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Abstract. In this note we study, for n = 5, 6, 7, the geometry of the full flag

manifolds, F (n) = U(n)
U(1)×···×U(1)

. By using tournaments we characterize all of

the (1,2)-symplectic invariant metrics on F (n), for n = 5, 6, 7, corresponding to
different classes of non-integrable invariant almost complex structure.
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1. Introduction

Eells and Sampson [ES], proved that if φ : M → N is a holomorphic map
between Kähler manifolds then φ is harmonic. This result was generalized by
Lichnerowicz (see [L] or [Sa]) as follows: Let (M, g, J1) and (N, h, J2) be almost
Hermitian manifolds with M cosymplectic and N (1,2)-symplectic. Then any
± holomorphic map φ : (M, J1) → (N, J2) is harmonic.

We are interested to study harmonic maps, φ : M2 → F (n), from a closed
Riemannian surface M2 to a full flag manifold F (n). Then by the Lichnerow-
icz theorem, we must study (1,2)-symplectic metrics on F (n), because a Rie-
mannian surface is a Kähler manifold and a Kähler manifold is a cosymplectic
manifold (see [Sa] or [GH]).
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The study of invariant metrics on F (n) involves almost complex structures
on F (n). Borel and Hirzebruch [BH], proved that there are 2(n

2) U(n)-invariant
almost complex structures on F (n). This number is the same number of tour-
naments with n players or nodes. A tournament is a digraph in which any two
nodes are joined by exactly one oriented edge (see [M] or [BS]). There is a natu-
ral identification between almost complex structures on F (n) and tournaments
with n players, see [MN3] or [BS].

The tournaments can be classified in isomorphism classes. In that classi-
fication, one of this classes corresponds to the integrable structures and the
another ones correspond to non-integrable structures. Burstall and Salamon
[BS], proved that a almost complex structure J on F (n) is integrable if and only
if the associated tournament to J is isomorphic to the canonical tournament
(the canonical tournament with n players, {1, 2, . . . , n}, is defined by i → j if
and only if i < j). In that paper the identification between almost complex
structures and tournaments plays a very important role.

Borel [Bo], proved that exits a (n−1)-dimensional family of invariant Kähler
metrics on F (n) for each invariant complex structure on F (n). Eells and
Salamon [ESa], proved that any parabolic structure on F (n) admits a (1,2)-
symplectic metric. Mo and Negreiros [MN2], showed explicitly that there is a
n-dimensional family of invariant (1,2)-symplectic metrics for each parabolic
structure on F (n), the identification between almost complex structures and
tournaments is strongly used in that paper.

Mo and Negreiros ([MN1], [MN2]) studied the geometry of F (3) and F (4).
In this paper we study the F (5), F (6) and F (7) cases. We obtain the
following families of (1,2)-symplectic invariant metrics, different to the Kähler
and parabolic: On F (5), two 5-parametric families; on F (6), four 6-parametric
families, two of them generalizing the two families on F (5) and, on F (7) we
obtain eight 7-parametric families, four of them generalizing the four ones on
F (6).

These metrics are used to produce new examples of harmonic maps φ : M2 →
F (n), applying the result of Lichnerowicz mentioned above.

These notes are part of the author’s Doctoral Thesis [P]. I wish to thank
my advisor Professor Caio Negreiros for his right advise. I would like to thank
Professor Xiaohuan Mo for his helpful comments and dicussions on this work.

2. Preliminaries

A full flag manifold is defined by

(2.1) F (n) = {(L1, . . . , Ln) : Li is a subspace of Cn, dimCLi = 1, Li⊥Lj}.
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The unitary group U(n) acts transitively on F (n). Using this action we obtain
an algebraic description for F (n):

(2.2) F (n) =
U(n)

T
=

U(n)
U(1)× · · · × U(1)︸ ︷︷ ︸

n−times

,

where T = U(1)× · · · × U(1)︸ ︷︷ ︸
n−times

is a maximal torus in U(n).

Let p be the tangent space of F (n) in (T ). The Lie algebra u(n) is such that
(see [ChE])

(2.3)
u(n) = {X ∈ Mat(n,C) : X + X

t
= 0}

= p⊕ u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
n−times

.

Definition 2.1. An invariant almost complex structure on F (n) is a linear
map J : p → p such that J2 = −I.

Example 2.1. If we consider

F (3) =
U(3)

U(1)× U(1)× U(1)
=

U(3)
T

,

in this case

p = T (F (3))(T ) =








0 a b
−ā 0 c
−b̄ −c̄ 0


 : a, b, c,∈ C



 .

