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Nonstandard construction
of Brownian motion
and G-martingales on Lie groups
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ABSTRACT. A nonstandard construction of Brownian motion is given and a
lifting theorem for semi-martingales on Lie groups is proved. Nonstandard rep-
resentations of stochastic exponential and logarithm are introduced in order to
render easy the definition of G-martingales, which on Lie groups correspond to
I-martingales on manifolds.
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0. Preliminaries

For a good introduction to nonstandard analysis see [1]. The main notions and
results needed in our work are the following:

We assume the existence of a set *R D R, called the set of the nonstan-
dard real numbers, and of a mapping * : V(R) — V(*R), where V;1(S) = S,
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132 MYRIAM MUNOZ DE OZAK

Vi1 (S) = Vo (S) UB(Vn(S)), B(Va(S)) being the set of subsets of V,,(.5), and
V(S) = UnenVn(S), with three basic properties. To state these properties we
introduce the following notions.

An elementary statement is a statement ® built up from “ =7, “ € ”,

the predicate and functional variables, the logical conectives “and”,“or”, “not”
and “implies”, and the bounded quantifiers (Yu € v), (Ju € v).

An internal object A is an element of V (*R) such that A =*S, S € V(R).
A set in V(*R) which is not internal is called external.

(1) Extension Principle. The set *R is a proper extension of R and
x: V(R) = V(*R) is an embedding such that *r = r for all r € R.

(2) The Saturation Property: Let {R, : n € N} be a sequence of
internal objects and {S;, : m € N} be a sequence of internal sets.
If for each m € N there is an N,, € N such that for all n > N,, ,
R, € Sy, then {R,, : n € N} can be extended to an internal sequence
{R, : n € *N} such that R, € Ny, Sy, for every n € *N — N.

(2’) General Saturation Principle: Let « be an infinite cardinal. A non-
standard extension is called s-saturated if for every family {X;}ier,
with card(I) < &, and the finite intersection property, the intersec-
tion N;crX; is nonempty; i.e., this intersection contains some internal

object.

(3) Transfer Principle: Let ®(Xy, -+, X, 1, -+ ,%,) be an elemen-
tary statement in V(R). Then, for any A;,--- , A, CRand ry,--- ,7,
€ R,

Q(Ala"' 7Am;T17"' 7rn)
is true in V(R) if and only if
(D(*Ala"' 7*Am;*T17"' 7*rn)

is true in V(*R).
System (*R,*+,*-,* <) extends (R, +,-,<) as an ordered field. In general, we
will omit the * for the operations and the order relation.
In *R we can distinguish three kinds of numbers:
(a) = € *R is infinitesimal, if |z| < r for each r € RT.
(b) = € *R is a finite number, if there is a real number 7 € R™ such that
|z| < 7.
(¢) z € *R is an infinite number, if |z| > r for each r € Rt.
To each finite number x € *R we can associate a unique real number r :=
st(xz) := °x such that x = r + ¢, where ¢ is infinitesimal. We say that x is
infinitely closed to y, and write z = y if and only if  — y is an infinitesimal.
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In general, we use capital letters H, F, X, etc. for internal functions and
processes, while h, f, z, etc. are used for standard ones. For stopping times
([11]) we will always use capital letters, and specify whether standard or non-
standard is meant.

For a given set A, *A stands for the elementary extension of A, and ns(*A)
denotes the nearstandard points in *A. If s is an element in ns(*A), the
standard part of s is denoted by st(s) or °s. For a given function f, * f stands
for the elementary extension of f.

We say that the set T is S-dense if {°t : t € T,°t < oo} = [0,00) and
ns(T) :={t € T : °t < co}. With T we denote an internal S-dense subset of
*[0,00). The elements of T, or more generally, of *[0, c0), are denoted by s, t,
u, etc... . The real numbers in [0,00) are denoted by s, t, u, etc... We will
work with different sets T', so we will always specify the definition of such T'.

