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1 Introduction

Vector measures are closely related to, and in many instances justified by, the study of
Banach space theory. For instance, J. Diestel and J. J. Uhl, Jr. mention in their monograph
[18], published in 1977, several early instances of the interplay between vector measures
and Banach space theory. For the purpose of this article, the following paragraph, that
highlights the origins of the Radon-Nikodým type theorems, is most relevant: “In 1936, J.
A. Clarkson introduced the notion of uniform convexity to prove that absolutely continuous
functions on a Euclidean space with values in a uniformly convex Banach space are the
integrals of their derivatives. At the same time, Clarkson used vector measure theoretic
ideas to prove that many familiar Banach spaces do not admit equivalent uniformly convex
norms. N. Dunford and A. P. Morse, in 1936, introduced the notion of a boundedly
complete basis to prove that absolutely continuous functions on a Euclidean space with
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values in a Banach space with a boundedly complete basis are the integrals of their
derivatives. Shortly thereafter Dunford was able to recognize the Dunford-Morse theorem
and the Clarkson theorem as genuine Radon-Nikodým theorems for the Bochner integral.
This was the first Radon-Nikodým theorem for vector measures on abstract measure
spaces”.

In spite of these exciting beginnings, and except for a few notable instances, vector
measures were quite forgotten in the forties and fifties. However, the monograph [19],
written by N. Dinculeanu and published in 1967, inspired a renewed interest on the
subject, particularly on the Radon-Nikodým theorem for the Bochner integral, and on the
Orlicz-Pettis theorem (see, for instance, [18], Notes and Remarks, pp. 31-39). A search
of the Mathematical Reviews for the relevant entries in the 2020 Mathematics Subject
Classification, shows that the study of vector measures is still of interest.

As for the organization of our exposition, it commences with a section that covers basic
definitions and results on vector measures. The measurability of vector-valued functions is
discussed in Section 3, and we dedicate Section 4 to the Bochner integral. In Section 5 we
look at several modes of convergence, while in Section 6 we review the Radon-Nikodým
property for the Bochner integral.

These sections amount to a fairly detailed study of vector measures. We prove quite a
few results, and we provide abundant references, as well as numerous examples and plenty
of commentary, including many of a historical nature.

The material covered in these sections uses results from the theory of real-valued
measures that are found, for the most part, in any book on measure and integration. We
refer often to [3] and [44]. Other sources are cited at the appropriate times.

2 Definitions and results pertaining to vector measures

We fix a measurable space (S,Σ) (see [3], p. 81), and a Banach space X with norm ∥·∥
which will always be real. In fact, all the linear spaces we consider will be real. This
setting will suffice for much of our purposes. Reference [19], in particular, considers far
more general settings.

Definition 1. A set function m : Σ → X is called a vector measure if

1. m (∅) = 0.

2. For each pairwise disjoint family {Aj}j≥1 ⊆ Σ,

m

⋃
j≥1

Aj

 =
∑
j≥1

m (Aj) . (1)

Remark 1. The convergence of the series in (1) follows from the equality therein. Fur-
thermore, for the same reason, the series converges unconditionally. However, a very deep
result due to A. Dvoretsky and A. Rogers [21] asserts that unconditional convergence is
equivalent to absolute convergence, exactly when the space X is a finite dimensional linear
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space. To be sure, absolute convergence implies unconditional convergence in any Banach
space. The proof follows that of the real case (for the real case, see, for instance, [14], p. 45,
Theorem 21).

Remark 2. When X in Definition 1 is the space R, we refer to the vector measure m as
signed measure. Let us mention that, generally, a signed measure is allowed to take one,
and only one, of the values ∞ and −∞ (see, for instance, [44], p. 20). However, in our
context, a signed measure is always a particular case of a vector measure, that is, it has
values in R.

Following customary practice, we call a set function m : Σ → [0,∞] satisfying the
conditions in Definition 1, a measure. Let us observe that for a measure, the series on the
right hand side of (1) may converge absolutely, or diverge to ∞.

In the few occasions in which we work with an specific measure, we will say so.

Remark 3. Definition 1 follows ([12], p. 357) and ([6], p. 99). Although we stick to this
definition throughout, some references, for instance [18], make the distinction between
countably additive vector measures, defined as in Definition 1, and finitely additive vector
measures, where condition 2) is replaced by

2’) For each finite and pairwise disjoint family {Aj}j ⊆ Σ,

m

⋃
j

Aj

 =
∑
j

m (Aj) .

We refer to finitely additive vector measures as vector charges (for the real case,
see [7]).

Let us observe that if m is a vector charge and A1, A2 are sets in Σ with A1 ⊆ A2, the
equality A2 = A1

⋃
(A2\A1) implies that

m (A2)−m (A1) = m (A2\A1) . (2)

It should be clear that every vector measure is a vector charge. We will see shortly that
the converse is not always true.

The proposition that follows collects several equivalent conditions for a vector charge
to be a vector measure. These conditions appear in the literature, in various forms, when
X is the space R of the real numbers.

Proposition 1. Let m : Σ → X be a vector charge. Then, the following statements are
equivalent:

1. The vector charge m is a vector measure.
2. If {Aj}j≥1 ⊆ Σ and Aj ⊆ Aj+1 for all j ≥ 1, then there exists

lim
k→∞

m (Ak) = m

⋃
j≥1

Aj

 .
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3. If {Aj}j≥1 ⊆ Σ and Aj+1 ⊆ Aj for all j ≥ 1, then there exists

lim
k→∞

m (Ak) = m

⋂
j≥1

Aj

 .

4. If {Aj}j≥1 ⊆ Σ, Aj+1 ⊆ Aj for all j ≥ 1, and
⋂

j≥1Aj = ∅, then there exists

lim
j→∞

m (Aj) = 0.

5. If {Aj}j≥1 ⊆ Σ are pairwise disjoint, then there exists

lim
k→∞

m

⋃
j≥k

Aj

 = 0.

Proof. To show that 1) ⇒ 2), we fix {Aj}j≥1 ⊆ Σ with Aj ⊆ Aj+1 for all j ≥ 1, and we
write ⋃

j≥1

Aj = A1

⋃⋃
j≥2

(Aj\Aj−1)

 .

If B1 = A1 and Bj = Aj\Aj−1 for j ≥ 2, the family {Bj}j≥1 ⊆ Σ is pairwise
disjoint and ⋃

j≥1

Bj =
⋃
j≥1

Aj .

So,

m

⋃
j≥1

Aj

 = m

⋃
j≥1

Bj

 =
∑
j≥1

m (Bj)

= lim
k→∞

∑
1≤j≤k

m (Bj) = m (A1) + lim
k→∞

∑
2≤j≤k

(m (Aj)−m (Aj−1))

= lim
k→∞

m (Ak) .

To prove 2) ⇒ 3), we fix {Aj}j≥1 ⊆ Σ with Aj+1 ⊆ Aj for all j ≥ 1, and we write
Bj = A1\Aj , for all j ≥ 1. Thus, Bj+1 ⊇ Bj for all j ≥ 1. Then, according to 2), there
exists

lim
k→∞

m (Bk) = m

⋃
j≥1

Bj

 ,
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or, using (2),

m (A1)− lim
k→∞

m (Ak) = m

⋃
j≥1

(A1\Aj)


= m

A1\
⋂
j≥1

Aj

 = m (A1)−m

⋂
j≥1

Aj

 .

It should be clear that 3) implies 4), since m (∅) = 0.

To prove 4) ⇒ 5), we fix any {Aj}j≥1 ⊆ Σ pairwise disjoint, and we set Bk =⋃
j≥k Aj . Then, Bk+1 ⊆ Bk for all k ≥ 1 and

⋂
k≥1

Bk =
⋂
k≥1

⋃
j≥k

Aj = ∅.

Thus, there exists

0 = lim
k→∞

m (Bk) = lim
k→∞

m

⋃
j≥k

Aj

 .