The following linear map is an example of a almost complex structure on F (3)



0 a b
−ā 0 c
−b̄ −c̄ 0


 7−→




0 (−√−1)a (−√−1)b
(−√−1)ā 0 (

√−1)c
(−√−1)b̄ (

√−1)c̄ 0


 .

There is a natural identification between almost complex structures on F (n)
and tournaments with n players.

Definition 2.2. A tournament or n-tournament T , consists of a finite set
T = {p1, p2, . . . , pn} of n players, together with a dominance relation, →, that
assigns to every pair of players a winner, i.e. pi → pj or pj → pi. If pi → pj

then we say that pi beats pj.

A tournament T may be represented by a directed graph in which T is the
set of vertices and any two vertices are joined by an oriented edge.

Let T1 be a tournament with n players {1, . . . , n} and T2 another tournament
with m players {1, . . . ,m}. A homomorphism between T1 and T2 is a mapping
φ : {1, . . . , n} → {1, . . . , m} such that

(2.4) s
T1−→ t =⇒ φ(s) T2−→ φ(t) or φ(s) = φ(t).
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When φ is bijective we said that T1 and T2 are isomorphic.
An n-tournament determines a score vector

(2.5) (s1, . . . , sn), such that
n∑

i=1

si =
(

n

2

)
,

with components equal the number of games won by each player. Isomorphic
tournaments have identical score vectors. Figure 1 shows the isomorphism
classes of n-tournaments for n = 2, 3, 4, together with their score vectors. For
n ≥ 5, there exist non-isomorphic n-tournaments with identical score vectors,
see Figure 2. The canonical n-tournament Tn is defined by setting i → j if

(1,1,1,3)(0,1,2,3) (0,2,2,2) (1,1,2,2)

(4) (5) (6) (7)

(0,1,2)(0,1)

(1) (2) (3)

(1,1,1)

Figure 1. Isomorphism classes of n-tournaments to n = 2, 3, 4.

and only if i < j. Up to isomorphism, Tn is the unique n-tournament satisfying
the following equivalent conditions:

• the dominance relation is transitive, i.e. if i → j and j → k then
i → k,

• there are no 3-cycles, i.e. closed paths i1 → i2 → i3 → i1, see [M],
• the score vector is (0, 1, 2, . . . , n− 1).

For each invariant almost complex structure J on F (n), we can associate a
n-tournament T (J) in the following way: If J(aij) = (a′ij) then T (J) is such
that for i < j

(2.6)
(
i → j ⇔ a′ij =

√−1 aij

)
or

(
i ← j ⇔ a′ij = −√−1 aij

)
,

see [MN3].

Example 2.2. The tournament in the Figure 3 corresponds to the almost
complex structure in the example 2.1
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(0,1,2,3,4)

(1)
2 3

5

41

2 3

5

41

2 3

5

41

(0,1,3,3,3)

(2) (3)

(0,2,2,3,3)

2 3

5

41

(0,2,2,2,4)

(4)
2 3

5

41

2 3

5

41

(5)

(1,1,1,3,4)

(6)

(1,1,2,2,4)

2 3

5

41

2 3

5

41

(7) (8)

(1,1,2,3,3) (1,1,2,3,3)

2 3

5

41

(9)

(1,2,2,2,3)

2 3

5

41

2 3

5

41

(11)(10)

(1,2,2,2,3) (1,2,2,2,3)

2 3

5

41

(12)

(2,2,2,2,2)

Figure 2. Isomorphism classes of 5-tournaments.

1

2

3

Figure 3. Tournament of the example 2.2

An almost complex structure J on F (n) is said to be integrable if (F (n), J)
is a complex manifold. An equivalent condition is the famous Newlander-
Nirenberg equation (see [NN]):

(2.7) [JX, JY ] = J [X, JY ] + J [JX, Y ] + [X, Y ].
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for all tangent vectors X, Y .
Burstall and Salamon [BS] proved the following result:

Theorem 2.1. An almost complex structure J on F (n) is integrable if and
only if T (J) is isomorphic to the canonical tournament Tn.

Thus, if T (J) contains a 3-cycle then J is not integrable. The almost com-
plex structure of example 2.1 is integrable.

An invariant almost complex structure J on F (n) is called parabolic if there
is a permutation τ of n elements such that the associate tournament T (J) is
given, for i < j, by

(
τ(j) → τ(i), if j − i is even

)
or

(
τ(i) → τ(j), if j − i is odd

)

Classes (3) and (7) in Figure 1 and (12) in Figure 2 represent the parabolic
structures on F (3), F (4) and F (5) respectively.