With N we denote the set of nonzero natural numbers {1,2,3,---}, and
N, = NU {0}. Elements of N, are denoted with n, m, [, etc..., while elements
in *N — N will be denoted by 1, N, etc... .

If (2,2, ) is an internal measure space, the corresponding Loeb space is Q =
(Q,L(A), L(p)), and L(p) will be the unique measure extending °u to the o-
algebra o(2l) generated by 2. L(2) will stand for the L(u) completion of o(2).

When we say that F : A — B is an internal function, we mean that the
domain, range and graph of F' are internal concepts.

1. Introduction

There has been recently a great interest among researchers in the field of prob-
ability for a better understanding of brownian motion on Lie groups. The first
paper in the field (F. Perrin: “Etude mathématique de Mouvement Brownien
de Rotation”. Ann. Ecole Normale Sup. 45) is of 1928. It was followed much
later by K. Ito ([14], 1950), K. Yosida ([32], 1952) and H.P. McKean ([23],
1960, [24], 1969). McKean introduces the notion of a multiplicative stochastic
integral and proceeds to construct the brownian motion in the Lie group by
means of the exponential map applied to the brownian motion defined in the
Lie algebra of the group. He uses Ado’s Theorem ([28]) to identify locally the
Lie group as a subgroup of GL(m.R), and defines the brownian motion as the
limit

() =1 (t=0),

Cn(t) = Cu(127™) expla(t) — a(l27™)] (¢t > 0,1 = [27]),
(oo (t) = nlg%o Ca(2),
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where a = \/eb+ ft, e, f € C*(R) and b is a brownian motion in the Lie algebra
of the group.

Later on M. Ibero [12], M. Emery [7] and R.L. Karandikar [17, 18, 19] looked
at the multiplicative integral respectively from the points of view of diffusions,
discontinuous semimartingales and stochastic calculus, resorting to integration
by parts. They also restrict themselves to matrix Lie groups.

Finally, M. Hakim-Dowek and D. Lépingle [9] resort to the geometry of
the Lie group, based on the formalism of Stochastic Differential Geometry as
developed by L. Schwartz [28, 29], P. Malliavin [22], J.M. Bismut [3], P.A.
Meyer [25, 26], N. Ikeda and S. Watanabe [13] and K.D. Elworthy [6] for
manifolds, applied to the particular case of the Lie groups. They do not resort
to the multiplicative integral. Instead, they define the brownian motion as a
solution to a certain stochastic differential equation. The geometric point of
view allows them, by handling in an appropriate way the Stratonovich integral,
to avoid the use of tangent vectors or order-2 differential forms, the route
followed by Meyer and Schwartz. They introduce the stochastic exponential of
a semi-martingale in the Lie algebra of the group as a solution of the stochastic
differential equation

dXy = X¢d My,

where M, is a semi-martingale in the Lie algebra of the group. To this purpose,
given a martingale M on the Lie algebra, they define a sequence of stochastic
processes on the Lie group by

XZL = X,

n n =1
X' = X[ exp ( Tign (Mg, — Mtk)) ;

where 0 < ’;—f =t <t <tpy1 = (k“;# < R. Then they observe that on
[0, R] this sequence is uniformly convergent in probability to a solution of the
differential equation. They call this solution the stochastic exponential of M.
In the special case where the semi-martingale is the brownian motion on the Lie
algebra, the stochastic exponential is the brownian motion on the Lie group.
They denote by €(M) the stochastic exponential of M, define the stochastic
logarithm £(X) of a semi-martingale X on the Lie group, and by means of the
approximation by sums of terms log(X; ' Xy, .,), and they conclude that €(M)
and £(X) are inverse operators. Finally they define a G-martingale on the Lie
group as the stochastic exponential of a local martingale in the Lie algebra of
the group. This corresponds to the notion of I-martingale of R.W.R Darling
[5] and P.A. Meyer [25] associated to a connection I' on the Lie group.
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In this paper we intend, using [9] and nonstandard analysis techniques, to
define brownian motion and one and two parameter G-martingales on Lie
groups. In this respect, Loeb’s results [21] on conversion from nonstandard
to standard measure spaces, which allowed Anderson [2] to give nonstandard
representations for brownian motion and Ito’s integration in a very simple form,
as well as the development by Hoover and Perkins [11], and independently by
Lindstr¢m [20], of one parameter integration with respect to a semi-martingale,
have allowed us to give a nonstandard definition of brownian motion and G-
martingales on Lie groups.