Finally, to prove 5) ⇒ 1), we consider any family {Aj}j≥1 ⊆ Σ pairwise disjoint.
Then, for k ≥ 1 fixed, using again (2),

∑
1≤j≤k

m (Aj) = m

 ⋃
1≤j≤k

Aj

 = m

⋃
j≥1

Aj

−m

 ⋃
j≥k+1

Aj

 .

According to 5), there exists

lim
k→∞

m

 ⋃
j≥k+1

Aj

 = 0,

so

m

⋃
j≥1

Aj

 =
∑
j≥1

m (Aj) .

This completes the proof of the proposition.

Example 1. If I is the closed real interval [0, 1], we consider on I the Lebesgue measure
space (see [3], p. 81, Example 1), consisting of the set I , the Lebesgue σ-algebra LI on
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I , and the Lebesgue measure λ : LI→ [0,∞). Furthermore, for 1 ≤ p < ∞ fixed, we
consider the Banach space Lp (I), with the norm

∥f∥
Lp(I)

=

(∫
I

|f (t)|p dt
)1/p

.

Then, we define the set function mp : LI → Lp (I) as

mp (A) = χA,

where χA denotes the class in Lp (I) of the characteristic function χA of the set A ∈ LI .
We claim that mp is a vector charge and, moreover, a vector measure. Indeed, it should
be clear that mp (∅) = 0. As for condition 2) in Definition 1, if we fix {Aj}j≥1 ⊆ LI

pairwise disjoint,∥∥∥∥∥∥mp

⋃
j≥k

Aj

∥∥∥∥∥∥
Lp(I)

=

∥∥∥∥χ⋃
j≥k

Aj

∥∥∥∥
Lp(I)

=

λ
⋃

j≥k

Aj

1/p

→
k→∞

0,

since
(∑

j≥k λ (Aj)
)1/p

→k→∞ 0. Thus, according to Proposition 1, mp is a vector
measure.

The same set function, but with values in the Banach space L∞ (I) instead, is still
a vector charge, denoted m∞. In fact, if we fix any finite and pairwise disjoint family
{Aj}j ⊆ Σ,

m∞

⋃
j

Aj

 = χ⋃
j
Aj

=
∑
j

χ
Aj

=
∑
j

m∞ (Aj) .

However,m∞ is not countably additive. We will prove it by showing that 4) in Proposition 1
does not hold. Indeed, let us consider the decreasing family of open intervals

{(
0, 1j

)}
j≥1

.

Since R is Archimedean, or, equivalently, since there are no non-zero infinitesimals in R,
we have ⋂

j≥1

(
0,

1

j

)
= ∅.

So,

m∞

⋂
j≥1

(
0,

1

j

) = 0.

However, ∥∥∥∥m∞

((
0,

1

j

))∥∥∥∥
L∞(I)

=
∥∥∥χ(0, 1j )∥∥∥L∞(I)

= 1,

for all j ≥ 1, showing that, indeed, 4) in Proposition 1 does not hold.
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Proposition 2. Every vector measure is bounded, meaning

sup
A∈Σ

∥m (A)∥ <∞. (3)

Proof. For each functional l in the topological dual X ′ of X , the composite set function
l ◦m : Σ → R is a signed measure. Thus, ([44], p. 30, Theorem 5), l ◦m is a bounded
signed measure, that is

sup
A∈Σ

|(l ◦m) (A)| <∞,

where |·| denotes the absolute value in R. So, if we apply Proposition 12 in ([43], p. 101),
which follows from the Uniform Boundness Principle ([43], p. 95, Theorem 4), to the
subset {m (A)}A∈Σ of X , we conclude that m is bounded, in the sense of (3).

This completes the proof of the proposition.

Definition 2. The variation of the vector measure m, denoted |m|, is the set function
|m| : Σ → [0,∞] defined for each A ∈ Σ as

|m| (A) = sup

∑
j

∥m(Aj)∥

 , (4)

where the supremum is taken over all the finite partitions {Aj}j ⊆ Σ, of A.

Remark 4. It should be clear that |m| (∅) = 0, so |m| is never identically equal to infinity.

If we consider the partition consisting of one set, A itself, from (4) we get

∥m (A)∥ ≤ |m| (A) , (5)

for all A ∈ Σ.

Moreover, |m| (A) = 0 for all A ∈ Σ if, and only if, m (A) = 0 for all A ∈ Σ.

When m is a signed measure, the variation |m| can be defined as in Definition 2, or,
equivalently, using the notions of positive variation and negative variation (see [3], pp.
84-85).

Lemma 1. For a measure m, we have |m| = m, where |m| is defined as in (4).

Proof. If we fix A ∈ Σ,

|m| (A) = sup
{Aj}j

∑
j

m(Aj)

 = m (A) ,

where {Aj}j ⊆ Σ is any finite partition of A.

The variation of a vector measure is always a measure. We will prove this assertion
shortly.
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Definition 3. Given a vector measure m, the total variation of m is |m| (S). We say that
m has finite variation if |m| (S) ∈ [0,∞).

Example 2. We claim that the vector measurem1 defined in Example 1, has finite variation.
In fact, if we fix A ∈ Σ and {Aj}j ⊆ Σ is a finite partition of A, we have∑

j

∥m1(Aj)∥L1(I) =
∑
j

∥∥∥χAj

∥∥∥
L1(I)

=
∑
j

λ (Aj) = λ (A) .

Thus,
|m1| (A) = λ (A) .

In other words, the variation of m1 is the Lebesgue measure λ.

In particular,
|m1| (I) = 1.

Remark 5. As we will see in Remark 11, there are vector measures that do not have finite
variation.

In ([19], pp. 32-33), it is observed that using partitions with more sets, does not alter
Definition 2. Indeed,

Proposition 3. If m is a vector measure, then, for each A ∈ Σ,

|m| (A) = sup

{∑
α∈Λ

∥m(Aα)∥

}
, (6)

where the supremum is taken over all the partitions {Aα}α∈Λ ⊆ Σ of A, for every set of
indexes Λ.

Remark 6. Before going on to the proof of this proposition, let us recall that
∑
α∈Λ

∥m(Aα)∥

is defined as
sup
F

∑
α∈F

∥m(Aα)∥ , (7)

where F varies over all the finite subsets of Λ. This generalized form of convergence is
called summability.

The notion of summability for an arbitrary family {xα}α∈Λ (see, for instance, [4], p.
138, Definition 9.1) was defined by E. H. Moore ([30], p. 63) as

lim
F

∑
α∈Λ

xα, (8)

where the limit is taken with respect to the finite subsets of Λ, ordered, or directed, by
inclusion. This is the Moore-Smith limit (see, for instance, [27], Chapter 2; [41]), defined
by Moore and H. L. Smith in [31]. As a consequence of the definition of summability, xα
ends up being zero except for countably many values of α (see [4], p. 139, Theorem 9.1).
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The Moore-Smith limit is used, for instance, to describe precisely the convergence of the
Riemann sums (see, for instance, [2], Section 2). In our case, since we are working with a
non-negative family, {∥m(Aα)∥}α∈Λ, it should be clear that (7) is equivalent to the formal
definition (8) of summability.

We are now ready to prove Proposition 3.

Proof. The idea of the proof is simple, although there are minor technical details involved.

Let v1 be the set function defined by the right-hand side of (6). It should be clear that
v1 (A) ≥ |m| (A), for all A ∈ Σ. To prove the opposite inequality, let us first assume that
ν1 (A) is finite. Then, given ε > 0, there exists a partition {Aε

α}α∈Λε
⊆ Σ, of A and a

finite subset Fε of Λε, so that

(v1 (A)− ε)− ε ≤

(∑
α∈Λε

∥m(Aε
α)∥

)
− ε ≤

∑
α∈Fε

∥m(Aε
α)∥+

∥∥∥∥∥m
(
A\

⋃
α∈Fε

Aε
α

)∥∥∥∥∥
≤ |m| (A) .

Invoking once again the Archimedean nature of the real numbers, we conclude that

v1 (A) ≤ |m| (A) .