A n-tournament T , for n ≥ 3, is called irreducible or Hamiltonian if it
contains a n-cycle, i.e. a path

π(n) → π(1) → π(2) → · · · → π(n− 1) → π(n),

where π is a permutation of n elements.
A n-tournament T is transitive if given three nodes i, j, k of T then

i → j and j → k =⇒ i → k.

The canonical tournament is the only one transitive tournament up to isomor-
phisms.

We consider Cn equipped with the standard Hermitian inner product, i.e.
for V = (v1, . . . , vn) and W = (w1, . . . , wn) in Cn, we have

(2.8) 〈V, W 〉 =
n∑

i=1

viwi.

We use the convention

(2.9) vi = vı̄ and fī = fı̄j .

A frame consists of an ordered set of n vectors (Z1, . . . , Zn), such that Z1 ∧
. . .∧Zn 6= 0, and it is called unitary, if 〈Zi, Zj〉 = δī. The set of unitary frames
can be identified with the unitary group.

If we write

(2.10) dZi =
∑

j

ωīZj ,

the coefficients ωī are the Maurer-Cartan forms of the unitary group U(n).
They are skew-Hermitian, i.e.

(2.11) ωī + ω̄i = 0,



THE GEOMETRY OF FULL FLAG MANIFOLDS AND HARMONIC MAPS 63

and satisfy the equation

(2.12) dωī =
∑

k

ωik̄ ∧ ωk̄.

For more details see [ChW].
We may define all left invariant metrics on (F (n), J) by (see [Bl] or [N1])

(2.13) ds2
Λ =

∑

i,j

λijωī ⊗ ωı̄j ,

where Λ = (λij) is a real matrix such that:

(2.14)
{

λij > 0, if i 6= j
λij = 0, if i = j

,

and the Maurer-Cartan forms ωī are such that

(2.15) ωī ∈ C1,0 ((1,0) type forms) ⇐⇒ i
T (J)−→ j.

Note that, if λij = 1 for all i, j in (2.13), then we obtain the normal metric (see
[ChE]) induced by the Cartan-Killing form of U(n).

The metrics (2.13) are called Borel type and they are almost Hermitian for
every invariant almost complex structure J , i.e. ds2

Λ(JX, JY ) = ds2
Λ(X,Y ),

for all tangent vectors X, Y . When J is integrable ds2
Λ is said to be Hermitian.

Definition 2.3. Let J be an invariant almost complex structure on F (n), T (J)
the associated tournament, and ds2

Λ an invariant metric. The Kähler form with
respect to J and ds2

Λ is defined by

(2.16) Ω(X, Y ) = ds2
Λ(X, JY ),

for any tangent vectors X,Y .

For each permutation τ , of n elements, the Kähler form can be write in the
following way (see [MN2])

(2.17) Ω = −2
√−1

∑

i<j

µτ(i)τ(j)ωτ(i)τ(j)
∧ ω

τ(i)τ(j)
,

where

(2.18) µτ(i)τ(j) = ετ(i)τ(j)λτ(i)τ(j),

and

(2.19) εij =





1 if i → j
−1 if j → i

0 if i = j

Definition 2.4. Let J be an invariant almost complex structure on F (n). Then
F (n) is said to be almost Kähler if and only if Ω is closed, i.e. dΩ = 0. If J is
integrable and Ω is closed then F (n) is said to be a Kähler manifold.

The following result was proved by Mo and Negreiros in [MN2].
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Theorem 2.2.

(2.20) dΩ = 4
∑

i<j<k

Cτ(i)τ(j)τ(k)Ψτ(i)τ(j)τ(k),

where

(2.21) Cijk = µij − µik + µjk,

and

(2.22) Ψijk = Im(ωī ∧ ωı̄k ∧ ωjk̄).

We denote by Cp,q the space of complex forms with degree (p, q) on F (n).
Then, for any i, j, k, we have either

(2.23) Ψijk ∈ C0,3 ⊕ C3,0 or Ψijk ∈ C1,2 ⊕ C2,1

Definition 2.5. An invariant almost Hermitian metric ds2
Λ is said to be (1, 2)-

symplectic if and only if (dΩ)1,2 = 0. If d∗Ω = 0 then the metric is said to be
cosymplectic.

Figure 4 is included in the known Salamon’s paper [Sa] and it contains
a classification of the almost Hermitian structures. This figure provides the
following implications

Kähler =⇒ (1,2)-symplectic =⇒ cosymplectic .

For a complete classification see [GH].

