8. Let L be an Hs-algebra. We shall say that L has aze if there is
an element e € L, called the axe of L, such that the following conditions hold
forallxz € L :

1. ett =0.
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2. ¥ < gTt ver*,

The following theorem gives a representation of the elements of an H3-algebra
L with axe.

Theorem 9. Let L be an Hs-algebra with aze e. Then for oll x € L it is
verified that © = 7+ V (z** Ae).
Proof. Suppose that z £ 2t V (2** A e). Then there is a prime filter P such
that x € P and 27tV (z** Ae) ¢ P. As o™t <z <z**, 27+ ¢ P,e ¢ P and
z** € P . If P is an ultrafilter,

e* € P, (1)

since e ¢ P. By 2. of Definition 8, z** < zt+ Vv e** € P. Then e** € P and as
P is an ultrafilter e* ¢ P, which is a contradiction by (1).

Now, if we suppose that P is a minimal prime filter, ¢, (P) is an ultrafilter.
As zt+ ¢ P, then by the identity z+ V2t+t =1, 27 =~ (~ 2)* € P . Thus,
~ z € ¢r(P) which is equivalent to z ¢ P, which is a contradiction. Therefore
z <zttV(z** Ae).

Suppose that 7+ V (z** A e) £ z. Then there is a prime filter P such that
ztt Vv (z** Ae) € Pand z ¢ P. Then 2+ ¢ P and e, z** € P. If P is an
ultrafilter, z* ¢ P, but as « ¢ P, * € P, which is a contradiction. Suppose
that ¢ (P) is an ultrafilter. As e € P, ~ e ¢ ¢ (P) and this implies that

(~e)* € or(P). (2)
On the other hand, as ~ (~e)* =et =1€ P
(~e)" ¢ or(P),
in contradiction with (2). Therefore, zt+ V (z** Ae) < z. ™
Lemma 10. Let L be an Hs-algebra. If L has aze, then it is unique.
Proof. It is immediate by regularity axiom. v

Lemma 11. Let L be an Hs algebra and let e € L such that et = 1. Then
e<~e.

Proof. If we suppose that e £ ~ e, then there is a prime filter P such that
e€ Pand ~e ¢ P. Soe € ¢r(P). If P is an ultrafilter, (~ €)* € P. But as
ett =1, (~ e)* =0 € P, which is a contradiction. If ¢r(P) is an ultrafilter,
(~e)* =0 € ¢r(P), since ~ e ¢ ¢r(P), which is a contradiction. Therefore
e<~e.

Lemma 12. Let L be an Hs algebra with aze e. Then the following properties
hold:

1. ~eANe*™ —e.
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2. ~e** Ve =1.
3. ~e* =e*.
4. for all x € L, if £ <~ e**, then x € R(L).

Proof. 1. It is clear that e <~ e Ae**. If ~ e A e** £ e there is a prime
filter P such that ~ eAe** € P and e ¢ P. If P is an ultrafilter, e* € P and
e** € P, which is impossible. If ¢, (P) is an ultrafilter, as (~ e)* =0 ¢ ¢ (P),
~ e € ¢r(P) and this implies that e € P, which is a contradiction.

2. Suppose that ~ e** V e** < 1. Then there is a prime filter P such that
~e* ¢ Pye** ¢ P. By the identity e* Ve** = 1, e* € P. By 1 we have the
following identities:

0 = (~e)* = (eV ~e**)*
= e*A(~e*™)* = e*A(~e)tt*
= e*A(~e)t = e*A~e*

Thus ~e*Ve* =1€ ¢(P). As ~e** ¢ P, e* ¢ ¢(P). Then e* € P, which
is a contradiction.

