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1. Introduction

The purpose of this paper is to exhibit operational calculi on distributions with
compact support for two of the most useful index transforms: Kontorovich-
Lebedev (R£) and Mehler-Fock (9MF). Their corresponding inversion formulae
are the key to these calculi. Starting with their inversion formulae and using
a variant of the Banach-Steinhaus theorem for barreled spaces, we obtain in
both cases a distribution which solves a differential equations with constants
coefficients which involves certain operators related with each of the transforms.

Specifically, one solves distributional equations of type P (A}) f = g, where,
for the Kontorovich-Lebedev case, P denotes any polynomial with no zeros in
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the interval (—o00,0), g denotes any distribution with compact support on the
interval (0,00), and A} denotes the formal adjoint of the differential operator

Ay = 2Dy + tDy — 12, (1.1)
and for the Mehler-Fock case, P denotes any polynomial with no zeros in the

interval (—oo, —(n+ %)2), g denotes any distribution with compact support

on the interval (1,00) and A} denotes the formal adjoint of the differential
operator

A= -1)""’D, (12 —1)"" D, (12— 1), (1.2)

n € N, fixed.

An outstanding result, basic to our purposes, is an equivalence of the usual
topology with topologies arising from the aforementioned operators, on the
space of infinitely differentiable functions on the interval I, where I = (0, c0) for
the Kontorovich-Lebedev case and I = (1,00) for the Mehler-Fock case. This
equivalence of topologies provides certain operational rules for the respective
index transforms which allow to obtain the distribution solution as a limit of
specific distributions connected with the corresponding inversion formulae.

Related work on operational calculi for index transforms have been carried
out in [6], [8], [9] and [10] among others.

2. Operational calculus: the Kontorovich-Lebedev case

In [12], the Kontorovich-Lebedev transform, whose kernel K;, (), t € I =
(0,00), 7 > 0, is the Macdonald function, and which acts on the space of
distributions with compact support on the interval (0, c0), has been studied in
detail. In particular, an inversion formula is established, which is basic for our
purposes. The precise result is:

If f € & (I), and for T > 0 we set
F(r) = (RE[f]) (r) = {f(1), Kir (1)), (2.1)
then, for every ¢ € D (I),

T—o0

(f,6) = lim <W—fy /0 F(r) K (y)Tsinhm—dT,¢(y)>, (2.2)

the limit being in the sense of D' (I).

In order to establish the main result of this section we need the following
two lemmas:
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Lemma 2.1. For each compact subset K C I and each k € NU {0}, let v i
be the seminorm on & (I) given by

i (9) =sup[AFo ()],  deE(D),
tek

where A; is the differential operator given by (1.1) and A¥ is its k*® iteration.
Then {v,k } generates a topology on £ (I) which agrees with the usual topology
of this space.

Proof. The expression for A¥ given in [3, Formula (2.16), p. 73] yields that
any sequence {¢n}, .y C £ (I) which tends to zero for the usual topology on
& (I) also tends to zero for the topology generated by the family of seminorms
{7,k }-

Conversely, let {¢,},cy be a sequence on &£ (I) which tends to zero with
respect to the topology generated by {vi,x }. It is clear that ¢,, and A;¢,, tend
to zero as n — oo, uniformly in each compact subset K C I. Moreover, for

(1.1),
An (1) + ¢ (t) = £ Didn (t) + tDen (1), (2:3)
and the left hand side of (2.3) also tends to zero as n — oo, uniformly on each

compact subset K C I.

Now, the right-hand side of (2.3) is tDy [tDy¢y, (t)],and thus, Dy [tDi¢y, (t)]
tends to zero as n — oo, uniformly on each compact subset K C I.

Since, for any a € I, a ¢ K,

/ D, [zDatn (2)]dz = tDy6n (t) — aDidn (a) (2.4)

it follows that tD;¢,, (t) — aDi¢y, (a) tends to zero as n — oo, uniformly for ¢
on the compact subset K C I. Dividing by ¢ and integrating once again, one
has

[ [Detn @ = 20260 (@] d = 6, () = 6, (@) ~ 4Dy (@) (nt - ),

and thus, noting that In¢ —In a is bounded away from zero for all t € K, we see
that Dy¢, (a) — 0 as n — oc. Consequently, D;¢,, tends to zero as n — oo,
uniformly on each compact subset K C I. From (2.3), the same conclusion
holds for D?¢,,.