The following result due to Mo and Negreiros [MN2], is very useful to study
(1,2)-symplectic metrics on F (n):

Theorem 2.3. If J is a U(n)-invariant almost complex structure on F (n),
n ≥ 4, such that T (J) contains one of 4-tournaments in the Figure 5 then J
does not admit any invariant (1, 2)-symplectic metric.

A smooth map φ : (M, g) → (N, h) between two Riemannian manifolds is
said to be harmonic if and only if it is a critical point of the energy functional

(2.24) E(φ) =
1
2

∫

M

|dφ|2vg ,

where |dφ| is the Hilbert–Schmidt norm of the linear map dφ, i.e. φ is harmonic
if and only if it satisfies the Euler–Lagrange equations

(2.25) δE(φ) =
d

dt

∣∣∣∣
t=0

E(φt) = 0

for all variation (φt) of φ and t ∈ (−ε, ε) (see [EL]).
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      Kähler

cosymplectic

(1,2)-symplectic

Hermitian

Almost Hermitian

Figure 4. Almost Hermitian Structures

T1 T2

Figure 5. 4-tournaments of Theorem 2.3

3. (1, 2)-Symplectic Structures on F (3) and F (4)

It is known that, on F (3) there is a 2-parametric family of Kähler metrics
and a 3-parametric family of (1,2)-symplectic metrics corresponding to the
non-integrable almost complex structures class. Then each invariant almost
complex structure on F (3) admits a (1,2)-symplectic metric, see [ESa], [Bo].
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On F (4) there are four isomorphism classes of 4-tournaments or equivalently
almost complex structures and the Theorem 2.3 shows that two of them do not
admit (1,2)-symplectic metric. The another two classes corresponding to the
Kähler and parabolic cases. F (4) has a 3-parametric family of Kähler metrics
and a 4-parametric family of (1,2)-symplectic metrics which is not Kähler, see
[MN2].

4. (1, 2)-Symplectic Structures on F (5)

Figure 2 shows the twelve isomorphism classes of 5-tournaments. The class (1)
corresponds to the integrable complex structures and it contains the Kähler
metrics. The other classes correspond to non-integrable almost complex struc-
tures, in particular the class (11) corresponds to the parabolic structure.

To the remain classes we have the following result:

Theorem 4.1. Between the classes of 5-tournaments (Figure 2), the only ones
that admit (1, 2)-symplectic metrics, different to the Kähler and parabolic, are
(7) and (9).

Proof. We use the Theorem 2.3 to prove that (2), (3), (4), (5), (6), (8), (10) and
(11) do not admit (1,2)-symplectic metric. It is easy to see that: (2) contains
T1 formed by the vertices 1,2,3,4; (3) contains T1 formed by the vertices 2,3,4,5;
(4) contains T2 formed by the vertices 1,2,3,4; (5) contains T2 formed by the
vertices 2,3,4,5; (6) contains T2 formed by the vertices 1,3,4,5; (8) contains T2

formed by the vertices 2,3,4,5; (10) contains T1 formed by the vertices 1,2,3,4
and (11) contains T2 formed by the vertices 1,2,3,4. Then neither of them admit
(1,2)-symplectic metric.

Using formulas (2.20)-(2.23), we obtain that (7) admits (1,2)-symplectic met-
ric if and only if Λ = (λij) satisfies the linear system

λ12 − λ13 + λ23 = 0
λ12 − λ14 + λ24 = 0
λ13 − λ14 + λ34 = 0
λ23 − λ24 + λ34 = 0
λ23 − λ25 + λ35 = 0
λ24 − λ25 + λ45 = 0
λ34 − λ35 + λ45 = 0

Then (7) admits (1,2)-symplectic metric if and only if Λ = (λij) satisfies

λ13 = λ12 + λ23

λ14 = λ12 + λ23 + λ34

λ24 = λ23 + λ34

λ25 = λ23 + λ34 + λ45

λ35 = λ34 + λ45
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Similarly, we obtain that (9) admit (1,2)-symplectic metric if and only if Λ =
(λij) satisfies

λ13 = λ12 + λ23

λ14 = λ12 + λ23 + λ34

λ24 = λ23 + λ34

λ25 = λ12 + λ15

λ35 = λ34 + λ45 ¤X

Now we can write the respective matrices

Λ(7) =

0BBBBBBBBBBB@

0 λ12 λ12 + λ23 λ12 + λ23 + λ34 λ15

λ12 0 λ23 λ23 + λ34 λ23 + λ34 + λ45

λ12 + λ23 λ23 0 λ34 λ34 + λ45

λ12 + λ23 + λ34 λ23 + λ34 λ34 0 λ45

λ15 λ23 + λ34 + λ45 λ34 + λ45 λ45 0

1CCCCCCCCCCCA

Λ(9) =

0BBBBBBBBBBB@

0 λ12 λ12 + λ23 λ12 + λ23 + λ34 λ15

λ12 0 λ23 λ23 + λ34 λ12 + λ15

λ12 + λ23 λ23 0 λ34 λ34 + λ45

λ12 + λ23 + λ34 λ23 + λ34 λ34 0 λ45

λ15 λ12 + λ15 λ34 + λ45 λ45 0

1CCCCCCCCCCCA
The Theorem 4.1 says that F (n) admits (1,2)-symplectic metrics, different

to the Kähler and parabolic, if and only if n ≥ 5.