3. It is a consequence of 2.

4. Let £ = z A e**. Then

r = zA~e**
= ((att VvV (z** Ae))A ~e** (by Theorem 9)
= (@*A~eAe*A~e*)V(zttA~e*) (by 1)
= 0V (zTTA~e*) (by 2)

= ztTA~e**.
By the above identity

™ = (Tt A~ ) =Tt A (v ™) =T TA ~ e = 1.
Therefore z € R(L). ™

Now, we shall prove the main result of this section. We recall that if F’
is a filter, 0(F) = {(z,y) : there is f € F such that z A f =y A f} is a lattice
congruence.

Theorem 13. Let L be an Hsz algebra with axze e. Then L = Ly X Lo, where
L> is a Boolean algebra and Ly is an Hsz algebra with center.

Proof. Let e be the axe of L. Let us take the filters F'(e**) and F(~ e**). We
shall denote 6; = O(F(e**)) and 6y = §(F(~ e**)). As e** y ~ e** € R(L).
Then by known results of theory of distributive lattices (see [1]) L = L/6; x
L/, where L/6; = [0,e**] and L/fy = [0,~ e**]. As ~ e* =¢e**, F(e** ) is a
regular filter (or deductive system in the terminology of [9]). Thus Ly = L/6; is
an H3 algebra. The operations of De Morgan negation «, pseudo complemented
- and dual pseudo complemented A are defined in [0,e**] by means of the
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identities az =~z Ae** , =z = z* Ae** and Az = o+ Ae**, respectively. We

now show that L is centered. The center is defined by the equivalence class
. ok — |pt++ —

of e, [e]y, , since =le|y = |e**|p and AX|ely, = [eTF|p = 0], .

We check that L, = L/, is a Boolean algebra. By Lemma 12, for all
x € 0, ~ e**] we have that € R(L).

It is easy to check that the application f given by:

f:L—[0,e*] x [0. ~e™]
zr— f(z) =(x Ae*™, zA ~e**)

is an isomorphism of Hs3 algebras. M
The proof the following result is analogous to the proof given in [9].
Corollary 14. Let L(«) be the free H3 algebra, with a finite set of generators

G of cardinal a. Then L(a) = B(a) x C(a), where B(a) is the free Boolean
algebra and C() is the centered free Hsz-algebra.

5. Involutive rough sets

In this section we shall establish the mentioned connection between Hs-algebras
and a generalization of rough sets.

Definition 15. The triple X = (X, 0, ¢) is an involutive approximation space
(IAS) if © is an equivalence relation on X and the following conditions hold:
1. ¢ is an application ¢ : X — X such that ¢*(z) = z,
2. Forallz,y € X, (z,y) € © & (¢(x),d(y)) € O.

Let X be an IAS and let U C X. Then we define two sets Ug and U® as
follows:

Uo={z € X:0(z) CU},
U° ={zeX:0x)NU #£0}.
A rough subset is a pair (Ug,U®), where U C X. The collections of all rough

subset of X is denoted by Ro(X). Let U C X. Let us define the set ~ U by
~ U =X~ ¢(U). As ¢ is an involution, then it is easy to check that ~~ U = U.
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On the set Ro(X) we shall define the operations V, A, ~, *, 0 and 1 by:

(Ue,U®) Vv (Vo,V®

)= Ue UVe,UP UV®),
(Uo,U®) A (Vo,V®)
)

(Us NVo,U® NV®),

~ (Ue,U®) = (~U®,~ Us),
(Us,U®)* = (X N U®, X \U®),
0=(a,0),
1=(X,X).

In [12] it is shown that (Ro(X),V,A,*,0,1) is a Stone algebra and if we define
an operation * by

(U@7U®)+ = (X N U@JX N U@)J

then (Ro(X),V,A,*,%,0,1) is a regular double Stone algebra.

Lemma 16. Let X be an IAS. Then for oll U C X we have
1. ~Ug = (~U)® and ~U® = (~ V)e.
2. m~ (Ug,U®) = (Us, U®).
3. (Ue,U®)t == (r (Ue,U®))*.

