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Does Newton’s method for set-valued
maps converges uniformly in
mild differentiability context?

Alain Pietrus

Université de Poitiers, Futuroscope Chasseneuil, FRANCE

Abstract. In this article, we study the existence of Newton-type sequence
for solving the equation y ∈ f(x) + F (x) where y is a small parameter, f is
a function whose Fréchet derivative satisfies a Hölder condition of the form
||∇f(x1) − ∇f(x2)|| ≤ K||x1 − x2||d and F is a set-valued map between two
Banach spaces X and Y . We prove that the Newton-type method y ∈ f(xk) +
∇f(xk)(xk+1− xk) + F (xk+1), is locally convergent to a solution of y ∈ f(x) +

F (x) if the set valued map
�
f(x∗)+∇f(x∗)(·−x∗)+F (·)

�−1
is Aubin continuous

at (0, x∗) where x∗ is a solution of 0 ∈ f(x) + F (x). Moreover, we show that
this convergence is superlinear uniformly in the parameter y and quadratic when
d = 1.
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1. Introduction

In a previous paper [P1], we have studied a Newton-type method for solving
generalized equation of the form:

Find x ∈ X such that 0 ∈ f(x) + F (x) (1)

where f is a function and F is a set-valued map.
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In this study X and Y are two Banach spaces, f : X −→ Y is Fréchet
differentiable function and F : X −→ 2Y a multi-valued function with closed
graph.

Let us recall that equation (1) is an abstract model for various problems.

• When F = 0, (1) is an equation.

• When F is the positive orthant in Rm, (1) is a system of inequalities.
• When F is the normal cone to a convex and closed set in X, (1) may

represent variational inequalities.

For other examples, the reader could refer to [D2].

Generally, for solving equations of kind (1), the authors (see [D1]) in order
to obtain convergence have to suppose that ∇f (the Fréchet derivative of f)
is Lipschitz (as in the classical Newton method) in a neighborhood Ω of a
solution of (1). In [P1], we show that equation (1) can be solved by a Newton
type method in the case where ∇f satisfies a Hölder condition on Ω:

∃K > 0, d ∈ (0, 1] such that

||∇f(x1)−∇f(x2)|| ≤ K||x1 − x2||d ∀x1, x2 ∈ Ω. (2)

The question of the existence of a Newton type method to solve perturbed
equation associated to (1) is quite natural. For this question Dontchev in [D2]
give an affirmative answer keeping the same assumption on ∇f as in [D1].

Our aim in this paper is to show that the answer remain true if ∇f satis-
fies condition (2). The results obtained in this study include some results of
Dontchev obtained in [D2].

The perturbed equation mentioned above is in fact equation (1) in which 0
is replaced by a parameter y. The resulting problem is

Find x ∈ X such that y ∈ f(x) + F (x) (3)

The Newton-type method for solving (1) is: If xk is the current iterate, the
next iterate is found from the relation:

0 ∈ f(xk) +∇f(xk)(xk+1 − xk) + F (xk+1), k = 0, 1, . . . (4)

where ∇f(x) is the Fréchet derivative of f at x and x0 is a given starting point.

It is obvious that the Newton-type method for solving (3) is the Newton-type
method for solving (1) in which 0 is replaced by y. This method reads:

If xk is the current iterate, the next iterate is found from the relation:

y ∈ f(xk) +∇f(xk)(xk+1 − xk) + F (xk+1), k = 0, 1, . . . (5)
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Note that when F = {0}, (4) is the classical Newton method for solving f(x) =
0 whereas (5) is the classical Newton method for solving y = f(x) and if (4)
represents the variational system associated with an optimization problem,
then (5) is the corresponding version of the sequential quadratic programming
method.

In the literature, the class of functions described by (2) is often called C1,d.
Note that when d = 1, we have the Lipschitz condition for ∇f .

Condition (2) has been considered by several authors for solving operator
equations. In [A], when f satisfies condition (2), one can solve f(x) + g(x) = 0
in some closed ball with the help of the iteration

xn+1 = xn − f ′(xn)−1
(
f(xn) + g(xn)

)
. (6)

Let us precise that when d = 1, the above iteration has been considered by
Nguen and Zabrejko [NZ].

Condition (2) is often called the Vertgejm condition, in fact the first basic
results are due to Vertgejm [V1], [V2]. In [AELZ], condition (2) gives new
results on the approximation of Newton-Kantorovich and furnishes applications
to nonlinear integral equations.

Throughout this paper all the norms are denoted by || . ||, the distances by
dist, the inverse of a map G by G−1 and we will denote by Br(x) the closed
ball centered at x with radius r.