5. (1, 2)-Symplectic Structures on F (6)

There are 56 isomorphism classes of 6-tournaments (see [M]), which are pre-
sented in Figures 6, 7 and 8. Again, the class (1) corresponds to the integrable
complex structures. The other classes correspond to non-integrable almost
complex structures, and the class (52) corresponds to the parabolic structure.

In this case we have the following result

Theorem 5.1. Between the classes of 6-tournaments (Figure 6, 7 and 8),
the only ones that admit (1, 2)-symplectic metrics, different to the Kähler and
parabolic, are (19), (31), (37) and (55).

Proof. We use the Theorem 2.3 to prove that each of the classes of 6-tour-
naments different to the (1), (19), (31), (37), (52) and (55) does not admit
(1,2)-symplectic metrics:

• (2) contains T1 formed by the vertices 1,2,3,4.
• (3) contains T2 formed by the vertices 1,2,3,4.
• (4) contains T1 formed by the vertices 1,2,3,5.
• (5) contains T2 formed by the vertices 2,3,4,5.
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(1)

1

2 3

4

56
(0,1,2,3,4,5)

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

(2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

(17) (18) (19) (20)

(0,1,2,4,4,4) (0,1,3,3,3,5) (0,1,3,3,4,4)

(0,2,2,2,4,5) (0,2,2,3,3,5) (0,2,2,3,4,4) (0,2,2,3,4,4)

(0,2,3,3,3,4) (0,2,3,3,3,4) (0,2,3,3,3,4) (0,3,3,3,3,3)

(1,1,1,3,4,5) (1,1,1,4,4,4) (1,1,2,2,4,5) (1,1,2,3,3,5)

(1,1,2,3,3,5) (1,1,2,3,4,4) (1,1,2,3,4,4) (1,1,2,3,4,4)

Figure 6. Isomorphism classes of 6-tournaments

• (6) contains T2 formed by the vertices 1,2,3,4.
• (7) contains T1 formed by the vertices 1,2,3,4.
• (8) contains T1 formed by the vertices 1,2,3,4.
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1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

(37) (38) (39) (40)

(1,1,2,3,4,4) (1,1,3,3,3,4) (1,1,3,3,3,4) (1,1,3,3,3,4)

(1,2,2,2,3,5) (1,2,2,2,3,5) (1,2,2,2,3,5) (1,2,2,2,4,4)

(1,2,2,2,4,4) (1,2,2,2,4,4) (1,2,2,3,3,4) (1,2,2,3,3,4)

(1,2,2,3,3,4) (1,2,2,3,3,4) (1,2,2,3,3,4) (1,2,2,3,3,4)

(1,2,2,3,3,4) (1,2,2,3,3,4) (1,2,2,3,3,4) (1,2,2,3,3,4)

Figure 7. Isomorphism classes of 6-tournaments

• (9) contains T1 formed by the vertices 1,2,3,4.
• (10) contains T1 formed by the vertices 1,2,3,4.
• (11) contains T2 formed by the vertices 1,2,3,4.
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2 3

4

56

1
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(41) (42) (43) (44)

(45) (46) (47) (48)

(49) (50) (51) (52)

(53) (54) (55) (56)

(1,2,2,3,3,4) (1,2,2,3,3,4) (1,2,3,3,3,3) (1,2,3,3,3,3)

(1,2,3,3,3,3) (1,2,3,3,3,3) (2,2,2,2,3,4) (2,2,2,2,3,4)

(2,2,2,2,3,4) (2,2,2,2,3,4) (2,2,2,2,2,5) (2,2,2,3,3,3)

(2,2,2,3,3,3) (2,2,2,3,3,3) (2,2,2,3,3,3) (2,2,2,3,3,3)

