On the co-completeness of the category of Hausdorff uniform spaces

SERAFÍN BAUTISTA JANUARIO VARELA

Universidad Nacional de Colombia, Bogotá

ABSTRACT. A construction of colimits in the category of Hausdorff uniform spaces is carried out by means of a family of pseudometrics. Since this is not a topological category, its co-completeness can not be ensured by the standard procedures. A careful revision of the usual arguments is then required to this end.

Key words and phrases. Hausdorff uniform spaces, colimits, co-completeness. 1991 Mathematics Subject Classification. Primary 18A30. Secondary 18B99.

1. Uniformities in terms of pseudometrics

For many purposes, the appropriate generalization of the concept of a metric space is that of a Hausdorff uniform space, and not merely that of a uniform space. The latter could rather be viewed as a generalization of the notion of a pseudometric space. We focus our attention in this paper on the category $Unif_{\mathcal{H}}$ of Hausdorff uniform spaces and uniformly continuous maps, to establish the existence of colimits. Although all topological categories are known to be co-complete, and the category Unif of uniform spaces and uniformly continuous maps is such while $Unif_{\mathcal{H}}$ is not, the construction of colimits in this latter category deviates somewhat from the standard procedures followed for the former. First we examine some basic and preliminary facts.

A collection $\mathcal D$ of pseudometrics on a set X (with values in the real line $\mathbb R$) defines a uniformity on X by means of the subbasis of entourages $\{V_d^\varepsilon: d\in \mathbb R\}$

- $\mathcal{D}, \varepsilon > 0$, where $V_d^{\varepsilon} = \{(x,y) \in X \times X : d(x,y) < \varepsilon\}$. This uniformity is known to be the coarsest on X such that each $d \in \mathcal{D}$ is uniformly continuous for the product uniformity on $X \times X$ and the usual additive uniformity on \mathbb{R} .
- **1.1. Definition.** Let (X, \mathcal{U}) be a uniform space. The collection \mathcal{C}_X of all finite uniformly continuous pseudometrics on $X \times X$ is called the *total caliber* of (X, \mathcal{U}) .

The following two well known results can be found in various textbooks on General Topology. For instance, in [6] pages 183 and 188.

- **1.2. Theorem.** Let (X, \mathcal{U}) be a uniform space and $d: X \times X \longrightarrow \mathbb{R}$ be a finite pseudometric. Then d is uniformly continuous if and only if $V_d^{\varepsilon} \in \mathcal{U}$, for every $\varepsilon > 0$.
- **1.3. Theorem.** Every uniformity on X is generated by its total caliber.

The next preliminary result is due to R. De Castro, see [4].

- **1.4. Theorem.** Let (X, \mathcal{U}) , (Y, \mathcal{V}) be uniform spaces with respective total calibers \mathcal{C}_X and \mathcal{C}_Y , and let $f: X \longrightarrow Y$. The following assertions are equivalent:
 - (i) f is uniformly continuous.
 - (ii) There exists a unique function $\ell \colon \mathcal{C}_Y \longrightarrow \mathcal{C}_X$, $d \longmapsto d_{\ell}$, such that $d(f(x), f(y)) = d_{\ell}(x, y)$ for all $x, y \in X$.
 - (iii) There exists a function $k: \mathcal{C}_Y \longrightarrow \mathcal{C}_X$, $d \longmapsto d_k$, such that $d(f(x), f(y)) \leq d_k(x, y)$ for all $x, y \in X$.
- Proof. (i) \Longrightarrow (ii) Assume that f is uniformly continuous and let d be a pseudometric in \mathcal{C}_Y . Then the map $d'\colon X\times X\longrightarrow \mathbb{R}$ defined by $(x,y)\longmapsto d'(x,y)=d(f(x),f(y))$ is readily seen to be a pseudometric, and since f is uniformly continuous, for a given $V_d^\varepsilon\in\mathcal{V}$ there exists $U\in\mathcal{U}$ such that $(x,y)\in U$ implies $(f(x),f(y))\in V_d^\varepsilon$. Thus $U\subseteq V_{d'}^\varepsilon$, and then $V_{d'}^\varepsilon\in\mathcal{U}$. Theorem 1.2 then implies that d' is uniformly continuous, and consequently an element of the total caliber \mathcal{C}_X . The conclusion in item (ii) is then obtained by taking $d_\ell=d'$ for each $d\in C_Y$.
- (ii) \Longrightarrow (iii) If ℓ is as specified in (ii), the choice $k = \ell$ also satisfies (iii).
- (iii) \Longrightarrow (i) Assume $k \colon \mathcal{C}_Y \longrightarrow \mathcal{C}_X$ is as specified in item (iii) in the statement of the theorem. Given $V_d^\varepsilon \in \mathcal{V}$, take $V_{d_k}^\varepsilon \in \mathcal{U}$. Since $(x,y) \in V_{d_k}^\varepsilon$ implies $(f(x),f(y)) \in V_d^\varepsilon$, then f is uniformly continuous. \square