2. Brownian motion on Lie groups

Let G be a Lie group of dimension d. We assume polysaturation (i.e. card
(V(@)) - saturation (see [1])) for the embedding * : V(G) — V(*G) in order to
define concepts like monad and nearstandardness in topological spaces.

If E is a topological space, s € E and O is the family of open sets containing
s, the monad p(s) of s is

u(s) :==n{*0 : 0 € O}.
We say that s € *E is nearstandard, if there is t € E such that s € pu(t).

Remark 1.
(i) A C G is an open set if and only if u(s) C *A for all s € A.
(il) ACGisclosed if and only if for all s € Gand t € *A, if t € u(s) then
se€ A
(ili) A C G is compact if and only if for all s € *A there is a t € A such
that s € u(t). This means that all the points of A are nearstandard.
(iv) G is Hausdorff if and only if for s,t € G, s # t, u(s) Nu(t) = 0.
A topological manifold G of dimension d is a topological space with the follow-
ing properties:
(i) G is Hausdorff.
(il) G is locally euclidean of dimension d, i.e., for each point p € G there
is a neighborhood U of p which is homeomorphic to an open set U’ in
Re.
(iii) G has a countable basis of open sets.
By means of the transfer principle we can give an internal definition of a topo-
logical manifold.
A differentiable or C'*° structure on a topological manifold M is a family
U ={Ua, ¢a} of coordinate neighborhoods such that:

(i) The U, cover M, ie. UU, =M
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(ii) For any a, 3, the coordinate neighborhoods (U, ¢o) and (Ug, ¢g) are
C™ compatible.

(iii) Any coordinate neighborhood (V1) compatible with every (Uy, ¢o) €
3 is itself in $1.

A C® manifold M is a topological manifold together with a C* structure.
If (Ug, ¢a) is a coordinate neighborhood, by the transfer principle, *U, is a
neighborhood in *M, *¢, € *C°, and as we can choose a countable system
(Un, ¢n)nen of coordinate neighborhoods in M such that U,U,, = M, we also
can extend the system (*Up,*¢n)nen to an internal system (*Uy, *¢dpn)nesn Of
coordinate neighborhoods in *M such that U,c~n*U, = *M. It also follows
that d*¢, ~ *(d¢,) and that *(¢pop™1) = *po*¢p—1.

Let G be a Lie group, which we assume connected and locally compact.
Then G is a C™ manifold with the group operation (a,b) € GxG = ab™' € G
being a C'*° mapping of G x G into G. Thus, by the transfer principle, also the
operation (a,b) € *G x *G — ab™' € *G is a *C* mapping.

We will denote with e the identity element of the group operation. Then, e
is also the identity element of the group operation of *G. We recall some basic
definitions and notations from standard Lie group theory (see, for example,
Helgason [18]).

Let Ly, : G — G be the left translation defined by L,(s) = gs. Let dL, :
T,(G) = Ty, (p)(G) be given by

dLy(Xp) f = Xp(f o Ly).

If X is a vector field in G, we say that X is left invariant if dL,(X) = X for
all g € G, or, more precisely, if dL,(X,) = X, for all g € G. The Lie algebra
g of the Lie group G is the vector space of all left invariant vector fields on G.
A left invariant vector field H € g is uniquely determined by its value at e,
because

H,=Hy =dL,(H,), forall geG.

Every tangent vector H, to G at e determines uniquely a left invariant vector
field H by Hy = dL,(H,.). In fact,
dLg(Hp) = dLy(dLp(H.)) = d(Lg o Ly)(He) = Hgp.