Figure 8. Isomorphism classes of 6-tournaments

• (12) contains T1 formed by the vertices 2,3,5,6.
• (13) contains T2 formed by the vertices 3,4,5,6.
• (14) contains T2 formed by the vertices 3,4,5,6.
• (15) contains T2 formed by the vertices 2,3,4,5.
• (16) contains T2 formed by the vertices 1,2,3,4.
• (17) contains T2 formed by the vertices 3,4,5,6.
• (18) contains T2 formed by the vertices 3,4,5,6.
• (20) contains T2 formed by the vertices 2,3,4,5.
• (21) contains T2 formed by the vertices 2,3,4,5.
• (22) contains T1 formed by the vertices 1,2,3,5.
• (23) contains T1 formed by the vertices 1,2,3,5.
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• (24) contains T2 formed by the vertices 1,2,3,4.
• (25) contains T2 formed by the vertices 1,2,3,4.
• (26) contains T2 formed by the vertices 3,4,5,6.
• (27) contains T2 formed by the vertices 2,3,4,5.
• (28) contains T2 formed by the vertices 3,4,5,6.
• (29) contains T2 formed by the vertices 2,3,4,5.
• (30) contains T2 formed by the vertices 2,3,4,5.
• (32) contains T1 formed by the vertices 1,2,3,4.
• (33) contains T2 formed by the vertices 3,4,5,6.
• (34) contains T2 formed by the vertices 3,4,5,6.
• (35) contains T2 formed by the vertices 2,3,4,5.
• (36) contains T2 formed by the vertices 1,2,3,4.
• (38) contains T1 formed by the vertices 3,4,5,6.
• (39) contains T2 formed by the vertices 1,2,3,4.
• (40) contains T1 formed by the vertices 3,4,5,6.
• (41) contains T1 formed by the vertices 3,4,5,6.
• (42) contains T2 formed by the vertices 1,2,3,6.
• (43) contains T1 formed by the vertices 3,4,5,6.
• (44) contains T1 formed by the vertices 3,4,5,6.
• (45) contains T2 formed by the vertices 1,2,3,4.
• (46) contains T1 formed by the vertices 2,3,5,6.
• (47) contains T2 formed by the vertices 1,3,4,6.
• (48) contains T2 formed by the vertices 2,3,4,5.
• (49) contains T2 formed by the vertices 1,2,3,4.
• (50) contains T2 formed by the vertices 1,2,3,4.
• (51) contains T2 formed by the vertices 1,3,5,6.
• (53) contains T1 formed by the vertices 1,2,4,6.
• (54) contains T2 formed by the vertices 1,2,4,5.
• (56) contains T1 formed by the vertices 1,2,4,6.

By making similar computations to we made in the proof of Theorem 4.1 we
obtain:

• The class (19) admits (1,2)-symplectic metric if and only if the elements
of corresponding matrix Λ(19) = (λij) satisfy the following system of
linear equations

λ12 − λ13 + λ23 = 0 λ12 − λ14 + λ24 = 0
λ12 − λ15 + λ25 = 0 λ13 − λ14 + λ34 = 0
λ13 − λ15 + λ35 = 0 λ14 − λ15 + λ45 = 0
λ23 − λ24 + λ34 = 0 λ23 − λ25 + λ35 = 0
λ23 − λ26 + λ36 = 0 λ24 − λ25 + λ45 = 0
λ24 − λ26 + λ46 = 0 λ25 − λ26 + λ56 = 0
λ34 − λ35 + λ45 = 0 λ34 − λ36 + λ46 = 0
λ35 − λ36 + λ56 = 0 λ45 − λ46 + λ56 = 0 .



72 MARLIO PAREDES

Then the metric ds2
Λ(19)

is (1,2)-symplectic if and only if

λ13 = λ12 + λ23 λ26 = λ23 + λ34 + λ45 + λ56

λ14 = λ12 + λ23 + λ34 λ35 = λ34 + λ45

λ15 = λ12 + λ23 + λ34 + λ45 λ36 = λ34 + λ45 + λ56

λ24 = λ23 + λ34 λ46 = λ45 + λ56

λ25 = λ23 + λ34 + λ45.

• In similar way the class (31) admits (1,2)-symplectic metric if and only
if the elements of the corresponding matrix Λ(31) = (λij) satisfy the
following relations

λ13 = λ12 + λ23 λ26 = λ12 + λ16

λ14 = λ12 + λ23 + λ34 λ35 = λ34 + λ45

λ15 = λ12 + λ23 + λ34 + λ45 λ36 = λ34 + λ45 + λ56

λ24 = λ23 + λ34 λ46 = λ45 + λ56

λ25 = λ23 + λ34 + λ45.

