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ABSTRACT. Let X be a complete, geometrically irreducible, algebraic curve
defined over a finite field Fy and let {(X,¢) be its zeta function [Serl]. If X is
a singular curve, two other zeta functions exist. The first is the Dirichlet series
Z(Ca(X),t) associated to the effective Cartier divisors on X; the second is the
Dirichlet series Z(Div(X),t) associated to the effective divisors on X. In this
paper we generalize F. K. Schmidt’s results on the rationality and functional
equation of the zeta function {(X,t) of a non-singular curve to the functions
Z(Ca(X),t) and Z(Div(X),t) by means of the singular Riemann-Roch theorem.
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In [G] Galkin introduced a zeta function for orders in global fields which co-
incides with Schmidt’s zeta function in the case of a non-singular curve but
satisfies a functional equation only in the Gorenstein case. Green [Gr] ob-
tained a functional equation by slightly modifying the definition of the zeta
function of Galkin. However, this new zeta function is not uniquely deter-
mined by the curve. Finally, Stohr [Sto] defines the zeta function Z(Div(X), t)
which coincides with the zeta function of Galkin in the Gorenstein case and
always satisfies a functional equation ([Sto, p. 133]). In [Z] we studied the local
factors of the zeta function Z(Ca(X),t) using an adelic approach a 14 Tate. As
a consequence we obtained the rationality and a global functional equation of
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Z(Ca(X),t)([Z, thm. 5.3]). In this paper we generalize F. K. Schmidt’s re-
sults on the rationality and functional equation of the zeta function ((X,t) of
a non-singular curve to the zeta functions Z(Ca(X),t) and Z(Div(X),t) using
an approach based on the singular Riemann-Roch theorem. This allows us to
find the residue at s = 0 of the zeta function Z(Ca(X),q *) and Z(Div(X),t)
(see thms. 2.1, 2.2, 3.1).

1. Preliminaries

In this section we present the basic facts about singular curves and zeta func-
tions (cf. e.g. [Rosl], [Ros2], [Ser2], [Sto]).

Let X be a complete, geometrically irreducible, algebraic curve defined over
a field k. We denote by K = k(X) the function field of X over k, g will stand
for its arithmetic genus, § for its geometric genus, X will be the normalization
of X over k (also named the non-singular model of X) and 7 : X — X will
denote the normalization map. The regular surjective map « is birational. In
particular, the function field of the smooth curve X is K /k.

By a divisor of X we mean a coherent fractional ideal sheaf or, equivalently,
a formal product

A= ] Ae,

pPeX

where for each point P the P-component Ap (i.e. the stalk of A at P) is a
non-zero fractional ideal of Op and Ap = Op for all but finitely many points.
Given two divisors A and B, we define pointwise the product divisor AB and
the quotient divisor A : B by

(AB)P = APBP,

and
(.A:B)p = {ZEK|ZBPQAP}

We denote by Div(X) the set of divisors of X. A divisor A is called a locally
principal or a Cartier divisor if each Ap is a principal fractional ideal. The
Cartier divisors form a multiplicative group having the structure divisor

0:= [] 0»,
PeXx

as the identity. We denote by Ca(X) the group of the Cartier divisors. We
define a partial order on Div(X) by

AL B ApCBp forall PeX.

A divisor A is called effective if A > O. For our purposes, it is more convenient
to work with the above ordering than with the usual one.
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The degree of a divisor is uniquely defined by the following properties:
(i) deg(O) =0.
(ii) deg(B) — deg(A) = > pex dimp(Bp/Ap) whenever B > A.
We observe that in general deg(AB) # deg(A) deg(B) (cf. [Ha, sect. 1]).
However, if at least one of the divisors .4 or B is a Cartier divisor then the
equality holds.

For each non-zero rational function z € K*, let div(z) be its principal divisor,
ie.,
div(z) := H 27 0p.

PeX

We denote by Prin (X) the subgroup of principal divisors of X.

Let

L(A) = (] Ap ={z € K | div(z)A 2 O}
PeX

be the k—vector space of global sections of A (also denoted by H°(X, A)). We
denote the dimension of the above k—vector space by £(A) (also denoted by
ho(X, A)).

The Riemann-Roch theorem for function fields was generalized by Rosenlicht
to curves with singularities (cf. e.g. [Rosl], [Sto]).