If ν1 (A) is infinite, given M > 0, there exists a partition
{
AM

α

}
α∈ΛM

⊆ Σ, of A, so
that

M ≤
∑

α∈ΛM

∥∥m(AM
α )
∥∥ .

If
∑

α∈ΛM

∥∥m(AM
α )
∥∥ = ∞, then, for a finite subset FM of ΛM ,

M ≤
∑

α∈FM

∥∥m(AM
α )
∥∥ ≤

∑
α∈FM

∥∥m(AM
α )
∥∥+ ∥∥∥∥∥m

(
A\

⋃
α∈FM

AM
α

)∥∥∥∥∥
≤ |m| (A) .

So,
ν1 (A) = ∞ = |m| (A) .

If, on the other hand,
∑

α∈ΛM

∥∥m(AM
α )
∥∥ is finite, given ε > 0, there exists a finite

subset FM,ε of ΛM so that

M − ε ≤

( ∑
α∈ΛM

∥∥m(AM
α )
∥∥)− ε ≤

∑
α∈FM,ε

∥∥m(AM
α )
∥∥

≤
∑

α∈FM

∥∥m(AM
α )
∥∥+

∥∥∥∥∥∥m
A\ ⋃

α∈FM,ε

AM
α

∥∥∥∥∥∥ ≤ |m| (A) .
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Once again,
ν1 (A) = ∞ = |m| (A) .

This completes the proof of the proposition.

Corollary 1. If m is a vector measure, then, for each A ∈ Σ,

|m| (A) = sup

∑
j≥1

∥m(Aj)∥

 , (9)

where the supremum is taken over all the countable partitions {Aj}j≥1 ⊆ Σ, of A.

Proof. Let us begin by observing that if we fix a partition {Aj}j≥1 ⊆ Σ, of A, then∑
j≥1

∥m(Aj)∥ = sup
F

∑
j∈F

∥m(Aj)∥ , (10)

where the left-hand side is interpreted, in the usual way, as the limit of the partial sums,
while in the right-hand side F varies over all the finite subsets of N, as in (7). That is to
say, the right-hand side of (10) is interpreted in the sense of summability mentioned in
Remark 6. The equality (10) holds because the convergence of the series

∑
j≥1 ∥m(Aj)∥

is equivalent, with the same sum, to its convergence in the sense of summability given by
(7) (see, for instance, [23]). Let us emphasize that we are considering here sums with a
countable number of terms.

Thus, if v2 denotes the set function defined by the right-hand side of (9), we have

|m| (A) = v1 (A) ≥ v2 (A) ≥ |m| (A) ,

for all A ∈ Σ.

This completes the proof of the corollary.

Remark 7. For a signed measure m, it is true (see [44], p. 30, Proposition 7 (iii)) that

|m| (A) = sup {|m (B)|+ |m (A\B)| : B ∈ Σ, B ⊆ A} . (11)

However, the corresponding equality for a vector measure,

|m| (A) = sup {∥m (B)∥+ ∥m (A\B)∥ : B ∈ Σ, B ⊆ A} , (12)

is not true, in general. Indeed, if it were true, as a consequence of (5) and (12), we could
prove quite easily that

sup {∥m (B)∥ : B ∈ Σ, B ⊆ A} ≤ |m| (A) ≤ 2 sup {∥m (B)∥ : B ∈ Σ, B ⊆ A} .

In particular, we would have

sup {∥m (B)∥ : B ∈ Σ} ≤ |m| (S) ≤ 2 sup {∥m (B)∥ : B ∈ Σ} . (13)

That is, we would have, for any vector measure, the equivalence between being bounded
and having finite variation. This is not generally true, according to Proposition 2 and
Remark 5. However, it is true when m is a signed measure (see [44], p. 31, Corollary 8).
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Let us observe that the proof of (11) is based on the Jordan decomposition of m ([44],
p. 30, Theorem 6) as the difference of two non-negative signed measures.

Now, we are ready to prove that the variation of a vector measure is, indeed, a measure.

Proposition 4. The variation |m| of a vector measure m is a measure.

Proof. We prove this proposition by adapting the proof of Theorem 6.2 in ([39], p. 117).

It is clear that |m| (∅) = 0. As for the countable additivity, let us fix any pairwise
disjoint family {Aj}j≥1 ⊆ Σ. If tj ∈ R satisfies tj < |m| (Aj), then, by the definition of
|m| and Corollary 1, there exists a countable partition {Aj,k}k≥1 ⊆ Σ, of A, so that

tj <
∑
k≥1

∥m(Aj,k)∥ ,

for each j ≥ 1.

Now, the family {Aj,k}j,k≥1 ⊆ Σ, is a countable partition of A. So,

∑
j≥1

tj ≤
∑
j≥1

∑
k≥1

∥m (Aj,k)∥

 =
(i)

∑
j,k≥1

∥m (Aj,k)∥ ≤ |m| (A) ,

where the passage from iterated summation to double summation in equality (i) above, is
a discrete version (see, for instance, [14], p. 46, Proposition 22) of Fubini’s theorem for
non-negative functions. So, we end up obtaining the inequality∑

j≥1

tj ≤ |m| (A) . (14)

Now, taking the supremum of the left-hand side of (14) over all the suitable sequences
{tj}j≥1, we obtain ∑

j≥1

|m| (Aj) ≤ |m|

⋃
j≥1

Aj

 .

To prove the converse direction, we consider an arbitrary countable partition {Bk}k≥1 ⊆
Σ of

⋃
j≥1Aj . Then, the family {Aj ∩Bk}k≥1 is a countable partition ofAj and likewise,

{Aj ∩Bk}j≥1 is a countable partition of Bk. Thus,

∑
k≥1

∥m (Bk)∥ =
∑
k≥1

∥∥∥∥∥∥
∑
j≥1

m
(
Aj

⋂
Bk

)∥∥∥∥∥∥ ≤
∑
k≥1

∑
j≥1

∥∥∥m(Aj

⋂
Bk

)∥∥∥
=
(i)

∑
j≥1

∑
k≥1

∥∥∥m(Aj

⋂
Bk

)∥∥∥
≤

∑
j≥1

|m| (Aj) ,
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where the equality (i) above follows, again, from the discrete version of Fubini’s theorem
for non-negative functions.

Consequently,

|m|

⋃
j≥1

Aj

 = sup
{Bk}k≥1

∑
k≥1

∥m (Bk)∥ ≤
∑
j≥1

|m| (Aj) .

This completes the proof of the proposition.

Definition 4. We say that a vector measure m has σ-finite variation if the measure |m| has
σ-finite variation. That is (see [3], p. 87, Definition 10), if there exists a countable covering
{Aj}j≥1 of S, so that |m| (Aj) is finite for all j ≥ 1. In other words, if the restriction
|m| /Aj of |m| to Aj (see [3], p. 82, Definition 5), has finite variation.

Remark 8. Let us observe that |m| /A = |m/A| for each A ∈ Σ. The proof of this
assertion follows the proof for the real case (for the real case, see [3], p. 92, Lemma 4).

Remark 9. Of course, a vector measure of finite variation is trivially of σ-finite variation.
We discuss in Remark 11 below, a non-trivial example of a vector measure of σ-finite
variation.

Remark 10. As we have said before, the set functions we consider in this article will
always have values in a real Banach space. Just to understand what might be different in
the complex case, let us suppose, for a moment, that we fix a set function m : Σ → C,
where C is the complex space of complex numbers. The function m is called a complex
measure (see [39], p. 116), if m (∅) = 0 and, for each countable and pairwise disjoint
family {Aj}j≥1 ⊆ Σ,

m

⋃
j≥1

Aj

 =
∑
j≥1

m (Aj) . (15)

As in Definition 1, the convergence in C of the series in (15), is part of the definition.
That is, it follows from the equality. As a consequence, the series converges unconditionally
. Since C is a finite dimensional linear space, the series converges absolutely, as well.