2. A construction

- **2.1. Definition.** Given a uniform space (Z, W), an arbitrary set X and a surjective map $h: Z \longrightarrow X$, the *quotient uniformity* on X by h is the uniformity $\{U \subseteq X \times X : (h \times h)^{-1}(U) \in W\}$.
- **2.2. Definition.** Let $(X_i)_{i\in I}$ be a family of disjoint uniform spaces, and for each $i\in I$, call \mathcal{U}_i the uniformity of X_i . The *sum uniformity* on $Z=\bigcup_{i\in I}X_i$ is the uniformity $\{V\subseteq Z\times Z: \text{for each }i\in I,\ V\cap (X_i\times X_i)\in \mathcal{U}_i\}.$
- 2.3. Remark. As a point of reference and comparison, recall that the colimit of the direct system $((X_{\alpha}, \mathcal{U}_{\alpha})_{\alpha \in \Lambda}, (f_{\alpha\beta})_{(\alpha,\beta) \in \Lambda_1})$ in Unif, where Λ is a directed set and Λ_1 is the set $\{(\alpha,\beta) \in \Lambda \times \Lambda : \alpha \leq \beta\}$, is defined in a similar manner as to that in the category Set. That is, as the uniform space $(Z/R, \mathcal{U})$, where Z is the disjoint union of the spaces X_{α} equipped with the sum uniformity, R is the equivalence relation given by $x_{\alpha} R x_{\beta} \iff \exists \gamma \geq \alpha, \beta$ such that $f_{\alpha\gamma}(x_{\alpha}) = f_{\beta\gamma}(x_{\beta})$, and \mathcal{U} is the quotient uniformity on Z/R by the canonical map $\phi: Z \longrightarrow Z/R$, $x_{\alpha} \longmapsto \overline{x}_{\alpha}$. Nevertheless, in the case of the category of Hausdorff uniform spaces the construction has to be modified somewhat, as shown below.

Denote by $Unif_{\mathcal{H}}$ the category of Hausdorff uniform spaces and uniformly continuous maps, and by $((X_{\alpha}, \mathcal{U}_{\alpha})_{\alpha \in \Lambda}, (f_{\alpha\beta})_{(\alpha,\beta) \in \Lambda_1})$, a direct system in $Unif_{\mathcal{H}}$. For each $\alpha \in \Lambda$, let \mathcal{C}_{α} denote the total caliber of the uniform space $(X_{\alpha}, \mathcal{U}_{\alpha})$, and for a given uniformly continuous function $f_{\alpha\beta} \colon X_{\alpha} \longrightarrow X_{\beta}$, let the unique map $\ell \colon \mathcal{C}_{\beta} \longrightarrow \mathcal{C}_{\alpha}$ such that $d_{\beta}(f_{\alpha\beta}(x_{\alpha}), f_{\alpha\beta}(y_{\alpha})) = (d_{\beta})_{\ell}(x_{\alpha}, y_{\alpha})$ be denoted by $\ell_{\alpha\beta}$.

2.4. Theorem. The direct system $((X_{\alpha}, \mathcal{U}_{\alpha})_{\alpha \in \Lambda}, (f_{\alpha\beta})_{(\alpha,\beta) \in \Lambda_1})$ in $Unif_{\mathcal{H}}$ has a colimit.

Proof. The construction is carried on in the next four steps.