Proof. We shall prove that ~ Ug = (~ U)®.

ze~Us & ¢($)¢U@
& there is y € X such that (¢(z),y) € @ and y ¢ U
& there is y € X such that (z,¢(y)) € © and ¢(y) ¢ ¢(U)
& there is y € X such that (z,¢(y)) € © and ¢(y) e~ U
& O@N~U#D
& ze(~U)°.

The proof of ~ U® = (~ U)g is analogous.

For 2,

~x (Uo,U®) =~ (~ U®,~ Upg) = (~~ Us,U®) = (U, U®).
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The proof of 3 follows from 1 and the following equivalences

Theorem 17. The algebra Ro(X) = (Ro(X),V,A,=,*,0,1) is an Hs-algebra.

Proof. By Lemma 16 (Ro(X),V,A,=,0,1) is a De Morgan algebra. Also by
Lemma, 16 and the duality given by the negation ~, {(Ro(X),V,A*,7,0,1) is
a double Stone algebra. We shall just have to prove that the regularity axiom
is verified or, what in other words, is the same as to prove the condition

(U®a Ue) A (U®a Ue)+ - (VC—), Ve) \Y (VGaVe)*a

for any U,V C X. By the definitions of operations * and T we have that the
above condition is equivalent to

(Ue, UP) A (X N Us, X \Us) C (Vo,VO)V (X NV, X\ V®),
whose proof is immediate. &
Now we shall prove the main result of this section.

Theorem 18. Every Hs-algebra L is isomorphic to a subalgebra of rough sub-
sets of an involutive approximation space.

Proof. Let X (L) be the set of all prime filters of L and let R (L) be the
Boolean algebra of the complemented elements of L. We define the relation
O C X (L)x X (L) by:

(P,Q) € ©® & PNR(L) = QN R(L),

for all P,Q € X(L). It is immediate that © is an equivalence relation. We
shall prove that (P,Q) € © & (¢r.(P), ¢1(Q)) € ©. Suppose that PN R(L) =
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Q N R(L), then

a € ¢r,(P)NR(L) ~a¢ P andae€ R(L)
(~a)* € Pand a € R(L)
~a* € P anda€ R(L)
~a* €@ and a € R(L)
a* ¢ ¢r(Q) and a € R(L)
a € ¢.(Q) N R(L)

The other direction is analogous. Therefore (X (L), 0, ¢r) is an IAS. Let the
application o : L — P(X (L)) be defined by

ola)={PeX(L):a€ P}.
For a € L we define B(a) = (6(at™),0(a**)). We shall prove that
o(a**) =o(a)
o(a™*) = o(a)

for a € L. For o(a**) = o(a)® we shall check a** € P if and only if there
is @ € X(L) such that PN R(L) = Q@ N R(L) and a € Q. Suppose that
a** € P. Let us take the filter F(P N R(L) U {a}). This filter is proper, since
if we suppose that 0 € F(P N R(L) U {a}) then there is p € PN R(L) such
that p A @ = 0, which implies that p < a* € P, which is a contradiction.
Therefore, there is an @) € X (L) such that PN R(L) C Q@ N R(L) and a € Q.
Since P N R(L) and @ N R(L) are ultrafilters of the Boolean algebra R(L),
PNR(L) = QNR(L). For the other direction we suppose that thereis @ € X (L)
such that PN R(L) = Q N R(L) and a € ). Then, since a < a**, a** € Q.

For o(at?) = o(a)® we shall check a*t € P & for all @ € X(L) such that
PNR(L) = QN R(L), then a € Q, which is immediate, since a*t+ < a.

Now we prove that 8(~ a) == ((a).

B(~a) = (o((~ a)™,0((~ a)™)

(o(~a*™),0(~
(~o(a™),~ o
=~ (0(a™"),0(a™)) = ~ B(a)

Therefore we have proved that for each a € L, 8(a) € Ro((X(L),0,¢r)). The
regularity axiom for L implies that £ is one-one. It is easy to check that
preserves * and T (see [3]). This completes the proof of the theorem. ®
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