Thus, by means of the map H — H,, we can identify the Lie algebra g with
the tangent space of G at e:
9= T(G)
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The elements of g are left invariant, first order differential operators on G, and
if f:G — Ris of class C* and g € G then, for H € g,

(Hf)(g) = H(f o Lg)(e)-

Suppose dim G = d. Then dimg = d. Let (V, ¢) be a coordinate neighborhood
of G at a point p. Define

O(foop?
Djf=(fT(f)°¢,

for f:G—oR feCl.IfHegand ¢;, j=1,2,---,d, are the components
of ¢, we have

(Hf)(:) = Dif(YHS ().

By Ado’s Theorem we can identify g with a subalgebra of GL(m,R) for some
m. Then, if A € g, we can define the exponential function as

exp(A) = Z ﬁ

The exponential maps a copy of g onto a Lie subgroup of the linear group
GL(m,R) and this subgroup is locally isomorphic to G. If dimg = d and
{Hy,---,H} is a basis of g, we can also take {Hy,--- ,Hq} as a basis of *g
(the elementary extension of g).

1. Definition. Let (2,9, P) be an internal hyperfinite probability space and
let

(Q, L(®8), L(P)) be the corresponding Loeb space. We say that M : [0, 00) x
Q) — g is an §;-semi-martingale on g if M; = M} H; (using the Einstein’s con-
vention for sums), where H; € g for i = 1,2,--- ,d and M"* is a real valued
semi-martingale for i =1,2,--- ,d.

If the M? are cad- lag for each i, it follows from Theorem 7.6 in [11] that
there exist an internal filtration {8,} and for each ¢ a semi-martingale lifting

M of M such that M; = H;Hi is a semi-martingale lifting of M.

2. Definition. Let C denote the space of C'*° real valued functions with
compact support on a Lie group G. We say that X; : [0,00) x @ = G is a
semi-martingale on G if for every f € C, f(X;) is a semi-martingale on R (on
every closed interval).
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Almost all concepts we have introduced so far for Lie groups and Lie algebras
can be extended by the transfer principle to their elementary extensions. We
want to make explicit some definitions though.

If 91,92 € *G, we say that they are infinitely closed, and denote it by g & gs,
if g gy € p(e).

Remark 2. The group elements g1,92 € *G are infinitely closed if and only if
for all f € C, *f(g;*g2) = *f(e). In fact, if g1 = g, then, by the uniform
continuity of f, *f(g7 'g2) = *f(e), i.e., *f(g1) = *f(g2). On the other hand, if
for any f € C, *f(g7 92) = *f(€), let (V, ) be a coordinate neighborhood of
e and U be an open set containing e such that U C V and U is compact. Also

let ¢, i =1,2,---,d, be functions in C' which coincide with the components
of ¢ on U. Then

*¢i(gf192)m*¢i(e)’ i=1,---,d,
so that *¢(g; 'g2) = *¢(e), and by the continuity of ¢~ we have g; 'go ~ e.

3. Definition. Let X : [0,00) x 2 — G be a continuous §;-semi-martingale.
A semi-martingale lifting of X of X is an internal S-continuous 2B;-semi-
martingale such that, for all f € C, st(*f(X;)) = f(Xo;) a.s. (i-e., P- almost
everywhere)

We say that the stochastic differential equation
dX; = X¢dM; (1)

has a solution in G, if there exists a semi-martingale X on G such that for all
f € C we have

t
F(X0) = F(X0) + /0 (H ) (X2)OM]
:f(XO)-i—/O (Hif)(Xs)dM;'Jr%/o (HH, £)(X,)d[M?, M),

The H;’s are, as before, a basis of g. The first stochastic integral corresponds
to the Stratonovich integral. The second, to Ito’s integral.

4. Definition.

(a) A brownian motion on a Lie group is a semi-martingale which satis-
fies differential equation (1), where M; = biH; + tH,, Y.\, biH; is a
brownian motion on g and H, € g. Its differential generator is the
operator 1 3. H? + Hy.