Theorem 1.1. (Riemann-Roch theorem for singular curves). Each divisor A
of X satisfies
L(A) =deg(A)+1—g+£(C: A,

where C denotes the canonical divisor of X.

The local duality theorem also generalizes to singular curves (cf. e.g. [Sto,
thm. 1.5])

Theorem 1.2. (Local duality). Let A, B be divisors of X such that A 2 B.
Then for each point P we have the k-isomorphism

(CP ZBP)/(CP : .AP) T) Homk(Ap/Bp,k).

As a consequence of the theorem of local duality, we get the reciprocity
formula (cf. e.g. [Sto, sect. 1.7]).

Corollary 1.3. (Reciprocity formula). For each divisor A,
C:(C:A)=A.

From now on, we understand point to mean closed point. Let P be a point
of X and Op be the local ring of X at P. Let Q1,Q2,...,Qq be the points
of X lying over P, i.e., 7~ (P) = {Q1,...,Qq}, and let Og,,... ,0q, be the
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corresponding local rings at these points. Since the function fields of X and
X are the same and X is a non-singular curve, the local rings Og,,...,0q,
are valuation rings of K/k over Op. The integral closure of Op in K is @p =
Naer-1(p) Oa-

The degree of singularity of X at P is defined as

(513 = dlmk(@P/Op)

By Theorem. 1 in [Rosl], p < oo. The total degree of singularity of X is

defined as
5= Y dp.
PeX

The degree of singularity p remains invariant under completion. The total
degree of singularity § remains invariant under separable constant extensions
(cf. [Rosl, thm. 12]).

We recall that the genus formula of a complete, geometrically irreducible,
algebraic curve X is (see [H])

9=3§+ Y op,
prex

where ¢ is the geometric genus of X.
The conductor ideal Fp of (51: in Op is defined as

Fp={ze K |z0p C Op}.

This ideal is the largest common ideal of (51: and Op. Furthermore, since
dp < 00, then Fp # 0. On the other hand, (513 is a Dedekind domain with
a finite number of maximal ideals. Thus, Fp is an 6p—principal ideal. The
degree of the conductor ideal Fp is defined as

deg Fp := dimy (Op/Fp).

The degree of Fp is also invariant under completions and under separable
constant extensions.

We say that a local ring Op is Gorenstein if deg Fp = 26p. An algebraic
curve is called a Gorenstein curve if all its local rings are Gorenstein.

The dualizing sheaf wx is locally free of rank 1 if and only if X is a Gorenstein
curve (cf. [A-K, chap. VIII, prop. 1.16]). We denote by C the canonical divisor
of a complete, geometrically irreducible, algebraic curve X. Then Cp is a
principal ideal if and only if wx p is free of rank 1. Summarizing, we have the
following result of Rosenlicht.
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Theorem 1.4. Let X be a complete, geometrically irreducible, algebraic curve
defined over k. The curve X is Gorenstein if and only if its canonical divisor
is a Cartier divisor.

We denote by Ca®(X) the subgroup of degree zero divisors of Ca(X), by Pic (X)
the quotient group Ca(X)/Prin (X) and by Pic®(X) the quotient group

Cal(X)/Prin (X).

Let & be an algebraic closure of k. Pic®(X @, k) is the generalized Jacobian of
X ®, k (see [Ser2], [Ros2]).If k is a finite field Pic®(X) is the group of rational
points of Pic®(X &, k). The generalized Jacobian can be enlarged to a pro-
jective algebraic scheme, called the compactified Jacobian, which parametrizes
the equivalence classes of zero degree divisors of X ), k. The rational points
of the compactified Jacobian correspond bijectively to equivalence classes of
zero degree divisors of X.