The variation |m| of a complex measure m is defined exactly as in Definition 2.
However, it can be shown (see [39], p. 118, Theorem 6.4), that the resulting set function
|m|, takes always finite values, in other words, |m| (S) <∞. An examination of the proof
of this result, shows how vital is to use the complex structure of C.

Remark 11. Later on, we will work, for the most part, with vector measures of finite
variation. To understand better the meaning of this assumption, we discuss now several
examples.

We begin by developing an example suggested in ([12], p. 357, Appendix E, Exercise
5), of a vector measure that does not have finite variation.
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We consider the measurable space (N,P (N)), where N denotes the set of natural
numbers {1, 2, ...} and P (N) is the σ-algebra of all the subsets of N. If l2 is the Banach
space of square-summable real sequences, we define m : P (N) → l2 as follows: Given
A ∈ P (N), m (A) is the sequence

k →
{

1
k if k ∈ A,
0 if k /∈ A.

In other words,

m (A) =

{
1

k
χA (k)

}
k≥1

.

The set function m defined in this manner, is a vector measure. Indeed, it should be clear
that m (∅) = 0. As for being countably additive, if {Aj}j≥1 ⊆ P (N) is pairwise disjoint,

m

( ⋃
j≥1

Aj

)
=

{
1

k
χ⋃

j≥1
Aj

(k)

}
k≥1

=

1

k

∑
j≥1

χAj
(k)


k≥1

=
∑
j≥1

m (Aj) .

Let us see now that this vector measure m is not of finite variation.

For N ∈ N fixed, the sets {j} for 1 ≤ j ≤ N and BN = {N + 1, N + 2, ...} form a
finite partition of N. Then,

|m| (N) ≥
∑

1≤j≤N

1

j
+ ∥m (BN )∥l2 ,

for every N ∈ N, which implies that |m| (N) = ∞.

Next, we consider a modification of an example presented in ([19], p. 40).

Let (N,P (N)) be the measurable space considered before and let B be the real
Banach space of bounded functions f : R → R, with the norm of the supremum. We
define m : P (N) → B as

m (A) = χA.

It should be clear that m is a vector measure and that

∥m (A)∥B = 1,

for every A ∈ P (N). Moreover, if A ∈ P (N)

|m| (A) ≥
∑
j∈A

∥m ({j})∥B .

That is to say, given A ∈ P (N), |m| (A) equals infinity if, and only if, A is infinite.
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We continue with two examples mentioned in p. 99 of [6].

For the first example, we fix again the measurable space (N,P (N)) and we select a
sequence {aj}j≥1 in X , so that the series

∑
j≥1 aj converges unconditionally in X . Then,

we define the set function m : P (N) → X as

m (A) =

{ ∑
j∈A

aj if A ̸= ∅

0 if A = ∅
. (16)

Thus defined, m is a vector measure. We claim that m has finite variation if, and only
if, the series

∑
j≥1 aj converges absolutely. In fact, let us start by assuming that the series∑

j≥1 aj converges absolutely. Then, given a finite partition {Ak}k ⊆ P (N) of N,

∑
k

∥m (Ak)∥ =
∑
k

∥∥∥∥∥∥
∑
j∈Ak

aj

∥∥∥∥∥∥ ≤
∑
j≥1

∥aj∥ ,

which implies that

|m| (N) ≤
∑
j≥1

∥aj∥ .

That is, m has finite variation.

Conversely, if m has finite variation,

∞ > |m| (N) ≥
N∑
j=1

∥aj∥+

∥∥∥∥∥∥
∑

j≥N+1

aj

∥∥∥∥∥∥ ≥
N∑
j=1

∥aj∥ ,

for all N ≥ 1, showing that the series
∑

j≥1 aj converges absolutely.

IfX has infinite linear dimension, according to Remark 1, the series
∑

j≥1 aj might not
converge absolutely. If this is the case, we can write, for instance, N =

⋃
j≥1 {1, 2, ..., j},

so m has σ-finite variation, although it does not have finite variation.

The second example involves the vector measure mp defined in Example 1 for 1 ≤
p <∞. We claim that mp has finite variation if, and only if, p = 1. In fact, let us start by
observing that for A ∈ LI ,

|mp| (A) = sup
{Aj}j

∑
j

∥mp (Aj)∥Lp(I)

 = sup
{Aj}j

∑
j

(λ (Aj))
1/p

 . (17)

That m1 has finite variation was shown in Example 2.
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If 1 < p < ∞, let us fix 0 < α < 1 so that αp > 1. Moreover, for N ≥ 2, let
us consider a family {Ij}1≤jN of N disjoint subintervals of I , each of length 1

Nαp . We
observe that

λ
(⋃

1≤j≤N
Ij

)
=

N∑
j=1

λ (Ij) = N1−αp < 1,

so, the family {Ij}1≤j≤N jointly with the set I\
⋃

1≤j≤N Ij is a finite partition of I .
According to (17),

|mp| (I) ≥
N∑
j=1

(λ (Ij))
1/p

+
(
λ
(
I\
⋃

1≤j≤N
Ij

))1/p
≥

N∑
j=1

(λ (Ij))
1/p

= N
(
N−α

)
= N1−α,

for all N ≥ 2. Thus,
|mp| (I) = ∞.

Actually, we can say quite a bit more about this last example. Indeed, as mentioned in
([6], (ii) in p. 99, and [18], p. 7, Example 16), for 1 < p < ∞, |mp| (A) = ∞ for every
set A ∈ LI with positive Lebesgue measure.

To see why this is the case, we need to introduce a few definitions and results, which
we take from [3] and other sources. For more on the subject, we refer to Section 5 in [3]
and the references therein.

Definition 5. A measure ν : Σ → [0,∞] is continuous if the singletons belong to Σ and
they are ν-null, that is if {x} ∈ Σ and ν ({x}) = 0, for all x ∈ S.

Let us observe that the Lebesgue measure is continuous.

Remark 12. For future reference, let us say that Definition 5 carries over, without changes,
to the case of a vector measure.

Definition 6. ([20], p. 645) Given a measure ν : Σ → [0,∞] and given A ∈ Σ, we say
that A is a ν-atom if ν (A) > 0 and for every Σ-measurable set B ⊆ A, is ν (B) = 0 or
ν (B) = ν (A). We say that a measure is atomless if it does not have atoms.

Measures without atoms are usually called non-atomic or not atomic. However, the
word “non-atomic” is used, with a different meaning, in measure theory (see, for in-
stance, [12], p. 290), and the words “not atomic” have an specific meaning in computer
programming [45].

If the singletons belong to Σ, every atomless measure ν is continuous. However, the
converse is not generally true (see [3], p. 95, Remark 11).

Proposition 5. Consider the Lebesgue measure space (Rn,L, λ) (see [3], p. 81, Example
1). Given A ∈ L with λ (A) > 0, there exists an L-measurable set B ⊆ A so that
0 < λ (B) < λ (A).
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For the proof of this proposition, see p. 95 in [3].

Corollary 2. The Lebesgue measure is atomless.

Proposition 5 has a very interesting extension for finite measures that are atomless.

Proposition 6. Let (S,Σ) be a measurable space. If ν : Σ → [0,∞) is a non identically
zero atomless finite measure, for each real number c, 0 < c < ν (S), there exists A ∈ Σ

so that ν (A) = c.

What this proposition says is that certain measures have the intermediate value property.
For the somewhat lengthy proof, we refer to ([20], p. 645). The interesting point is that,
for the class of atomless and finite measures, the word continuous should be interpreted as
meaning that the measure takes a continuum of values.

The first version of Proposition 6 was proved by W. Sierpiński, in an article published
in 1922 [40]. For a detailed account of Sierpiński’s result, see p. 96 in [3].

Proposition 6 can be easily extended (see [3], p. 96, Remark 12) to non-identically
zero and atomless σ-finite measures (see Definition 4).

Proposition 6 is not true, in general, when the measure ν has atoms (see [3], p. 96).

For much more on these matters, see ([19], p. 25, Section 2.9), where the property
described in Proposition 6, is called, aptly, Darboux property.