(b) A semimartingale X on G which satisfies (1) is called a stochastic
exponential and is denoted by &(M).
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Let My = xjH; + tH,, where H, = 3¢ | a;H; € g, {H; : i = 1,2,--- ,d}
is a basis of *g and the X£ are *-independent Anderson’s infinitesimal random

walks defined on *[0, R] (see [2]). Then M; is an S-continuous internal %B;-
semi-martingale.

Let n € *N — N and let

o R 2R (2n—1R
T‘_Tﬂ - {07§)2_"7"' aT;R
be a hyperfinite time line.
Define an internal stochastic process B : T' x 1 — *G as follows:

B, =e,
k1 L
By = ][ “exo(My, - M,,_,), (2)
j=1
where LR
L=ty L= o teT.
Then

5. Theorem. The standard part st(B;) is a brownian motion with values in

G.

Proof. First we extend the function B, continuously to ¢t € *[0, R] by defining
B, as follows:

o
[

o e?

k

- e (U, _ W, )% L1y 57 =7

B, = | | exp(My, — My, )" exp ((RQ_’;)(Mthrl —Mtk)> ,
j=1

where -
IE[Ik,£k+1], tk:Q_ﬂ’ teT.
We have:

(1) B; is an S-continuous function (see [1]) for t € *[0,R] a.s. If A € *g, we
can, by Ado’s Theorem, identify A with a matrix. So, for fixed A, the function
exp(tA) is an S-continuous function. If s,t € [t;, ;] we have s &~ t. Then

x t—-1 = X §—1lp\ =7 =
exr (20T, -T1,)) ~ e (E5 0T, - W1, )
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and so B; = B,. This implies that B; is S- continuous, meaning that st(B;) is
continuous.
(2) Now we show that st(B;) satisfies the stochastic differential equation (1).
First we make a few observations about some nonstandard concepts in man-
ifolds. Sometimes we will write f and ¢ instead of *f and *¢ respectively, if
there is no risk of confusion.
If 2(t) is a curve of class *C' in *G, a < t < b, with z(¢,) = p, the tangent
vector to the curve z(t) at p is the operator X : *C,, — *R defined by

Af(z(t)) s, = f(@(t, + 6t)) — f(a(t,))
At =P ot
with 0t ~ 0. Such X is linear, and for f,g € Cp,

X(f9)p = 9(0)(X )y + f(P)(X9)p,

where C), is the set of functions which are defined and are C'™ on some neigh-
borhood of p. We call X the internal tangent vector to G at p: X € *T,(G).
We see that °X coincides with the standard notion of a tangent vector.

(Xf)p=

Given a local chart (U, ¢) at p with coordinates x1, 2, - -+ , 24, define
, 0
(500
= (f o ¢71)(¢1 (p)a e J¢Z(p) + 5ta ¢i+1 (p)a e 7¢d(p))
ot
_ f o ¢_1(¢1(p)5 e ’¢z(p)’ e a¢d(p))

ot ’

so that (*52-) ~ (3%-). Then (*32-), i =1,2,---,d, is a basis of *T,(G). Let
f:*M — *M' be a *C* function, where M, M' are manifolds. The differential
at p of f is the linear map f. : *Tp(M) — *Ty(,)(M') such that the tangent
vector X € *T,(M) to the curve z(t) at p = x(t,), f«(X) is the tangent vector
to the curve f(x(t)) at f(p) = f(z(t,)). Since dt = 0,

h(f (z(to + 0t))) — h(f((t,)))
ot

For the left translation L, : *G — *G, if we consider the curve z(t) = exp((t —
t,)X), we have that z(t,) = e and ©(t,) = X (&(¢) = dw(%)t ), so that

ALg(X)(f) = (L,). (X)) = X(f o L), = L0V 2 J@)

fo(X)(h) = =X(hof).
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Call ¢' the extensions of the coordinate functions x; of ¢ to a function in *C°.
Let M; = Z —o XiH; + tH,, where H, = Zle a;H;. Then Wlé = X} + ait,
By, = By, exp(Mt — Mt _,). For f € C, and writting f and ¢ instead of
* f , respectlvely, we have that

k
f(By,) — f(e) =Zf(B§j) = f(By,_,)
k

; (9517,'