(1) Let $Z = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ be the disjoint union of the family $(X_{\alpha})_{\alpha \in \Lambda}$ and let $\mathcal{C} = \overline{\lim} \, \mathcal{C}_{\alpha}$ be the projective limit of the system \mathcal{C}_{α} with maps $\ell_{\alpha\beta}$; that is, let

$$\mathcal{C} = \left\{ \mathbf{d} = (d_{\alpha})_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} \mathcal{C}_{\alpha} \colon (d_{\beta})_{\ell_{\alpha\beta}} = d_{\alpha} \text{ for each } (\alpha, \beta) \in \Lambda_{1} \right\}.$$

Consider on Z a collection of subbasic entourages $\mathcal{B} = \{W_{\mathbf{d}}^{\varepsilon} : \varepsilon > 0, \ \mathbf{d} \in \mathcal{C}\},\$ where

$$W^{\varepsilon}_{\mathbf{d}} = \{(x_{\alpha}, y_{\beta}) \in Z \times Z \ : \ \exists \gamma \in \Lambda \text{ s. t. } \gamma \geq \alpha, \beta \ \& \ (f_{\alpha\gamma}(x_{\alpha}), f_{\beta\gamma}(y_{\beta})) \in V^{\varepsilon}_{d_{\gamma}} \}.$$

For each $\varepsilon > 0$ and $\mathbf{d} \in \mathcal{C}$ we have $\Delta_Z \subseteq W_{\mathbf{d}}^{\varepsilon}$, $W_{\mathbf{d}}^{\varepsilon/2} \circ W_{\mathbf{d}}^{\varepsilon/2} \subseteq W_{\mathbf{d}}^{\varepsilon}$ and $(W_{\mathbf{d}}^{\varepsilon})^{-1} = W_{\mathbf{d}}^{\varepsilon}$. Hence, \mathcal{B} is a subbasis for a uniformity \mathcal{W} on Z such that all the canonical injections $j_{\alpha} \colon X_{\alpha} \longrightarrow Z$ are uniformly continuous. Furthermore,

the uniformity \mathcal{W} on Z is coarser than the sum uniformity. In fact, $V_{d_{\alpha}}^{\varepsilon} \subseteq W_{\mathbf{d}}^{\varepsilon} \cap (X_{\alpha} \times X_{\alpha})$, and $V_{d_{\alpha}}^{\varepsilon} \in \mathcal{U}_{\alpha}$ for each $\alpha \in \Lambda$.

(2) Define on Z the equivalence relation

$$x_{\alpha} R y_{\beta} \iff (\forall \mathbf{d} \in \mathcal{C})(\forall \varepsilon > 0)((x_{\alpha}, y_{\beta}) \in W_{\mathbf{d}}^{\varepsilon}).$$

(3) Let X = Z/R and $\phi \colon Z \longrightarrow X$, $x_{\alpha} \longmapsto \overline{x}_{\alpha}$, be the quotient map. The collection $\{(\phi \times \phi)(W_{\mathbf{d}}^{\varepsilon}) : W_{\mathbf{d}}^{\varepsilon} \in \mathcal{B}\}$ is a subbasis of entourages for a uniformity \mathcal{U} on X. It is apparent that the map ϕ is uniformly continuous with respect to the uniformities \mathcal{W} and \mathcal{U} above.

The uniformity \mathcal{U} is in general strictly coarser than the quotient uniformity on X by ϕ . In fact, if $W \in \mathcal{W}$ then $\bigcap_{j \in J} W^{\varepsilon}_{\mathbf{d}_j} \subseteq W$ for some collection in \mathcal{C} indexed by a finite set J and some $\varepsilon > 0$. But $(\phi \times \phi)(\bigcap_{j \in J} W^{\varepsilon}_{\mathbf{d}_j}) \subseteq \bigcap_{j \in J} (\phi \times \phi)(W^{\varepsilon}_{\mathbf{d}_j})$, and it may well happen that these two sets are different. Then, it can not be guaranteed that $(\phi \times \phi)(W)$ contains a finite intersection of sets of the form $(\phi \times \phi)(W^{\varepsilon}_{\mathbf{d}_j})$.

We claim that (X, \mathcal{U}) is a Hausdorff space. Suppose that $(\overline{x}_{\alpha}, \overline{y}_{\beta}) \in (\phi \times \phi) (W_{\mathbf{d}}^{\varepsilon/3})$ for all $\varepsilon > 0$ and all $\mathbf{d} \in \mathcal{C}$. Now, since for each $\varepsilon > 0$ and each $\mathbf{d} \in \mathcal{C}$ there exists $(u_{\theta}, v_{\xi}) \in W_{\mathbf{d}}^{\varepsilon/3}$ such that $\overline{x}_{\alpha} = \overline{u}_{\theta}$, $\overline{y}_{\beta} = \overline{v}_{\xi}$, so that $(x_{\alpha}, u_{\theta}) \in W_{\mathbf{d}}^{\varepsilon/3}$, $(y_{\beta}, v_{\xi}) \in W_{\mathbf{d}}^{\varepsilon/3}$, then for every $\varepsilon > 0$ and every $\mathbf{d} \in \mathcal{C}$ we have that $(x_{\alpha}, y_{\beta}) \in W_{\mathbf{d}}^{\varepsilon}$, and therefore $\overline{x}_{\alpha} = \overline{y}_{\beta}$.