• Similarly, the class (37) admits (1,2)-symplectic metric if and only if the
elements of the corresponding matrix Λ(37) = (λij) satisfy the following
relations

λ14 = λ12 + λ25 + λ45 λ26 = λ25 + λ45 + λ46

λ15 = λ12 + λ25 λ34 = λ36 + λ46

λ16 = λ12 + λ25 + λ45 + λ46 λ35 = λ12 + λ13 + λ25

λ23 = λ12 + λ13 λ56 = λ45 + λ46

λ24 = λ25 + λ45.

• Finally, the class (55) admits (1,2)-symplectic metric if and only if the
elements of the corresponding matrix Λ(55) = (λij) satisfy the following
relations

λ13 = λ12 + λ25 + λ35 λ26 = λ12 + λ14 + λ46

λ15 = λ12 + λ25 λ34 = λ36 + λ46

λ16 = λ14 + λ46 λ45 = λ35 + λ36 + λ46

λ23 = λ25 + λ35 λ56 = λ35 + λ36

λ24 = λ12 + λ14 ¤X

The matrices Λ(19), Λ(31), Λ(37) and Λ(55) correponding to the classes (19),
(31), (37) and (55) are presented on the end of this paper.

6. (1, 2)-Symplectic Structures on F (7)

This case has a problem because it is not known any collection of tournament
drawings for n ≥ 7. The collection of tournaments drawings of n = 2, 3, 4, 5, 6,
is contained in the Moon’s book [M].
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There are 456 isomorphism classes of 7-tornaments. In the Dias’s M. Sc.
Thesis [D] was obtained a representant matrix of each class of 7-tournament.
The matrix M(T ) = (aij) of the tournament T is defined by

aij =

{
0, if j

T→ i

1, if i
T→ j.

Obviously, it has the matrix is equivalent to have the tournament drawing.

We used the matrices generated in [D] together with the Digraph computer
program, created by Professor Davide Carlo Demaria, in order to know which
7-tournaments contain the tournaments in Figure 5. Table 1 shows the matrices
of the 7-tournaments which admit (1,2)-symplectic metric. Using the matrices

0BBBBBBB@
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

1CCCCCCCA
0BBBBBBB@

0 1 1 1 1 1 0
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 0 0 0 0 0 0

1CCCCCCCA0BBBBBBB@
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 0 0 0 0 0

1CCCCCCCA
0BBBBBBB@

0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 0 0 0 0

1CCCCCCCA0BBBBBBB@
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 0 0 0

1CCCCCCCA
0BBBBBBB@

0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0

1CCCCCCCA0BBBBBBB@
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 0 0 0 0 0 1
1 1 1 0 0 0 0

1CCCCCCCA
0BBBBBBB@

0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 0 0 0 0 0

1CCCCCCCA0BBBBBBB@
0 1 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0

1CCCCCCCA
0BBBBBBB@

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0

1CCCCCCCA
Table 1. Matrices of the 7-tournaments which admit (1,2)-
symplectic metric

in the Table 1 we construct the 7-tournament drawings which admit (1,2)-
symplectic metric. Figures 9 and 10 show this 7-tournaments. Class (1) in
the Figure 9 represents the integrable structures and the class (10) in Figure
10 corresponds to the parabolic structures. To the remain classes we have the
following result.
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(1)

(0,1,2,3,4,5,6)

7

1

2 3

4

5

6

7

1

2 3

4

5

6

(2)

(1,1,2,3,4,5,5)

7

1

2 3

4

5

6

(4)

(1,2,3,3,3,4,5)

7

1

2 3

4

5

6

(5)

(1,2,2,3,4,4,5)

7

1

2 3

4

5

6

(3)

(1,2,2,3,4,4,5)

7

1

2 3

4

5

6

(6)

(2,2,2,3,4,4,4)

Figure 9. Isomorphism classes of 7-tournaments which admit
(1,2)-symplectic metric

Theorem 6.1. The classes of 7-tournaments (2) through (9) in the Figures 9
and 10 admit (1, 2)-symplectic metrics, different to the Kähler and parabolic.
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7

1

2 3

4

5

6

(8)

(2,2,3,3,3,4,4)

7

1

2 3

4

5

6

(7)

(2,2,3,3,3,4,4)

7

1

2 3

4

5

6

(9)

(2,3,3,3,3,3,4)

7

1

2 3

4

5

6

(10)

(3,3,3,3,3,3,3)

Figure 10. Isomorphism classes of 7-tournaments which ad-
mit (1,2)-symplectic metric

Proof. The proof is made through a long calculation similar to the proof of
Theorem 4.1. ¤X

The matrices Λ(2) through Λ(9) corresponding to the classes (2) through (9)
are presented on the end of this paper.