We are now ready to take up the last assertion made in Remark 11.

Let us fix A ∈ LI with λ (A) > 0 and let a = λ (A). We claim that given N ≥ 1,
there is a finite partition {Aj}1≤j≤N ⊆ LI of A, so that λ (Aj) =

a
N .

Indeed, for N = 1, we can take A1 = A. Next, according to Proposition 6, there exists
an LI -measurable subset A1 of A so that λ (A1) =

a
2 . Since λ (A\A1) =

a
2 , the sets A1

and A\A1 give the partition, for N = 2. If N = 3, it should be clear that we can pick
A1 ⊆ A and A2 ⊆ A\A1 so that the sets A1, A2 and (A\A1) \A2 give the partition. And
so on. Then,

|mp| (A) ≥
N∑
j=1

(λ (Aj))
1/p

= a1/p
N∑
j=1

N−1/p = a1/pN1−1/p,

so, |mp| (A) = ∞.

As a consequence, the measure |mp| is not σ-finite.

Before stating the next result, let us observe that given vector measures m1 and m2

and real numbers α, β, by αm1 + βm2 we mean the vector measure defined as

(αm1 + βm2) (A) = α (m1 (A)) + β (m2 (A)) ,

for every A ∈ Σ. It should be clear that

|αm| = |α|R |m| , (18)

where |α|R is the absolute value of the real number α, and |m| is the variation of m.



Lecturas Matemáticas, vol. 44 (1) (2023), pp. 5-61 21

Lemma 2. Given two vector measures m1,m2 : Σ → X ,

|m1 +m2| ≤ |m1|+ |m2| . (19)

Proof. Given A ∈ Σ and given an arbitrary finite partition {Aj}j ⊆ Σ, of A,∑
j

∥(m1 +m2) (Aj)∥ ≤
∑
j

∥m1 (Aj)∥+
∑
j

∥m2 (Aj)∥

≤ |m1| (A) + |m2| (A) .

Thus, (19) holds.

This completes the proof of the lemma.

Then, the following result should be clear:

Proposition 7. The space Mf of all the vector measures m : Σ → X of finite variation is
a normed linear space with the norm

∥m∥ = |m| (S) .

Definition 7. Two vector measures m1,m2 : Σ → X are mutually singular, denoted
m1 ⊥ m2, if the measures |m1| and |m2| are mutually singular, also denoted |m1| ⊥ |m2|.
That is to say, if there is a partition S = E

⋃
F , E,F ∈ Σ, such that |m1| (F ) = 0 and

|m2| (E) = 0. In particular, according with Lemma 1, a vector measure m : Σ → X and
a measure ν : Σ → [0,∞] are mutually singular if the measures |m| and ν are mutually
singular.

Lemma 3. Let m1,m2 : Σ → X be vector measures. If m1 ⊥ µ and m2 ⊥ µ, then
m1 +m2 ⊥ µ.

Proof. According to Definition 7, there are partitions S = A
⋃
B and S = E

⋃
F so that

|m1| (A) = µ (B) = 0,

|m2| (E) = µ (F ) = 0.

Then, let us consider the partition

S =
(
A
⋂
E
)⋃(

B
⋃
F
)

So,
|m1 +m2|

(
A
⋂
E
)
≤ |m1|

(
A
⋂
E
)
+ |m2|

(
A
⋂
E
)
= 0

while
µ
(
B
⋃
F
)
≤ µ (B) + µ (F ) = 0.

This completes the proof of the lemma.
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Lemma 4. Let m : Σ → X be a vector measure and let A ∈ Σ. Then, the following
statements are equivalent:

1. |m| (A) = 0.

2. m (A′) = 0 for all A′ ⊆ A, A′ ∈ Σ.

Proof. If m (A′) ̸= 0 for some A′ ⊆ A, A′ ∈ Σ,

|m| (A) ≥ ∥m (A′)∥+ ∥m (A\A′)∥ > 0.

Conversely, if 2) holds, from Definition 2, it should be clear that 1) holds.

This completes the proof of the lemma.

As an immediate consequence of Lemma 4, we can state the following result:

Lemma 5. Two vector measures m1 and m2 are mutually singular if, and only if, there
exists a partition S = A

⋃
B, A,B ∈ Σ, such that

m1 (B
′) = 0 for all B′ ⊆ B, B′ ∈ Σ,

m2 (A
′) = 0 for all A′ ⊆ A, A′ ∈ Σ.

Lemma 5 allows us to restate Definition 7 with no reference to the variation of the
vector measures m1 and m2.

Lemma 6. If two vector measures m1,m2 : Σ → X are mutually singular,

|m1 +m2| = |m1|+ |m2| .

Proof. From Lemma 2, it suffices to prove that if m1 and m2 are mutually singular,

|m1 +m2| ≥ |m1|+ |m2| . (20)

According to Definition 7, we can find a partition X = E ∪ F , with E,F ∈ Σ, such
that |m1| (F ) = 0 and |m2| (E) = 0. It follows that if A ∈ Σ,

|m1|(A) = |m1|(A
⋂
E)

and
|m2|(A) = |m2|(A

⋂
F ).

To prove (20), it will suffice to consider the following three cases: |m1| (A) and
|m2| (A) are both finite, |m1| (A) is finite but |m2| (A) = ∞, and |m1| (A) = |m2| (A) =
∞. We now prove (20) assuming that |m1| (A) is finite but |m2| (A) = ∞.
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So, given ε > 0 there is a partition{Ci}i of A ∩ E such that∑
i

∥m1(Ci)∥ ≥ |m1| (A ∩ E)− ε.

Likewise, given M ≥ 1 there is a partition {Dj}j of A ∩ F such that∑
j

∥m2(Dj)∥ ≥M .

So,

|m1 +m2|(A) ≥
∑
i

∥(m1 +m2) (Ci)∥+
∑
j

∥(m1 +m2) (Dj)∥

=
∑
i

∥m1(Ci)∥+
∑
j

∥m2(Dj)∥

≥ |m1| (A ∩ E)− ε+M

for every ε > and every M ≥ 1. Thus, we can conclude that

|m1 +m2|(A) = ∞ = |m1|(A) + |m2|(A).

The proof of the other cases is similar.

This completes the proof of the lemma.

Definition 8. Given two vector measures m1,m2 : Σ → X , we say that m1 is absolutely
continuous with respect to m2, denoted m1 ≪ m2, if the measure |m1| is absolutely
continuous with respect to the measure |m2|, denoted |m1| ≪ |m2|. This means (see [3],
p. 86, Definition 8),

if A ∈ Σ and |m2| (A) = 0, then |m1| (A) = 0 as well.

In particular, a vector measure m : Σ → X is absolutely continuous with respect to a
measure µ : Σ → [0,∞] if |m| ≪ µ.

Remark 13. According to Lemma 4, m1 ≪ m2 if, and only if, A ∈ Σ and m2 (A
′) = 0

for all A′ ⊆ A, A′ ∈ Σ, implies that m1 (A
′) = 0 for all A′ ⊆ A, A′ ∈ Σ. That is to say,

to define absolute continuity, we do not need to use the variation of the vector measures
m1 and m2.

Definition 9. Given two vector measures m1,m2 : Σ → X , we say that m1 is m2-
continuous if there exists

lim
|m2|(A)→0

m1 (A) = 0.

That is, for each ε > 0, there exists δ = δε > 0 such that A ∈ Σ and |m2| (A) < δ imply
∥m1 (A)∥ < ε.
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The following proposition compares absolute continuity of m1 with respect of m2 and
m2-continuity of m1:

Proposition 8. Let m1,m2 : Σ → X be vector measures.

1. If m1 is m2-continuous, then m1 is absolutely continuous with respect to m2.

2. If m1 has finite variation, then m1 is m2-continuous if, and only if, m1 is absolutely
continuous with respect to m2.

Proof. To prove 1), let us fix A ∈ Σ so that |m2| (A) = 0. Then, for any B ∈ Σ, B ⊆ A,
we have ∥m1 (B)∥ < ε, for every ε > 0. The Archimedean nature of R implies that
∥m1 (B)∥ = 0, so m1 (B) = 0. According to Lemma 4, |m1| (A) = 0.