Now assume by induction that, for 0 < m < 2k — 2, D*¢,, tends to zero
as n — oo, uniformly on each compact subset K C I. From the equality
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[3, Formula (2.16), p. 73],
2k
Afdn () = > /P (t) Di¢n (1),
=0

where the Pf are polynomials such that P, (t) = 1and P, _, (t) = k (2k — 1).
Then
2%—2 .
Afgn (t) = > t/PF(t) Digy (t) = " D% ¢y, (t) — %k (2k — 1) DF* ¢y, (1)
=0

— ¢k3=2k) p, [tk(zk—ankA% (t)

?

which, arguing as for the case £k = 1, yields that Dt%_1¢n and D?¥¢,
tend to zero as n — 00, uniformly in each compact subset K C I.

Finally, taking into account that the topologies on & (I) for both families of
semi-norms, the usual and the v x’s, are metrizable, the conclusion follows.

ul

The next assertion establishes the asymptotic behaviour of the function F
in (2.1).
Lemma 2.2. Let f be in &' (I), and let F' be defined by (2.1). Then one has
F(r)=0(Q), T —0t, (2.5)
and
F(r)y=0 (Tre_’”/z) , T = 00, (2.6)
for some nonnegative integer r.

Proof. According to Lemma 2.1 above, we may consider the space & (I)
equipped with the topology arising from the family of seminorms v x. From
[7, Proposition 2, p. 97], there exist C' > 0 and a nonnegative integer p, both
depending on f, such that

_ , < k. _ 2%k 7.
IF (Ml = 1(7(0), Kir )] < C max max | A7 Kir ()] = C max max [ K- (1)

Now taking into account that for each fixed ¢ € (0,00) one has
Ki:(t)=0(1), T —0t, (2.7)

as follows from the integral representation ([2, Formula (21), p. 82])

oo
K (t) :/ e teosh U cos Ty du,
0
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and that for each fixed t € (0,0),
Ki;(t)=0 <e_”/2 (r* - t2)71/4) , T = 00, (2.8)

(see [2, Formula (19), p. 88]), the conclusion follows since ¢ ranging on a
compact subset K of I. ™

We observe that for f € £' (I), it is straightforward that

k k
(82" £]) ) = (~1)F 2 (&) (1),
for all K € NU{0} and 7 > 0, where A} denotes the formal adjoint of the
differential operator A; in (1.1).
Next, we establish the main result of this section.
Theorem 1. Assume g € £' (I) and let P be a polynomial with no zeros in

the interval (—00,0). Then, the distribution f in D' (I) defined for any ¢ €
D(I) by

L 2 (T G(r) .
(f.6) = lim <% /0 B K (y)7'51nh7r7'd7',¢(y)>, (2.9)

T—o0

where G denotes the Kontorovich-Lebedev transform (2.1) of g, satisfies the
operational equation

P(4)f=g. (2.10)

Proof. To show the existence of the limit in (2.9), we use the variant of the
Banach-Steinhaus theorem in [7, Corollary of Proposition 5, p. 216]. To do so,
we take a polynomial ) of degree r + 1, with no zeros in (—o0,0). We have

2 r G (1) . in
<ﬁ/0 P(_T2)K’LT (y)TS hWTdT’¢(y)>

T )
_ <%Q (A;) /0 5 (—7'?)(63)(—7'2) sz(y)TSinh wTdT, ¢ (y)> (2.11)

_ /2 (" G(7) Ki- (y) ..
= <§/0 Py TSlnhWTdT,Q(Ay)¢(y)>.

Now, we may assume that the support of ¢ is contained in the interval [a, b] C
(0,00). Thus, (2.11) can be written as

2 (T G(M)rsinhar  [* Kir () Q (4) ¢ (v)
2/0 P(—TZ)Q(—T2)/(1 dydr. (2.12)

™
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From (2.5) and (2.6), and taking into account (2.7) and (2.8), it follows that,
for some suitable positive constants C, D, E, Ty and T», (2.12) is bounded
above by

T 2 T .
1 T 2| G(r)7sinhzr
C/ - __\dr+D — L __\d
o 1PEQEDT T L PERQED| T
R T T2T+le—7r‘r/267r'r 7_—1/26—7”'/2 0
1, | P(=7%)Q(-72)

Clearly, these integrals are bounded. Therefore, the limit in (2.9) exists for all
¢ € D (I), which proves that f € D' (I).