2. Rationality and functional equation of Z(Ca(X),?)

In this section we present a generalization of results of F. K. Schmidt on the
rationality and on the functional equation of (X, t) to the function Z(Ca(X), t)
(cf. [Sti, chap. V]). The zeta function Z(Ca(X),t) is defined as follows:

Z(Ca(X),t) == Y ties),
A>0

where A runs through all Cartier divisors on X and ¢t = ¢~ %, s € C, Re(s) > 0.
We shall see later on that Z(Ca(X),t) converges analytically and uniformly
on the semiplane Re(s) > 0. This zeta function decomposes formally into an
Euler product

Z(CaX),t)= [[ 2(0r,t)=I[ | 3 e/ | (21)

PeX Pex \IDOp

and where I runs through all fractional principal ideals of Op, such that I 2
Op. By comparing product (2.1) with ¢(X,t) = Z(Ca(X),t), we see that it
converges on the semiplane Re(s) > 0. On the other side, the correspondence
I — I! is a bijection between the principal fractional ideals containing Op
and the principal ideals contained in Op. Furthermore, this correspondence
preserves degrees, therefore, we have that

Z(Op,t)= ¥ mx(©2/D),
ICOp

We observe that if P is a smooth point of X, then Z(Op,t) = (1 — tdes(P))=1,
where deg(P) is the cardinality of the residue field of P.
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Theorem 2.1. Let X be a complete, geometrically irreducible algebraic curve
over a finite field k = F,. Then the zeta function Z(Ca(X),t) is a rational
function. More precisely,

L(Ca(X), 1)
(1-t)1-gqt)’
where L(Ca(X),t) € Z][t] is a polynomial of degree at most 2g, and L(Ca(X),1)

= #Pic’(X), i.e. L(Ca(X),1) is the number of rational points of the general-
ized Jacobian of X Q, k.

Proof.
In order to generalize the proof of F.K. Schmidt we need to prove the following
three claims.

Claim 1.

Z(Ca(X),t) =

#Pic®%(X) < oco. (2.2)

Claim 2. There exists a Cartier divisor of degree 1.

Claim 3. For any integer d, the number of divisor classes in Pic (X) of degree
d is independent of d and is equal to the cardinality of Pic?(X).

After this, we can follow the argument of F.K. Schmidt as in [Sti, chap. V].
It is important to note that in this argument it is irrelevant to know whether
a canonical divisor is a Cartier divisor or not. We denote by [A] the linear
equivalence class of a divisor A and by 7*(.A) the pullback of A.

To establish claim 1, we first observe that Pic?(X) is a finite group (more
precisely, the group of divisor classes of degree zero of K(cf. [Sti, chap. V]),
so, it is sufficient to show that the kernel of the morphism

75 : Pic?(X) — Pic?(X)
7o ([A]) — [7*(A)],

is a finite group. }
We note that [A] € ker(ng) if and only if 7*(A) is a principal divisor of X, i.e.

™ (A)g = z*1(9Q = ApOq, (2.3)
for some z € K* and every point @) of X lying over P. Therefore
Fp g zAp g (’jp.

Since deg Fp < oo, the above relation implies that the kernel of 7§ contains
only a finite number of linear equivalence classes. The equivalence class of an
effective Cartier divisor .4 contains ql;i)l_ ! linearly equivalent Cartier divisors.
Therefore the kernel of 7§ is a finite group.
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The second claim can be reduced to the non-singular case using the fact that
the morphism 7* : Ca(X) — Ca(X) is surjective and preserves degrees. The
preservation of the degree of a Cartier divisor under 7* follows from the fact
that dimy Op/hOp = dimy, Op / hOp, for every non-zero rational function h of
X. Thus, there exists a Cartier divisor of degree 1.

We observe that claim 1 and claim 2 imply that the number of effective Cartier
divisors with a given degree is finite. Using the same argument as in the non-
singular case, we prove that Z(Ca(X),t) converges absolutely and uniformly
on the semiplane Re(s) > 0 (cf. [Sti, chap. V, prop. 1.6]).

The last claim follows from claim 2 and the fact that deg(AB) = deg(A) +
deg(B), for any two Cartier divisors A and B (see [Ha, sect. 1]). ™

Z(Op,t)

2600 is a rational function of t.

Corollary 2.2. The quotient

Proof. By taking a partial resolution of singularities of X, we may assume that
P is the only singular point of X. Then

Z(Ca(X),1) _ H (1- tdeg(Q)) Z(Op,t) = Z(?Pat)

Z(Ca(X),t) Z(Op,t)

Qen—1(P)

The result thus follows from the previous theorem. &

Theorem 2.3. Let X be a complete, geometrically irreducible, algebraic curve
defined over a finite field k = ;. Then the zeta function Z(Ca(X),t) satisfies
the functional equation

2(Ca(X),1) = ¢~ 922 (Ca(X), %) (2.3)

if and only if X is a Gorenstein curve.