To prove 2), we only need to show that if m1 is absolutely continuous with respect to
m2 then, m1 is m2-continuous. The proof of this implication reduces to work with the
measure |m1| and the finite measure |m2|, so we are back to the real case (for the proof of
the real case see, for instance, [44], p. 132, Proposition 5 (ii)).

Remark 14. Even for real-valued measures, 2) in Proposition 8 does not generally hold,
when m1 does not have finite variation (see, for instance, [44], p. 133, Example 6).

Proposition 9. Let m1,m2 : Σ → X be vector measures. If m1 ≪ m2 and m1 ⊥ m2,
then m1 is identically zero.

Proof. Since m1 and m2 are mutually singular, there is a partition S = E
⋃
F , E,F ∈ Σ,

such that |m1| (F ) = 0 and |m2| (E) = 0. Sincem1 ≪ m2, we also have that |m1| (E) =

0. Therefore, |m1| (A) = 0 for all A ∈ Σ or, equivalently, m1 is the identically zero
measure.

This completes the proof of the proposition.

The use of the symbol ⊥ in Definition 7, suggests a connection with some notion of
orthogonality. This is, indeed, the case. We begin with the following definition:

Definition 10. ([26], p. 292) Given a real normed linear space (X, ∥·∥), and given
u, v ∈ X , we say that u is orthogonal to v, denoted u ⊥ v, if

∥u+ v∥ = ∥u− v∥ . (21)

Let us observe that this definition gives a symmetric relation in u and v, so we can say
that u and v are orthogonal.

The following result justifies the use of the word “orthogonal” in Definition 10.

Proposition 10. ([26], p. 292) Let (X, ⟨, ⟩) be a real inner product linear space. Then,
given u, v ∈ X , v ̸= 0, the following statements are equivalent:

1. ∥u+ v∥ = ∥u− v∥.
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2. ⟨u, v⟩ = 0.

Proof. To begin, we observe that ∥·∥ is the norm associated with the inner product ⟨, ⟩.
That is to say,

∥u∥2 = ⟨u, u⟩ .

Now,

∥u+ v∥2 − ∥u− v∥2 = ⟨u+ v, u+ v⟩ − ⟨u− v, u− v⟩
= ⟨u, u⟩+ 2 ⟨u, v⟩+ ⟨v, v⟩ − ⟨u, u⟩+ 2 ⟨u, v⟩ − ⟨v, v⟩
= 4 ⟨u, v⟩ .

Thus, ∥u+ v∥2 − ∥u− v∥2 = 0 if, and only if, ⟨u, v⟩ = 0.

This completes the proof of the proposition.

Proposition 11. If m1,m2 ∈ Mf and m1 ⊥ m2 in the sense that m1 and m2 are
mutually singular, then m1 ⊥ m2 in the sense of Definition 10. However, the converse
direction is not generally true, even in the real-valued case.

Proof. According to Lemma 6, if m1 and m2 are mutually singular, then, |m1 +m2| =
|m1|+ |m2|. Likewise, |m1 −m2| = |m1|+ |m2|. Thus,

∥m1 +m2∥Mf
= ∥m1 −m2∥Mf

.

As for the converse, let (I,LI , λ) be the Lebesgue measure space on the unit interval
I . We consider, on LI , the Lebesgue measure λ and the signed measure fdλ, where

f (t) =

{
1 if 0 ≤ t < 1/2

−1 if 1/2 ≤ t ≤ 1
.

It should be clear that f is Lebesgue integrable. Moreover, fdλ is λ-continuous, since
(see, for instance, [44], p. 94, Exercise 26)

|fdλ| (A) =
∫
A

|f | dλ = λ (A) .

Thus, 1) in Proposition 8 tells us that fdλ is absolutely continuous with respect to λ.
Then according to Proposition 9, fdλ and λ cannot be mutually singular, since f is not
λ-a.e. zero. However,

|fdλ− λ| (I) =

∫
I

|f − 1| dλ = 2λ ([1/2, 1]) = 1,

|fdλ+ λ| (I) =

∫
I

|f + 1| dλ = 2λ ([0, 1/2)) = 1.

This completes the proof of the proposition.
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For more on orthogonality, we refer to ([3], Section 6) and the references therein.

Theorem 1. (Lebesgue Decomposition) Let (S,Σ, µ) be a measure space (see [3], p. 81),
where the measure µ is finite. Let m : Σ → X be a vector measure with finite variation
(see Definition 3). Then, there exist unique vector measures ma,ms : Σ → X of finite
variation such that

m = ma +ms,

ma ≪ µ, ms ⊥ µ.

For the proof of this theorem, we refer to ([19], p. 189, Theorem 7) and ([18], p. 31,
Theorem 9). There are, in fact, several versions of this theorem, with various degrees of
generality (see, for instance, [11], [16], [13], [19], as well as the references mentioned in
[18], p. 39).

For the genesis of the Lebesgue decomposition theorem for vector measures and the
like, we refer to ([18], p. 39).

3 Measurability of vector-valued functions

In this section, we will need to refer often to the measurability of real-valued functions,
with respect to a fix measure space (S,Σ, µ). For clarity and to avoid repetitions, we will
refer to real-valued functions that are Σ-measurable (for the definition see, for instance,
[44], p. 71, Definition 1 and p. 78, Corollary 3) as measurable. In the few occasions in
which we work with an specific measure space, we will say so.

For now, we fix a measure space (S,Σ, µ) which we take to be complete. That is to
say, if A ∈ Σ and µ (A) = 0 or, in other words, A is µ-null, then, every subset of A also
belongs to Σ and, thus, is µ-null. Moreover, as in ([6], p. 100), we assume that the measure
µ is σ-finite.

Under these conditions, we will say, from now on, that we have fixed a complete and
σ-finite measure space. Other sources work with a finite measure µ (see, for instance, [18],
p. 41).

We begin with the following definition:

Definition 11. A function φ : S → X is a vector-valued simple function if there exists
a finite family {Mj}j ⊆ Σ of pairwise disjoint sets of finite measure and a finite family
{xj}j ⊆ X so that

φ =
∑
j

xjχMj
.

We recall that χMj
is the characteristic function of the set Mj .

The family of vector-valued simple functions φ : S → X is a real linear space.

Lemma 7. If φ : S → X is a vector-valued simple function, the function ∥φ∥ : S → R
defined as ∥φ∥ (t) = ∥φ (t)∥ is a simple function (for the definition, see, for instance, [44],
p. 78).
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Proof. If φ =
∑

j xjχMj
, then

∥φ∥ =
∑
j

∥xj∥χMj
.

Thus, ∥φ∥ is simple.

This completes the proof of the lemma.

Let us observe that whenX is the space R, the notions of vector-valued simple function
and simple function coincide.

Definition 12. Following, for instance, ([25], p. 72, Definition 3.5.4; [43], p. 336,
Definition 3), we call a function f : S → X strongly measurable if there is a sequence
{φk}k≥1 of vector-valued simple functions so that φk → f , µ-a.e. on S, as k → ∞. As
usual, by µ-a.e. we mean that φk (t) →k→∞ f (t) in X , except for t in a µ-null set.

Remark 15. Functions satisfying Definition 12 are sometimes called µ-measurable (see,
for instance, ([18], p. 41, Definition1).

We observe that, by Definition 12, every vector-valued simple function is strongly
measurable. Moreover, strongly measurable functions form a real linear space.

Lemma 8. If f : S → X is strongly measurable, the function ∥f∥ : S → R defined as
∥f∥ (t) = ∥f (t)∥, is measurable.

Proof. Let {φk}k≥1 be a sequence of µ-simple functions so that φk → f , µ-a.e. on S, as
k → ∞. Then,

∥φk∥ →
k→∞

∥f ∥ , µ-a.e. on S,

so, ∥f∥ is measurable (see, for instance, [44], p. 74, Corollary 15).