In order to prove that f satisfies equation (2.10), observe that, from the
inversion formula (2.2), it follows for all ¢ € D (I), that

i (2 [T GO -
= lim <7r2y/0 (_TZ)KzT (y)TSIHhWTdT,P(Ay)¢(y)>

. 2 12 T G(T) K’lT(y) :
::rlgréo<§P(Ay)/0 = Tsmh7erT,¢(y)>

_/0 G (1) K;, (y)TsinhWTdT,¢(y)> =(g,¢). @

3. Operational calculus: the Mehler-Fock case

The Mehler-Fock transform of order n, whose kernel P77 (t),teI=(1,00),

T > 0, is the associated Legendre function of the first kind and order n € N, and
which acts on the space of distributions with compact support on the interval
(1,00), is examined in detail in [5]. In particular, an inversion formula there
established will be of utmost importance to our purposes. To be precise, the
result needed is [5, Theorem 4.1]:

Iffe& ), >0,n€eN, and we set

F(r) =3[ (1) = (1), P ], ), (3.1)
then
(f, ) =

llnl 3111}1 ‘;I (“ t )I (L t ) X‘l 1 “—(t)‘l (])d]’z(t)
T— o0 7 0 2 2 2
(3.2)
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for all ¢ € D (I), the limit being in the sense of &' (I).
The following result will be also useful in this section.

Lemma 3.1. For each compact subset K C I and k € NU {0}, let v, x be the
seminorm in & (I) given by

i (9) =sup[AFo ()],  deE(I),
tek

where A; is the differential operator given by (1.2). Then {vi x} generates a
topology on & (I) which agrees with its usual topology.

Proof. The proof is parallel to that of Lemma 2.1. Observe in this case that,
for each ¢p € £ (1),

7|90 = (1) Dis(t) +2tDib (1),  (3.3)

and that the right hand side of (3.3) is D [(t* — 1) D¢ (¢)] .

Now let {@m }men be a sequence in £(I) which tends to zero with respect to
the topology generated by {vi,x },that for any a € I, and a ¢ K,

Ao (t) + [n (n+1)+

¢

[ D2 1@ 1) Dats @] do = (¢ = 1) Dib () = a* = 1) Didn (@),

’ (3.4)

tends to zero uniformly on K.

Arguing as in Lemma 2.1, both

a? -1
D (t) — mDﬂﬁm (a)

and

[ [Pebne) = 1 Debn@)]

t
1
= ¢m (t) — ¢m (a) — (CL2 — 1) Dt¢m (a) / >
. ¥2—1
tend to zero uniformly on K. Thus, D;¢,, (a) — 0 as m — oc.

Now, from (3.4) it follows that D¢, — 0 as m — o0, and from (3.3) that
D%¢,, — 0 as m — 0o, both uniformly on K.

dz

For the general case, one proceeds by induction on k. To do so, we make use
of the equality (see [4, p. 121])

2k , '
AF =3 -1) " (0 D]

=0
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where the p;, j, are polynomials such that the pay 1, (t) = 1 and pag_1,x, () = 2k?t.
Thus, for all ¢ € £ (),

Aot) = 5 (2 =17 i () DIg(1)

S

[=}

J
(2 = 1) D¢ (1) + (2 — 1) 22D (1)
(- 1) D, (2 - 1)* DI (1)

k

Therefore, the same argument as for the case k = 1 yields the conclusion for
allk. o

Arguing as in Lemma 2.2, it is proved in [5, Theorem 3.2] that for every
f € &' (I) there exists a nonnegative integer r such that

F(r)=0(), =1t (3.5)
and
F(r)=0(r""), T — 00. (3.6)
Furthermore, for all f € &' (I),
2 k
LA ) ) = |- (n+3) -] EWINE) (3.7

holds for all ¥ € NU {0}, 7 > 0 and n € N, where A} denotes the formal adjoint
of the differential operator A, given by (1.2) (see [5, Proposition 3.1]).

Next we establish the main result of this section.

Theorem 2. Assume g € £'(I) and let P be a polynomial with no zeros in
the interval (—oo, —(n+ %)2), where n € N is fixed. Then, the distribution f
in D' (I) given for any ¢ € D (I) by

2N I 1.