Recall that a set-valued map Γ from Y to the subsets of Z is said to be
M -pseudo-Lipschitz around (y0, z0) ∈ GraphΓ := {(y, z) ∈ Y × Z : z ∈ Γ(y)}
if there exist neighborhoods V of y0 and U of z0 such that

sup
z∈Γ(y1)∩U

dist(z, Γ(y2)) ≤ M ||y1 − y2|| ∀y1 and y2 in V. (7)

Equivalently, Γ is M -pseudo-Lipschitz around (y0, z0) ∈ GraphΓ with constant
l and m if for every y1, y2 ∈ Bm(y0) and for every z1 ∈ Γ(y1) ∩ Bl(0) there
exists z2 ∈ Γ(y2) such that

||z1 − z2|| ≤ M ||y1 − y2||.

Let A and C be two subsets of X, if we denote by e(C, A) the excess from the
set A to the set C (semi-distance of Haussdorff)

e(C, A) = sup{dist(x,A) : x ∈ C},

then we have an equivalent definition of a M -pseudo-Lipschitz set-valued map,
replacing (7) by:

e(Γ(y1) ∩ U,Γ(y2)) ≤ M ||y1 − y2||. (8)
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In [DR], the above property is called the Aubin continuity and the maps sat-
isfying this property are called Aubin continuous maps. In [DH] the above
property has been used in order to study the problem of inverse for set-valued
maps. Let us precise also that the constant M is often called the modulus of
Aubin continuity.

For more information about the Aubin continuity, the reader could refer to
[AF], [M] and [R].

In the present paper, we follow an idea of the author in [D2], to show that
the Aubin continuity is a sufficient property to allows equation (1) to be stable
under small perturbation. what is the minimum one can hope for a numerical
process.

2. Uniform convergence in mild differentiability context

In the case when y = 0 in equation (4), we have showed in a previous paper
[P1] that if x∗ is a solution of (1), the Aubin continuity of (f + F )−1 at (0, x∗)
gives the existence of a superlinear Newton sequence which converges to x∗.
We are going to show that this result remains true if we replace 0 by some
small y.

The main result of this study is the following:

Theorem. Let x∗ be a solution of (1) , f a function which is Fréchet differ-
entiable in an open neighborhood Ω of x∗ and F a set-valued map with closed
graph. We suppose that the Fréchet derivative ∇f of f is continuous and
satisfies condition (2) in Ω with constant K.

If we suppose that the map (f + F )−1 is Aubin continuous at (0, x∗). Then
there exists positive constants σ, and b such that for every y ∈ Bb(0) and
x0 ∈ Bσ(x∗) there exists a Newton sequence (xn) for (3) defined by (5), starting
from x0 and which converge to a solution x of (3) for y.

Furthermore, there exists a constant γ such that

||xk+1 − x|| ≤ γ||xk − x||1+d (9)

that is (xk) is superlinearly convergent to x.

As it has been announced in the introduction, this theorem differs from this
given by Dontchev because of the properties of the Fréchet derivative ∇f of
f . In [D2], the author suppose that ∇f is Lipschitz continuous in Ω, whereas
here, we only suppose that ∇f is Hölder continuous in Ω that is more general
and in our opinion very interesting in applications. Obviously, when the Hölder
exponent is equal to one, we find again the Dontchev result.
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3. Proof of the theorem

Before proving the theorem, some results will be useful for the sequel.

Lemma 1. Let U be a convex set. If ||∇f(x1) − ∇f(x2)|| ≤ K||x1 − x2||d
(d ∈ (0, 1]), ∀x1, x2 ∈ U , then

||f(x2)− f(x1)−∇f(x1)(x2 − x1)|| ≤ 1
d + 1

K||x2 − x1||1+d.

Proof. We have

f(x2)− f(x1)−∇f(x1)(x2 − x1) =
∫ 1

0

∇f(tx2 + (1− t)x1)dt(x2 − x1)−
∫ 1

0

∇f(x1)dt(x2 − x1).

From this, we deduce

||f(x2)− f(x1)−∇f(x1)(x2 − x1)|| ≤

||x2 − x1||
∫ 1

0

||∇f(tx2 + (1− t)x1)−∇f(x1)||dt,

and thus

||f(x2)− f(x1)−∇f(x1)(x2 − x1)|| ≤

K||x2 − x1||1+d

∫ 1

0

tddt =
K

1 + d
||x2 − x1||1+d. ¤X

Lemma 2 [D2]. Let (x̃, ỹ) ∈ Graph(f + F ) and f be a function which is
Fréchet differentiable in an open neighborhood Ω of x̃, whose derivative ∇f is
continuous at x̃.

If we suppose that F has closed graph and the map (f + F )−1 is Aubin
continuous at (x̃, ỹ), then there exist positive constants r, s and M such that
for every x ∈ Br(x̃) if Px = [f(x) +∇f(x)(.− x) + F (.)]−1, then

e

(
Px(y′) ∩Br(x̃), Px(y′′)

)
≤ M ||y′ − y′′||

for every y′, y′′ ∈ Bs(x̃).

Proof of the theorem. Firstly, let us remark that the Aubin continuity of
(f + F )−1 at (0, x∗) with constants l, m and modulus c implies that for all
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y1 and y2 ∈ Bm(0) and for all x1 ∈ (f + F )−1(y1) ∩ Bl(x∗) the existence of
x2 ∈ (f + F )−1(y2) which satisfies ||x1 − x2|| ≤ c||y1 − y2||.