This completes the proof of the lemma.

Definition 13. A function f : S → X is weakly measurable if, for each functional l in the
topological dual X ′ of X , the real-valued function l ◦ f is measurable.

Remark 16. It should be clear from the definitions, that every strongly measurable function
is weakly measurable. However, the converse is not generally true. Indeed, here is an
example, taken from ([43], p. 337, Example 5):

If I denotes the unit interval [0, 1], we consider the space l2 (I) of those functions
f : I → R that are zero except for t in a countable subset of I and for which

∑
t∈I (f (t))

2

is finite. The space l2 (I) is a Hilbert space (see, for instance, [4], p. 144) and the family
{et}t∈I defined as

et (s) =

{
1 if s = t

0 if s ̸= t
,

is an orthonormal basis for l2 (I).
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Let (I,LI , λ) be the Lebesgue measure space on I as in Example 1, and let A ⊆ I be
a subset that is not Lebesgue measurable (see, for instance, [44], p. 11, Example 1). We
define the function g : I → l2 (I) as

g (t) =

{
0 if t /∈ A

et if t ∈ A
.

Then, we claim that g is weakly measurable, but not strongly measurable. In fact, since
the dual of l2 (I) is isomorphic, as inner product space, to l2 (I) (see, for instance, [44],
p. 239, Theorem 19), given h ∈

(
l2 (I)

)′
, h can be represented as

∑
t∈I⟨h, e (t)⟩e (t),

with ⟨h, e (t)⟩ = 0 except for t in a countable subset of I (see, for instance, [44], p. 242,
Theorem 24 v) and p. 240, Proposition 21). Moreover,

h (g (t)) =

{
0 if t /∈ A

⟨h, et⟩ if t ∈ A
.

So, the real-valued function t→ h (g (t)) is Lebesgue measurable because it is zero except
for t in a countable subset of I . Thus, g is weakly measurable.

On the other hand, the real-valued function t → ∥g (t)∥l2(I) is the characteristic
function of A. So, according to Lemma 8, the function g is not strongly measurable.

Let us mention that l2 (I) can be formally described using the notion of summability
defined in (8). Equivalently, l2 (I) is the space L2 (I) ( see, for instance, [44], p. 209)
when the measure space consists of the interval I , the σ-algebra P (I) of all the subsets of
I and the counting measureκ (for the definition see, for instance, [44], p. 23, Example 7).

Definition 14. A function f : S → X is separably-valued if f (S) is separable. That is
to say, if f (S) has a countable subset that is dense in f (S). The function f is almost
separably-valued if there is a µ-null set N ∈ Σ so that f (S\N) is separable.

Let us observe that the function g defined in Remark 16 is not even almost separably-
valued. Indeed,

∥et − et′∥2l2(I) =
∑
s∈I

(et (s)− et′ (s))
2
=

{
0 if t = t′

2 if t ̸= t′
,

so, given a λ-null set N , the only way for the image g (I\N) to be separable in l2 (I) is
to be countable. But the countability of {et}t∈I\N implies that I\N is countable. So, I
should be λ-null, while we know that λ (I) = 1.

The next result provides the link between strong and weak measurability. It is due to B.
J. Pettis ([33], p. 278, Theorem 1.1).

Theorem 2. (Pettis measurability theorem) (for the proof see, for instance, [18], p. 72,
Theorem 3.5.3; [43], p. 339, Theorem 9) A function is strongly measurable if, and only if,
it is weakly measurable and almost separably-valued.
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Although we have stated Theorem 2 in a way that agrees with the current literature,
we should mention that Pettis calls separably-valued what is now called almost separably-
valued.

In view of Theorem 2, it should be clear why the function defined in Remark 16, is not
strongly measurable.

The following result is an immediate consequence of Theorem 2:

Corollary 3. If the space X is separable, weakly measurability and strong measurability
are equivalent.

Remark 17. The conclusion of Lemma 8 holds for a weakly measurable function (see, for
instance, [25], p. 72, Theorem 3.5.2; [43], p. 338, Proposition 6), when the space X has a
countable determining, or norming, set, Λ, in X ′. Let us recall that Λ ⊆ X ′ is determining
or norming for X if for each x ∈ X

∥x∥ = sup {|l (x)| : l ∈ Λ} . (22)

Such a set can be constructed from any dense subset of X (see, for instance, [43], p.
81, Proposition 11). This is another way of reaching the conclusion in Corollary 3.

Since we always have (see, for instance, [43], p. 79, Corollary 5)

∥x∥ = sup {|l (x)| : l ∈ X ′, ∥l∥ ≤ 1} ,

the unit ball in X ′ is always a norming set for X .

Remark 18. It would be desirable and, indeed, it is true, that the µ-a.e. limit of a sequence
of strongly measurable functions is also strongly measurable. For a direct, albeit somewhat
technical, proof, we refer to ([43], p. 339, Proposition 8). We shall postpone the proof
until we have defined the integral of a vector-valued function. In this way, we will be able
to give a fairly elementary proof.

In the next result, we begin to see the convenience of working with a measure µ that is
σ-finite.

Lemma 9. Let f : S → X be a function. Then the following statements are equivalent:

1. For each A ∈ Σ with finite measure, there exists a sequence {φk}k≥1 of vector-
valued simple functions such that, for each k ≥ 1 the function φk is zero in S\A and
φk → f , µ-a.e. on A, as k → ∞.

2. The function f is strongly measurable.

Proof. Let us prove 1) ⇒ 2). Since µ is σ-finite, we can write

S =
⋃
j≥1

Aj , (23)

where {Aj}j≥1 ⊆ Σ and µ (Aj) is finite for all j ≥ 1. Moreover, we can disjoint the
sets Aj by defining inductively B1 = A1 and Bk+1 = Ak+1\

⋃
1≤j≤k+1Aj . Thus, we

assume that the family {Aj}j≥1 is already pairwise disjoint.
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By hypothesis, for each j ≥ 1, there exists a sequence
{
φj
k

}
k≥1

of vector-valued

simple functions vanishing outside Aj , that converges to f , µ-a.e. on Aj , as k → ∞.
For each j ≥ 1, let Nj ⊆ Aj be a µ-null set such that φj

k (t) →k→∞ f (t) for each
t ∈ Aj\Nj . Moreover, let N =

⋃
j≥1Nj . The set N is a µ-null subset of S, since

µ (N) ≤
∑

j≥1 µ (Nj). This inequality can be proved disjointing the sets Nj .

Now, for each k ≥ 1 fixed, we consider

φk =
k∑

j=1

φj
k.

The function φk is vector-valued simple. Moreover, we claim that for each t ∈ S\N ,
φk (t) → f (t) in X , as k → ∞. In fact, If we fix t ∈ S\N , t ∈ Aj\Nj , for a unique
j = jt ≥ 1. Thus, φk (t) = φj

k (t) for k ≥ j, so φk (t) → f (t) in X , as k → ∞.

As for the proof of 2) ⇒ 1), if φk (t) → f (t) in X as k → ∞ for t ∈ S\N , the set N
being µ-null, it should be clear that φk (t) → f (t) in X as k → ∞, for t ∈ A\ (N

⋂
A).

Let

φA
k (t) =

{
φk (t) if t ∈ A

0 if t ∈ S\A

}
.

Then, the sequence
{
φA
k

}
k≥1

converges to f , µ-a.e. on A, as k → ∞.

This completes the proof of the lemma.

Remark 19. If 1) in Lemma 9 holds for a fixedA ∈ Σ, we say that f is strongly measurable
on A.

Thus, Lemma 9 tells us that f is strongly measurable if, and only if, it is strongly
measurable on every A ∈ Σ with finite measure. In particular, f is strongly measurable if,
and only if, it is strongly measurable on every set of a partition of S as in (23).