Wolf and Gray [WG] proved that the normal metric on F (n) is not (1,2)-
symplectic for n ≥ 4. Our results give a simple proof of this fact to n = 5, 6, 7.

7. Harmonic Maps

In this section we construct new examples of harmonic maps using the following
result due to Lichnerowicz [L]:
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Theorem 7.1. Let φ : (M, g, J1) → (N,h, J2) be a ± holomorphic map be-
tween almost Hermitian manifolds where M is cosymplectic and N is (1, 2)-
symplectic. Then φ is harmonic. (φ is ± holomorphic if and only if dφ ◦ J1 =
±J2 ◦ dφ).

In order to construct harmonic maps φ : M2 → F (n) using the theorem
above, we need to know examples of holomorphic maps. Then we use the
following construction due to Eells and Wood [EW].

Let h : M2 → CPn−1 be a full holomorphic map (h is full if h(M) is not
contained in none CPk, for all k < n−1). We can lift h to Cn, i.e. for every p ∈
M we can find a neighborhood of p, U ⊂ M , such that hU = (u0, . . . , un−1) :
M2 ⊃ U → Cn − 0 satisfies h(z) = [hU (z)] = [(u0(z), . . . , un−1(z))].

We define the k-th associate curve of h by

Ok : M2 −→ Gk+1(Cn)
z 7−→ hU (z) ∧ ∂hU (z) ∧ · · · ∧ ∂khU (z),

for 0 ≤ k ≤ n− 1. And we consider

hk : M2 −→ CPn−1

z 7−→ O⊥k (z) ∩ Ok+1(z),

for 0 ≥ k ≥ n− 1.
The following theorem, due to Eells and Wood ([EW]), is very important

because it gives the classification of the harmonic maps from S2 ∼ CP1 into a
projective space CPn−1.

Theorem 7.2. For each k ∈ N, 0 ≤ k ≤ n− 1, hk is harmonic. Furthermore,
given φ : (CP1, g) → (CPn−1, Killing metric) a full harmonic map, then
there are unique k and h such that φ = hk.

This theorem provides in a natural way the following holomorphic maps

Ψ : M2 −→ F (n)
z 7−→ (h0(z), . . . , hn−1(z)),

called by Eells–Wood’s map (see [N2]).
We called Mn the set of (1,2)-symplectic metrics on F (n), for n = 5, 6 and 7

characterized in the sections above. Using Theorem 7.1 we obtain the following
result

Theorem 7.3. Let φ : M2 → (
F (n), g

)
, g ∈ M a holomorphic map. Then φ

is harmonic.

In addition for maps from a flag manifold into a flag manifold we obtain the
following result

Proposition 7.1. Let φ : (F (l), g) → (F (k), h) a holomorphic map, with
g ∈ Ml and h ∈ Mk. Then φ is harmonic.
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Mathematica 3 (Bologna, 1970), 341–402.

[M] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York,
1968.

[MN1] X. Mo & C. J. C. Negreiros, Hermitian Structures on Flag Manifolds, Relatorio
de Pesquisa 35/98, IMECC-UNICAMP (1998).

[MN2] X. Mo & C. J. C. Negreiros, (1,2)-Symplectic Structures on Flag Manifolds,
Tohoku Mathematical Journal 52 (2000), no. 02, 271–283.

[MN3] X. Mo & C. J. C. Negreiros, Tournaments and Geometry of Full Flag Mani-
folds, Proceedings of the XI Brazilian Topology Meeting, Rio Claro, Brazil, World
Scientific (1999).

[N1] C. J. C. Negreiros, Some Remarks about Harmonic Maps into Flag Manifolds,
Indiana University Mathematics Journal 37 (1988), no. 3, 617–636.

[N2] C. J. C. Negreiros, Harmonic Maps from Compact Riemann Surfaces into Flag
Manifolds, Thesis, University of Chicago, 1987.

[NN] A. Newlander & L. Nirenberg, Complex Analitic Coordinates in Almost Complex
Manifolds, Ann. of Math. 65 (1957), 391–404.

[P] M. Paredes, Aspectos da Geometria Complexa das Variedades Bandeira, Doctoral
Thesis, Universidade Estadual de Campinas, 2000.

[Sa] S. Salamon, Harmonic and Holomorphic Maps, Lecture Notes in Mathematics
1164, Springer, 1986.

[WG] J. A. Wolf & A. Gray, Homogeneous Spaces Defined by Lie Groups Automor-
phisms. II, Journal of Differential Geometry, 2 (1968), no. 2, 115–159.

(Recibido en octubre de 2000)

Escuela de Matemáticas
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