(Fod ) (@(By)) - (f o ~)(9(By,_,))
d . P
- ( 6.7}1

<

d
Y C o) 0 676(By_ DA (B, )

)(f o ¢™)(é(By,_,)) A" (By,_,)| -

i=1

From the Taylor formula for f o ¢! it follows that

(fod 1) (@(By,)) — (fo &™) (#(By,_,))

d

=3 () 0 6TI6BL_)AF (B, )

d 2
_%mzl(*@x:ax@)(f a )(¢(B;J._1))A¢ (By,_,)A¢™ (B, _,)

< Cla§B,_ ) ~o.
Then, by the S-continuity of *¢ we can choose n € *N — N such that

d
(fod™)(@(By,)—(fos™ )(&(B Jl))—Z(*aii)(fOWI)@(Bt LA (B, _,)

i=1

can be replace by

d 52

2 O 08768, DA By A" (B, ),

wlt—l
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up to equivalence =. But

A¢'(By,_,) = 75 6t¢( i) gy

¢ By, e (60 1/00(T, -y, ) ) - ¢(By,_,)
= 5t
=dLg, _, (1/5t(H§j - H;J._l)) (¢)dt

ot

d
=Y 1/6t (M, -, ) Hi((By,_,))dt
=1

d

=X (M; - H;_I) Hi(¢'(By,_,)),
=1

so that
f(By,) — f(e)
k d d 9 — — ]
zz lz Z(* ax)(f °¢_1)(¢(B§j—1))(M§j N Mij—l)Hl(d)z(Bi"‘l))
j=1 Li=11=1 ¢
1 d d 52
+ 2 Z Z ¢ Bmmaxi)(f ° ¢_1)¢(Btj_l)

-
3
~
I
—

=1n,

- (M, - M, )Hi(¢'(By,_)) (M, — T )Ha(6"(By,_,))]
k d
=y [Zwlf)(&j_l)(mj -1,,_)
j=1 Li=1
d
5 S (HLH By, )Wy~ )], - H;j._l)] ®)
n,l=1
k d d
=y [Z(Hlf)(sz_l)(Xij - Xi}._l) + Z(Hlf)(sz_l)az(tj —t; 1)
j=1 Li=1 =1

+
DN | =
M=

(HnHlf)(Btj_l)(Xéj —Xéj_ )i, =Xz, )

1 Li—1

g
I
=

+
N =
M=

(HnHlf) (Bij_1)alan(tj - tj1)2]

3
I
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i i
| En@oa + 3 Ly, / (H, 1 0)(B)ds + [ (L) (Bo)ds

nll

t t d
-y / (H.f)(By)dl + / (%;(HffH(Hof)) (By)ds

Now, f has compact support. So, for b} = °x}, we have

/CB Z / (HLf)(°B,)b, + / (H,f)(°B,)ds,

provided t ~ t. Since we have seen that °B; satisfies the stochastic differen-
tial equation (1), using the connection between the Ito and the Stratonovich
Calculus ([29]), we obtain

df (°By) = (Hi[)(°Bs)db; + ( ZH2+H> )(°By)dt

= (H;f)(°By)dB; + (H, f)(By)dt.

It follows that § Y-, H? + H, is the generator of °B;.
(3) °B; € G a.s. In fact, [0, R] is a compact set. So, if t € T, ¢ is nearstandard,
and if f € C has compact support, *f is nearstandard. Let (V,,¢,) be a
system of coordinate neighborhoods in G and for each n let V,, be a subordinate
neighborhood such that V! C V,, and V! is compact. Let ¢}, € C be such that it
coincides with the i-component of ¢, on V. The sequence (*V;,, *V.!, *dn)nen
can be extended to an internal sequence (*V,,*V,!,*@p)ne+n with the same
properties. For fixed ¢ € T, By € *G. Then, there is m € *N such that
B; € *V},, and *¢i,(By) is an S-continuous *-real valued internal nearstandard
semi-martingale. So, by Proposition 2.3 in [11], st(*¢,(B,)) exists, is finite
and _ _ .
st(" ¢ (By)) = °("¢n(Br)) = ¢7,(°By)-

Applying ¢,,' we see that B; € *V,),, is nearstandard, and there exists N; € G
such that °B; = Nj. ul

From the proof of equation (3) in Theorem 5 it follows that the nonstandard
definition of the stochastic exponential can be given by means of equation (2).