(4) (X, \mathcal{U}) is the sought colimit. In fact, define for each $\alpha \in \Lambda$, $\tau_{\alpha} : X_{\alpha} \longrightarrow X$, $x_{\alpha} \longmapsto \overline{x}_{\alpha}$. The map τ_{α} is a morphism in $Unif_{\mathcal{H}}$, because $\tau_{\alpha} = \phi \circ j_{\alpha}$. But since $x_{\alpha} R f_{\alpha\beta}(x_{\alpha})$, it follows that $\tau_{\beta} \circ f_{\alpha\beta} = \tau_{\alpha}$ if $\alpha \leq \beta$.

Given a second inductive cone for the given system, say for instance $((Y, \mathcal{V}), (\sigma_{\alpha} : X_{\alpha} \longrightarrow Y)_{\alpha \in \Lambda})$, we claim that $\psi : X \longrightarrow Y$, $\overline{x}_{\alpha} \longmapsto \sigma_{\alpha}(x_{\alpha})$, is a morphism in $Unif_{\mathcal{H}}$ (necessarily unique) such that for each $\alpha \in \Lambda$, $\psi \circ \tau_{\alpha} = \sigma_{\alpha}$. Indeed:

(a) ψ is a well defined map. To see this, let \mathcal{C}_Y be the total caliber of (Y, \mathcal{V}) . The uniform continuity of σ_{α} and Theorem 1.4 above imply that for each $\alpha \in \Lambda$ there exists $q_{\alpha} : \mathcal{C}_Y \longrightarrow \mathcal{C}_{\alpha}, \ d \longmapsto d_{q_{\alpha}}$, such that for each $d \in \mathcal{C}_Y$ and for each $x_{\alpha}, \ y_{\alpha} \in X_{\alpha}, \ d(\sigma_{\alpha}(x_{\alpha}), \sigma_{\alpha}(y_{\alpha})) = d_{q_{\alpha}}(x_{\alpha}, y_{\alpha})$. Hence, it follows that for each $d \in \mathcal{C}_Y$, each $(\alpha, \beta) \in \Lambda_1$ and each $(x_{\alpha}, y_{\alpha}) \in X_{\alpha} \times X_{\alpha}$,

$$d_{q_{\alpha}}(x_{\alpha}, y_{\alpha}) = d(\sigma_{\alpha}(x_{\alpha}), \sigma_{\alpha}(y_{\alpha})) = d(\sigma_{\beta}(f_{\alpha\beta}(x_{\alpha})), \sigma_{\beta}(f_{\alpha\beta}(y_{\alpha})))$$
$$= d_{q_{\beta}}(f_{\alpha\beta}(x_{\alpha}), f_{\alpha\beta}(y_{\alpha})) = (d_{q_{\beta}})_{\ell_{\alpha\beta}}(x_{\alpha}, y_{\alpha}).$$

Thus, for every $d \in \mathcal{C}_Y$, $d_{q_{\alpha}} = d_{\ell_{\alpha\beta} \circ q_{\beta}}$; that is, $q_{\alpha} = \ell_{\alpha\beta} \circ q_{\beta}$ for each $(\alpha, \beta) \in \Lambda_1$.

Taking into account that $C = \varprojlim C_{\alpha}$, there exists a unique map $\varphi \colon C_Y \longrightarrow C$, $d \longmapsto \varphi(d) = (d_{q_{\alpha}})_{\alpha \in \Lambda}$, such that, for each $\alpha \in \Lambda$, $\pi_{\alpha} \circ \varphi = q_{\alpha}$.