Proof. If X is a Gorenstein curve, the argument of Schmidt for the non-singular
case, the reciprocity (Corollary 1.2), and the observations made in the proof of
Lemma 2.1 imply the functional equation (2.3) (see [Sti, chap. V, prop. 1.13]).
Conversely, if the zeta function Z(Ca(X),t) satisfies the functional equation
(2.3) and g 2 1, then the Riemann-Roch theorem and (2.2) imply that

Z(Ca(X),t) = Z1(X,t) + Zo(X, 1)

with

2g—2

1 1 .
Z1(X,t) = T—1 Z ql(A)tdeg(A) = -1 Z ajtJ (2.4)
971 o< degiA]<29—2 17— 155
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and
Bxp =t Y g L5 e
7 deglAI229-1 = deg[A]>0
1 41 #Pic(X)
= —— | #Pic®(X)g?t? " - : 2.
q—1<# e (X)e’t 1—gqt 1—t (2.5)

By hypothesis, Z(Ca(X), t) satisfies the functional equation (2.3). A direct ver-
ification shows that the function Z»(X,t) also satisfies the functional equation
(2.3). Therefore, Z;(X,t) satisfies the functional equation (2.3). This implies
that
azg—2—j =aj¢* 7, j=0,1,...,29 2.

On the other hand, ap = 1. Thus, az,—2 = ¢/ !. Since g > 1, a divisor
class [C] with deg(C) = 2¢g — 2 and ¢(C) = g must appear in the sum in (2.4).
These properties characterize the canonical class. Hence, by theorem 1.4, X is
Gorenstein. In the case g = 0, the genus formula implies § = 0, so that X is a
non-singular curve. Thus, in this case, also X is Gorenstein.

As a consequence of the functional equation (2.3), the degree of the polyno-
mial L(Ca(X),t) is 2g.

Corollary 2.4. The zeta function Z(Op,t) satisfies the functional equation

Z(Op,t) _ qdptZGPZ(OP’ %)
Z(Op,t) Z(OP, %)

if and only if Op is Gorenstein.

3. Rationality and functional equation of Z(Div(X),t)

In this section, we study the rationality and functional equation of the zeta
function Z(Div(X),t) associated to the set of divisors Div(X). This zeta func-
tion is defined as follows:

Z(Div(X),t) = Y I8,
A>O

where A runs through all effective divisors on X and t = ¢~ %, s € C, Re(s) > 0.
This zeta function decomposes formally into the following Euler product

ZOw(X), )= [[ z0p,ty= [ | _ ttime7/0m)

PeX PeX \IDOp

where I runs trough all Op-fractional ideals containing O.
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Theorem 3.1. Let X be a complete, geometrically irreducible algebraic curve
over a finite field k = F,. Then the zeta function Z(Ca(X),t) is a rational
function. More precisely,

L(Div(X),t)
(1-8)(1—gqt)’

where L(Div(X),t) € Z[t] is a polynomial of degree at most 2g, and L(Ca(X),1)
= #CI°(X), the number of classes of divisors of degree zero, i.e. L(Div(X),1)

is the number of rational points of the compactified Jacobian of X Q) k.

Z(Ca(X),t) =

Proof. The proof is similar to the proof of theorem 2.1. In order to prove that
#CI°(X) = Div®(X)/Prin(X) < oo,

we observe that Pic%(X) acts on CI°(X) by multiplication and the quotient
set is isomorphic to

{ TI ArlAp isanidealin Op and Fp C Ap C Op}. (3.1)

PeEXsing

Since dimy(Op/Fp) < oo and #Pic?(X) < oo, we conclude from (3.1) that
#CI°(X) < 00. Now we can follow the proof of theorem 2.1. ¥

The zeta function Z(Div(X),t) satisfies the functional equation (2.3). The
proof of this fact follows from the singular Riemann-Roch theorem and the
reciprocity, by a similar reasoning to that of Schmidt (see [Sti, chap. V]).
Stohr defined Z(Div(X),t) and proved that Z(Div(X),t) satisfies the func-
tional equation (2.4) (cf. [Sto, p. 133]).

The local factors of Z(Div(X),t) are rational functions (as in Corollary 2.2)
and satisfy a functional equation (as in Corollary 2.4). The functional equation
(2.3) implies that the degree of the polynomial L(Div(X), ) is 2g.
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