In order to give a nonstandard definition of the stochastic logarithm we first
show that for each semi-martingale on G we can find a semi-martingale lifting.
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6. Definition. Let A C [0,00) x 2. We say that A is an open set if 4,, = {¢:
(t,w) € A} is open for each w € Q.

A function ¢ : [0,4+00) x @ — R is C* if for each w € Q the function
o(-,w) : [0,+00) = Ris C*.

7. Theorem. Let X : [0,00) X 8 = G be a continuous §;-semi-martingale.
Then, there exist an internal filtration {®;} and a B; semi-martingale lifting

X:TxQ—*Gof X.

Proof. Let (V,, ¢,) be a countable coordinate system of G and assume that for
each n we have chosen an open set V! such that V! is a compact subset of V,.
Let ¢! be functions in C' (Definition 2) that coincide with the components of
¢, on V!. We write ¢, = (¢}, ---¢%). In the same way we can define for each
n a function 1, : R — G whose components are in C' and coincide with the
components of ¢, on #(V!). Then ¢,,(X;) is an R? valued continuous semi-
martingale which coincides with ¢,,(X;) on X (V). From the continuity of
X; we then have that for each w € Q, {t : (t,w) € X 1(V!)} is compact.
Fom Theorem 1.2.12 in [27] there is an internal filtration {$B;}, and a 9B;-S-
continuous semi-martingale lifting Y, of ¢,,(X;). From the continuity of X,

it also follows that if (t,w) € X~1(V) then, for t ~ t, we have that
st(Y™(t,w)) = ¢n(X)(t, w) a.s.

Define Z* = *¢,(Yy*). This is an S-continuous internal semi-martingale
with respect to B; on *G, and if (t,w) € X~1(V}!), we have for t ~ t that
st(Z™(t,w)) = X (t,w) as.

We also have that if (t,w) € X " }(V)N X (V) and t ~ t then

st(Z™(t,w)) = X (t,w) = st(Z™(t,w)) a.s.

Now, {X~1(V.!)}nen is an open cover of [0, +0c) x Q. Let & be a partition of
unity in C subordinated to this cover. Then @ is a countable set, say ® = {p,}.
If ¢ € &, ¢ is of bounded variation, that is, ¢ is a semi-martingale.

We can extend the sequence {*Vy,, *¢n, *V,, *¥p, Y™, Z™, * 0y }nen to an in-
ternal sequence {*V,,,*dn,* V) *hn, Y™ Z™, *pp tne+n with the same proper-
ties. Let n € *N—N. For each n <, define Z; = ZP for (t,w) € *(X~1(V,)))n

(T x Q). We have that Z; is S-continuous (from the definition of Zp') and that
for feC,

n
“F(Z) =D *on- " F(ZD).
n=1
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Also, the right side of the above identity being a hyperfinite sum of the product
of two internal B;-semi-martingales, is an internal semi-martingale. If t € T
and n < 1, there is ¢ € V) such that, for w € Q, ({,w) = (t,w) and (¢, w) €
*X~Y(V!). Then

st(Zy) = st(Z}) = Xi,

and so Z; is the desired lifting. ul

Now we show that we can also define a nonstandard version of the stochastic
logarithm of a semi-martingale on G as a semi-martingale on g. First we recall
the notations in [9]. For z € G, there is a neighborhood N, in T,(G) which is
mapped diffeomorphically by the exponential map onto a neighborhood U, of
zin G.