Assume that $\overline{x}_{\alpha} = \overline{y}_{\beta}$. Given $d \in \mathcal{C}_{Y}$, take $\mathbf{d} = \varphi(d)$. Then, for every $\varepsilon > 0$ there exists $\gamma \in \Lambda$ with $\gamma \geq \alpha, \beta$ such that $(f_{\alpha\gamma}(x_{\alpha}), f_{\beta\gamma}(y_{\beta})) \in V_{d_{q\gamma}}^{\varepsilon}$. Hence,

$$(\forall d \in \mathcal{C}_Y)(\forall \varepsilon > 0) \big((\sigma_{\alpha}(x_{\alpha}), \sigma_{\beta}(y_{\beta})) = (\sigma_{\gamma} \times \sigma_{\gamma}) (f_{\alpha\gamma}(x_{\alpha}), f_{\beta\gamma}(y_{\beta})) \in V_d^{\varepsilon} \big).$$

Now, since (Y, \mathcal{V}) is Hausdorff and $\{V_d^{\varepsilon} : \varepsilon > 0, d \in \mathcal{C}_Y\}$ is a basis of entourages of \mathcal{V} , it follows that $\psi(\overline{x}_{\alpha}) = \sigma_{\alpha}(x_{\alpha}) = \sigma_{\beta}(y_{\beta}) = \psi(\overline{y}_{\beta})$. Thus, ψ is a well defined map, as claimed.

(b) ψ is a morphism of $Unif_{\mathcal{H}}$. Let $V_d^{\varepsilon} \in \mathcal{V}$. Then

```
\begin{split} &(\psi\times\psi)^{-1}\big(V_d^\varepsilon\big)\\ &=\{(\overline{x}_\alpha,\overline{y}_\beta)\ :\ (\psi\times\psi)(\overline{x}_\alpha,\overline{y}_\beta)\in V_d^\varepsilon\}\\ &=\{(\phi\times\phi)(x_\alpha,y_\beta)\ :\ (\sigma_\alpha(x_\alpha),\sigma_\beta(y_\beta))\in V_d^\varepsilon\}\\ &=\{(\phi\times\phi)(x_\alpha,y_\beta)\ :\ (\exists\gamma\geq\alpha,\beta)\big[\big(\sigma_\gamma(f_{\alpha\gamma}(x_\alpha)),\sigma_\gamma(f_{\beta\gamma}(y_\beta))\big)\in V_d^\varepsilon\big]\big\}\\ &=\{(\phi\times\phi)(x_\alpha,y_\beta)\in X\times X\ :\ (\exists\gamma\geq\alpha,\beta)\big[\big(f_{\alpha\gamma}(x_\alpha),f_{\beta\gamma}(y_\beta)\big)\in V_{q_\gamma(d)}^\varepsilon\big]\big\}\\ &=\{\phi\times\phi)(x_\alpha,y_\beta)\in X\times X\ :\ (x_\alpha,y_\beta)\in W_{\varphi(d)}^\varepsilon\}=(\phi\times\phi)(W_{\varphi(d)}^\varepsilon)\in \mathcal{U}. \end{split}
```

 $Unif_{\mathcal{H}}$ has a closely related category in which the construction of colimits is straightforward. Let $\mathcal{P}met_{\mathcal{H}}$ be the category whose objects are sets endowed with a family of pseudometrics $(X,(d_i)_{i\in I})$ such that x=y if $d_i(x,y)=0$ for each $i\in I$, and, given a second object $(Y,(d_j)_{j\in J})$, a morphism is a pair of functions $(f,k):X\times J\longrightarrow Y\times I,\ (x,j)\longmapsto (f(x),j_k)$, such that $d_j(f(x),f(y))\leq d_{j_k}(x,y)$ for each $x,y\in X$.

2.5. Theorem. A direct system $((X_{\alpha}, (d_{i_{\alpha}})_{i_{\alpha} \in I_{\alpha}})_{\alpha \in \Lambda}, (f_{\alpha\beta}, k_{\alpha\beta})_{(\alpha,\beta) \in \Lambda_1})$ in $\mathcal{P}met_{\mathcal{H}}$ has a colimit

Proof. Let $Z = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ be the disjoint union of the family $(X_{\alpha})_{\alpha \in \Lambda}$. Let I be the limit of the inverse system $((I_{\alpha})_{\alpha \in \Lambda}, (k_{\alpha\beta})_{(\alpha,\beta)\in \Lambda_1})$ in the category Set. For each $i \in I$ consider the pseudometric $\delta_i \colon Z \times Z \longrightarrow \overline{\mathbb{R}}, (x_{\alpha}, y_{\beta}) \longmapsto \inf_{\gamma \in \Lambda} \{d_{i_{\gamma}}(f_{\alpha\gamma}(x_{\alpha}), f_{\beta\gamma}(y_{\beta})) \colon \alpha, \beta \leq \gamma\}$. Let R be the equivalence relation on Z defined by $x_{\alpha} R y_{\beta}$ if $\delta_i(x_{\alpha}, y_{\beta}) = 0$ for each $i \in I$.