Taking δ = m, y1 = 0, y2 = y, x1 = x∗ and x2 = x in the above assertion,
we obtain the existence of δ > 0 such that for every y ∈ Bδ(0) there exists
x ∈ (f + F )−1(y) ∩Bc||y||(x∗).

Now, let us assume that σ and b satisfy the following:

(i) σ ≤ r
2 ,

(ii) b ≤ min{ s
2 , δ, r

2c},

(iii) cb + σ ≤ min
{(

s(1 + d)
2K

) 1
1+d

,

(
r(1 + d)
2MK

) 1
1+d

,

(
(1 + d)
MK

) 1
d }

where r, s and M are given by lemma 2 with x̃ = x∗ and ỹ = 0.

For every y ∈ Bb(0), we have to prove the existence of a Newton sequence
(xn) which converge to x which is solution of (3).

We proceed by induction for the rest of the proof. More precisely, we are
going to show that starting from a suitable x0, we obtain x1 which verify (4)
and (9) with k = 0 and so and so for all k ∈ N.

Let x0 ∈ Bσ(x∗), y ∈ Bb(0) and x ∈ (f + F )−1(y) ∩Bc||y||(x∗) which allows
||x− x∗|| ≤ cb ≤ r. Let us also remark that y ∈ f(x) + F (x) is equivalent to

x ∈ Px0

(
y − f(x) + f(x0) +∇f(x0)(x− x0)

) ∩Br(x∗). (10)

and with lemma 1, we obtain

||y − f(x) + f(x0) +∇f(x0)(x− x0)|| ≤ K

1 + d
||x− x0||

1
1+d + b

≤ K

1 + d
(cb + σ) + b.

The use of the hypotheses (ii) and (iii) gives

||y − f(x) + f(x0) +∇f(x0)(x− x0)|| ≤ s

2
+

s

2
= s. (11)

The inequality (11) means that z = y−f(x)+f(x0)+∇f(x0)(x−x0) ∈ Bs(x∗).
Since x0 ∈ Bσ(x∗) ⊂ Br(x∗) and (f +F )−1 is Aubin continuous at (0, x∗) thus
an application of lemma 2 gives

e

(
Px0(z) ∩Br(x∗), Px0(y)

)
≤ M || − f(x) + f(x0) +∇f(x0)(x− x0)||. (12)

Thus, there exists x1 ∈ Px0(y) such that

||x− x1|| ≤ M || − f(x) + f(x0) +∇f(x0)(x− x0)||. (13)
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Thanks to lemma 1, (13) becomes

||x− x1|| ≤ MK

1 + d
||x− x0||1+d (14)

and since x ∈ Bcb(x∗) and ||x1 − x∗|| ≤ ||x− x1||+ ||x− x∗||, we obtain

||x∗ − x1|| ≤ MK

1 + d
||x− x0||1+d + cb ≤ r

2
+

r

2
= r

thus x1 ∈ Br(x∗).

Let us suppose that we have proved the existence of x1, x2, . . . xk element
of Br(x∗) and which verify the relation (4) and (9). We are going to show that
we can find xk+1 with the same property. Firstly, it is easy to see by induction
using (ii) that

||x− xl|| ≤ MK

1 + d
(cb + σ)1+d, ∀ 2 ≤ l ≤ k. (15)

Starting with xk, as before, we show that
x ∈ Pxk

(
y − f(x) + f(xk) +∇f(xk)(x− xk)

) ∩Br(x∗). (16)
Furthermore, using lemma 1,(iii) and the recursion relation, we obtain

||y − f(x) + f(xk) +∇f(xk)(x− xk)|| ≤ K

1 + d
||x− xk||

1
1+d + b

≤ K

1 + d

( MK

d + 1
(cb + σ)d+1

)1+d + b

≤ K

1 + d

(
cb + σ

)1+d + b

≤ s

2
+

s

2
= s.

By lemma 2 there exists a Newton iterate xk+1 ∈ Pxk
such that

||x−xk+1|| ≤ M ||−f(x)+f(xk)+∇f(xk)(x−xk)|| ≤ MK

1 + d
||x−xk||1+d (17)

That gives the inequality (3) of the theorem at the step k + 1.

Now, let us show that the previous sequence is convergent.

Let ε > 0 be such that Mε < 1. Since ∇f is continuous, we can suppose
that

||∇f(z)−∇f(u)|| ≤ ε ∀ z, u ∈ Br(x∗).
We also have all the xk in Br(x∗) and they satisfy

||xk+1 − xk|| ≤ M ||f(xk)− f(xk−1)−∇f(xk−1)(xk − xk−1)||
This inequality and the continuity of ∇f give

||xk+1 − xk|| ≤ Mε||xk−1 − xk|| ≤ · · · ≤ (Mε)k||x1 − x0||
This last inequality show that (xk) is a Cauchy sequence thus (xk) converges
to x and the proof of the theorem is complete. ¤X
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