(f,9) —Tll£1;0<;/0 T sinh w7 <n+ 3 +lT) r (n+ B —7,7')
G
) dr, ¢(t)>,
1)2 2

P (— (n + 5) — T )
G denoting the Mehler-Fock transform (3.1) of g, satisfies the operational equa-
tion

(3.8)

x P77 . (t)

—5+iT

P(A)f=g (3.9)
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Proof. In order to prove that f is in fact in D' (I) we resort again to the variant
of the Banach-Steinhaus theorem considered in [7, Corollary of Proposition 5,
p. 216] and prove that the limit in (3.8) exists for all ¢ € D (I). To do so, we
take a polynomial Q of degree r +n + 1, with no zeros in (—oo, — (n + %)2)
Now,

! / inh 77T (n + ! +im)I'(n + L iT)P~T, . ()
| T T T Lhir

™

Pt 1o TZ)dT,¢(t)>

— <Q(AQ)% /OTTsinhmT(n + % +ir)T(n + % —inPTY,, (1)
y G(7)
P(=(n+3)? =m)Q(~(n+ 3)* —72)
I I 1 _
= <—/0 Tsinh 7wl (n + 3 +im)'(n + 3~ iT)P~ +zT( )

§ G(r)
P(=(n+ D7 = )Q(=(n+ 1) = )
Again, we assume that the support of ¢ is contained in the interval [a,b] C
(1,00). Thus, expression (3.10) can be written as

1 /T rsinh7rl (n+ § +47) T (n+ & —i7) G(7)
0

P(-(n+4)’ —72) Q(-(n+4)"-7)

(3.10)

dr, ¢(t)>

anMﬂMﬂ>

™

/ P, (0Q (A) 6(t)didr

Now observe that there exists a constant M such that
/T rsinh7rT (n+ 3 +i7) T (n+ § —ir) G(1)
0

P (—(n—i— l)2 - 7'2) Q (—(n+ l)2 —7'2)
/ ‘P I (DQ(4) ¢(t)‘dtdr

7sinh 77T (n+ L4+ir)T(n+ L —ir)G(r)

P(—(n+ 1)? —72) Q (—(n+ 1)? —72)

arg cosh b
x /
arg cosh a

(3.11)

T
SM/
0

P~7 . (cosht)sinh t‘ dtdr,
—5+iT
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and that from (3.5), (3.6) and the following facts

P_’;LH.T (cosht) =0 (1), asT— 0", forallte (0,00),
([1, Formula 3.7(6), p. 155] and [5, (2.3)]),

et/?

-n _ —n-1
P—%+z'r (cosht) =0 (T 2 (€2t — 1)1/2

> , asT — +oo, for all t € (0,00),
[11, Formula (24), p. 231], and

1 1
rsinh 77T (n+§+ir>1‘<n+§—i7)=0(72), as T — 07,

1 1
7 sinh 77T <n+§+i7>1"(n+§—i7'> =0 ("), as T = +oo,

(see [1, 1.18(6), p. 47]), there exist suitable positive constants C, D, E, T} and
T such that the right hand side of (3.11) is bounded above by

C/O p (—(n+ %)2 —72) Q (—(n+ %)2 —72)

B\ rsinh7rl (n+ 4 +ir) T (n+ L —ir) G(7)
i P(-m+d) =) Q(-+ D)’ -7)

arg cosh b
X /
arg cosh a

gl rertred d
ey e o)

Clearly the integrals are bounded. Therefore, the limit in (3.8) exists for all ¢
€ D(I), and thus f € D' (I).

+D

-n
P—%-H'T

(cosht) sinh t‘ dtdr
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In order to prove that f satisfies equation (3.9) just observe that from the
inversion formula (3.2) it follows, for all ¢ € D (I) that

T
Th_r)noo<%/0 7sinh 77T (n + % + iT) r (n + % - iT) jgﬂ.T (t)

G(7)
Py )

T
= Tlgnoo<P( 1) %/0 7sinh w7 T (n + % +iT> r (n-i— % —iT> :g-m'r (t)
G(7) >
dr, ¢(t
P (—(n+ %)2 —7'2) R
T
Th_r)noo<%/0 7 sinh 77T (n + % + iT) r (n + % - iT) P:;‘H.T(t)
x G(r)dr, ¢(t)>
=(g.9), ©

X

X
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