If X = Z/R then $\overline{\delta}_i \colon X \times X \longrightarrow \overline{\mathbb{R}}$, $(\overline{x}_{\alpha}, \overline{y}_{\beta}) \longmapsto \delta_i(x_{\alpha}, y_{\beta})$ is a well defined pseudometric on X for each $i \in I$, as it can be easily verified. Consequently, $(X, (\overline{\delta}_i)_{i \in I})$ is an object of $\mathcal{P}met_{\mathcal{H}}$.

For each $\alpha \in \Lambda$ define $\tau_{\alpha} \colon X_{\alpha} \longrightarrow X$ by $x_{\alpha} \longmapsto \overline{x}_{\alpha}$. Then $(\tau_{\alpha}, \pi_{\alpha})$ is a morphism in $\mathcal{P}met_{\mathcal{H}}$, and $((X, (\overline{\delta}_{i})_{i \in I}), ((\tau_{\alpha}, \pi_{\alpha}) \colon X_{\alpha} \times I \longrightarrow X \times I_{\alpha})_{\alpha \in \Lambda})$ is an inductive cone which is the colimit of the given direct system. The separation property of the objects in $\mathcal{P}met_{\mathcal{H}}$ is necessary to establish the universal property of this cone.

Let Calib be the category whose objects (X, \mathcal{C}_X) are sets endowed with a family of pseudometrics coinciding with the total caliber of the underlying uniformity. Given a second object (Y, \mathcal{C}_Y) , a morphism is a pair of functions $(f, \ell): X \times \mathcal{C}_Y \longrightarrow Y \times \mathcal{C}_X$, $(x, d) \longmapsto (f(x), d_\ell)$, such that $d(f(x), f(y)) = d_\ell(x, y)$ for each $x, y \in X$.

2.6. Proposition. The category Unif is equivalent to Calib.

Proof. Let $F: Unif \longrightarrow Calib$ be the functor defined by $F(X, \mathcal{U}) = (X, \mathcal{C}_X)$, where \mathcal{C}_X is the total caliber of the uniformity \mathcal{U} , and by $F(f) = (f, \ell)$: $X \times \mathcal{C}_Y \longrightarrow Y \times \mathcal{C}_X$, where ℓ is as in Theorem 1.4., if $f: X \longrightarrow Y$ is a uniformly continuous map. Then F is readily seen to be full, faithful and isomorphismdense. Hence, the asserted equivalence of categories (see [2]) follows. \square

References

- [1] JIŘÍ ADÁMEK ET AL., Abstract and Concrete Categories. The Joy of Cats, Wiley & Sons, 1989
- [2] SERAFÍN BAUTISTA, Co-completez de Categorías de Espacios Uniformes y Procesos de Lacalización, Tesis de Maestría, Programa de Posgrado en Matemáticas, Universidad Nacional, Bogotá, 1995.
- [3] NICOLAS BOURBAKI, General Topology, Addison-Wesley, 1966.
- [4] RODRIGO DE CASTRO, Localización en Campos de Espacios Uniformes, Tesis de Maestría, Programa de Posgrado en Matemáticas, Universidad Nacional, Bogotá, 1985.
- [5] RODRIGO DE CASTRO & JANUARIO VARELA, Localization in bundles of uniform spaces, Rev. Colombiana Mat. 24 (1990), 103-112.
- [6] JOHN KELLY, General Topology, Van Nostrand, 1955.
- [7] SAUNDERS MAC LANE, Categories for the Working Mathematician, Springer-Verlag, 1971.
- [8] STEPHEN WILLARD, General Topology, Addison-Wesley, 1970.

(Recibido en agosto de 1996; revisado en agosto de 1997)

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL DE COLOMBIA BOGOTÁ, COLOMBIA

e-mail: sebadi@matematicas.unal.edu.co e-mail: jvarela@gaitana.interred.net.co