For z = e, let N = N, and U = U,. Then, for z € U, z — (log’(z))1<i<d €
R? if and only if z = exp(log'(z)H;) ({H; : i = 1,---,d} is a basis of g and
(log’(x))1<i<a are the canonical coordinates).

Let (V, ¢) be a coordinate neighborhood of e and let (D;); be the differential
operators associated with (V,¢). We have, for z € V and f: V = R, f € C*,
that

H;if(z) = Hi¢" Dy f ()

and that

D;f(z) = (Dj; ©)(x)Hi f ()
where (©%); is the dual basis of (H;); and ((D;;0%)(z)); is the family of
coordinates of D;(z) € T,G with respect to the basis (Hy(z)),. D; and Hj,
are vector fields and

(D;;0%)(x) = D;(log" oL(,-1))(x).

Now let (Up, ¢n)nen be an open cover of G by a countable family of coordinate
neighborhoods and (hy,,),en be a partition of unity subordinate to U,,. For each
n, let the operators (D;‘)lsjsd be as above. For a semi-martingale X on U
define

£(X) = M'H;

where

W=Ammwmmmw%m> (4)

is the Stratonovich integral with respct to ¢%(X,). The following definition
shows that the nonstandard definition of the stochastic logarithm is an easy
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working alternative. Let n € *N — N and let

. R 2R (2n-1R
Tn—{O,Q—n;2—n,"' aTaR

be a hyperfinite time line. Given a semi-martingale X on G, there exists a
semi-martingale lifting X of X. Define

k
— " 11—
S(X,) = E : logth X§t+1'
=0

8. Theorem. Let_ﬂ be a semi-martingale lifting of a semi-martingale M
with values on g. If X = &(M,), we have that

Y(E(E(My)) = L(°€(My)) = M.
If X, is a semi-martingale lifting of a semi-martingale X; on G, and if £(X;) =

Hi’ then
°(E(E(XY)) = E("L(XY) = X

Proof.
R k — 11—
S( E) = Z * IOgth X§t+1
=0
k —_— —_
= Z* log " exp(My,,, — My,)
=0
k —_ —_
= (Mtl+1 Mﬁ[) = M§k+1 Mio
=0

for t = t;,,, and "E(YL) = M; for t =~ t. The proof of the second part is
similar.

Hakim-Dowek and Lépingle ([9]) introduce a natural notion of local martin-
gale on a Lie group by
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9. Definition. A continuous semi-martingale X with values in G is a G-
martingale if £(X) is a local martingale with values in g.

An analogous definition holds for internal *G-martingales on *G.

P.A. Meyer [26] and R.W.R Darling [5] give a notion of martingale on a
manifold V' by taking a connection I' on V. The authors in [9] use the fact
that on a Lie group G one can choose a left invariant connection, which carries
the maps exp(tA) , t € R, to geodesics. The connection has no torsion, so that
VA = 0 for any left invariant vector field A, and that V4B =0 for A, B € g.
For this type of connection, they have shown in [9] that the I'-martingales
coincide with the G-martingales.

A local martingale with values in g is given by M; = Zle M{H;, where
{H;} is a basis in g and (M}, --- , M{) is a local martingale on R?.

10. Theorem.

(a) Let X be a G-martingale on G. Then, there is an internal *G-martin-
gale X on *G such that st(X) = X a.s.

(b) Let X be an internal *G-martingale on *G. Then st(X) is a G-
martingale on G.

Proof.

(a) If X is a G-martingale, £(X) is a continuous local martingale on g with
paths in D(R?). By Theorem 5.6 in [11], there is a 9B;- S-continuous
local martingale lifting M of £(X). It follows that €(M) is an internal
semi-martingale on *G. Thus, €(M) is an internal *G-martingale on
*G.

(b) If X is an internal *G-martingale, X is an internal S-continuous semi-
martingale on *G such that £(X) is an internal S-continuous local mar-
tingale on g. Thus by Theorem 5.2.(b) in [11], st(£(X)) = £(st(X))
is a local martingale on g. This implies that st(X) is a G-martingale
onG. 0O
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