Lemma 10. Consider two functions, f : S → R, and g : S → X , such that f is
measurable and g is strongly measurable. Then, the function fg : S → X defined as
(fg) (t) = f (t) g (t) is strongly measurable.

Proof. Let
{
φj

}
j≥1

be a sequence of simple functions converging to f , µ-a.e. on S,

and let
{
ψj

}
j≥1

be a sequence of vector-valued simple functions converging to g, µ-a.e.
on S, as j → ∞. Then it should be clear that, for each j ≥ 1, the function φjψj is a
vector-valued simple function and the sequence

{
φjψj

}
j≥1

converges to fg, µ-a.e. on S,
as j → ∞.

This completes the proof of the lemma.

Remark 20. Dinculeanu defines a function f : S → X to be strongly measurable if (see
[19], p. 89, Definition 4)

1. For each open set G ⊆ X , the set f−1 (G) belongs to Σ.
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2. The function f is almost separably-valued on sets of finite measure.

Moreover, Dinculeanu proves (see [19], p. 92, Proposition 12) the following result:

A function f : S → X is strongly measurable if, and only if, the following two
conditions are verified:

1. The function f is weakly measurable.

2. The function f is almost separably-valued.

Since the measure space (S,Σ, µ) is σ-finite, Pettis measurability theorem implies that
Dinculeanu’s definition of strong measurability is equivalent to Definition 12.

Let us observe that the set G in 1) of Remark 20, can be assumed to be closed or a
Borel set (for the definition see, for instance, [44], p. 39) in X .

Remark 21. In view of Remark 20, whenX is the space R, strong measurability coincides
with measurability.

For the next two results, we assume that S is a topological space and that Σ contains
the open subsets of S or, equivalently, that Σ contains the Borel σ-algebra.

Lemma 11. If f : S → X is continuous, then f is weakly measurable.

Proof. For each l ∈ X ′, the topological dual of X , the real-valued function l ◦ f is
continuous, so it is measurable (see, for instance, [39], p. 12).

This completes the proof of the lemma.

Lemma 12. If S is separable and f : S → X is continuous, then f is strongly measurable.

Proof. On account of Lemma 11 and Theorem 2, it suffices to prove that f is separably
valued. In fact let D be a countable subset of S that is dense in S. We claim that
{f (s)}s∈D is dense in f (S). In fact, we fix x0 ∈ f (S) and ε > 0. Then, x0 = f (s0)

for some s0 ∈ S. By continuity, there is δ = δε > 0 so that for each s in the open ball
B (s0, δ), ∥f (s)− f (s0)∥ < ε. In particular, there exists s1 ∈ D so that s1 ∈ B (s0, δ).
Then,

∥f (s1)− x0∥ = ∥f (s1)− f (s0)∥ < ε.

This completes the proof of the lemma.

There is a version of Lemma 11 for weakly continuous functions (see [25], p. 73).
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4 The Bochner integral

We fix a measure space (S,Σ, µ) which, as in the previous section, we assume to be
complete. Moreover, we take the measure µ to be σ-finite. We still refer to real-valued
functions that are Σ-measurable as measurable. Likewise, real-valued functions that are
Lebesgue integrable with respect to µ (for the definition see, for instance, [44], p. 85), will
be called integrable. We fix a Banach space X with norm ∥·∥. On occasion, we will need
to identify the space and its norm, so we will write ∥·∥X .

We are now ready to define an integral, with respect to the measure µ, of certain
strongly measurable functions. More specifically, we will develop the integral defined by
S. Bochner in an article published in Fundamenta Mathematica in 1933 [8].

Let us begin by defining the integral of a vector-valued simple function.

Definition 15. Given a vector-valued simple function φ =
∑
j

xjχAj
as in Definition 11,

we define the Bochner integral of φ on S as∫
S

φdµ =
∑
j

xjµ (Aj) .

Lemma 13. The following statements are true:

1. Definition 15 does not depend on the representation of φ as in Definition 11.

2. The Bochner integral defines, on the linear space of vector-valued simple functions,
a linear operator with values in X .

3. ∥∥∥∥∫
S

φdµ

∥∥∥∥ ≤
∑
j

∥xj∥µ (Aj) =

∫
S

∥φ∥ dµ
(i)

,

where (i) is the Lebesgue integral of the real-valued function ∥φ∥, with respect to the
measure µ.

The proof of this lemma is straightforward and it will be omitted.

Definition 16. A function f is Bochner integrable if the following two conditions hold:

1. The function f is strongly measurable.

2. There exists a sequence {φk}k≥1 of vector-valued simple functions such that

φk →
k→∞

f , µ-a.e. on S,∫
S

∥f − φk∥ dµ →
k→∞

0. (24)

The integral in (24) makes sense since ∥f − φk∥ is measurable according to Lemma
24, and it is a non-negative function (see, for instance, [44], p. 83).
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Lemma 14. Given a function f and a sequence {φk}k≥1 satisfying the conditions in
Definition 16,

1. the sequence
{∫

S
φkdµ

}
k≥1

is a Cauchy sequence in X .

2. the limit in X , as k → ∞, of the sequence
{∫

S
φkdµ

}
k≥1

does not depend on the
sequence {φk}k≥1 satisfying 2) in Definition 16.

Proof. To prove 1), we observe that, according to Lemma 13,∥∥∥∥∫
S

φldµ−
∫
S

φkdµ

∥∥∥∥ ≤
∫
S

∥φl − φk∥ dµ ≤
∫
S

∥φl − f∥ dµ

+

∫
S

∥f − φk∥ dµ →
l,k→∞

0.

To prove 2), let {ψk}k≥1 be another sequence of vector-valued simple functions satisfy-
ing 2) of Definition 16. Then, according to 1), we know that the sequence

{∫
S
ψkdµ

}
k≥1

is also a Cauchy sequence in X . Moreover,∥∥∥∥∫
S

ψkdµ−
∫
S

φkdµ

∥∥∥∥ ≤
∫
S

∥ψk − φk∥ dµ ≤
∫
S

∥ψk − f∥ dµ

+

∫
S

∥f − φk∥ dµ →
k→∞

0,

which shows that 2) holds.

This completes the proof of the lemma.

Definition 17. Given a function f : S → X , satisfying Definition 16, the limit of
∫
S
φkdµ

as k → ∞, is called the Bochner integral of f on S, with respect to the measure µ, denoted∫
S
fdµ. When there is no ambiguity as to the measure we are using to integrate f on S,

we will just refer to the Bochner integral of f and we will say that f is Bochner integrable.

It should be clear from the context, whether
∫
S
fdµ refers to the Bochner integral of a

vector-valued function, or to the Lebesgue integral of a real-valued function.

Remark 22. Given a Bochner integrable function f : S → X and given A ∈ Σ, it should
be clear that the function fχA is Bochner integrable as well. We define∫

A

fdµ =

∫
S

fχAdµ.

Lemma 15. Given a Bochner integrable function f : S → X and given A,B ∈ Σ

disjoint, ∫
A
⋃

B

fdµ =

∫
A

fdµ+

∫
B

fdµ.
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Proof. Using Definition 16 and Lemma 14, we can write∫
A

fdµ+

∫
B

fdµ = lim
j→∞

∫
S

φjχAdµ+ lim
j→∞

∫
S

φjχBdµ

= lim
j→∞

∫
φjχA

⋃
B
dµ =

∫
A
⋃

B

fdµ.

We observe that∫
S

∥∥φjχA − fχA

∥∥ dµ ≤
∫
S

∥∥φj − f
∥∥ dµ →

j→∞
0,∫

S

∥∥φjχB − fχB

∥∥ dµ ≤
∫
S

∥∥φj − f
∥∥ dµ →

j→∞
0,

thus, ∫
S

∥∥∥φjχA
⋃

B
− fχ

A
⋃

B

∥∥∥ dµ
≤

∫
S

∥∥φjχA − fχA

∥∥ dµ+

∫
S

∥∥φjχB − fχB

∥∥ dµ →
j→∞

0.

This completes the proof of the lemma.

Remark 23. Lemma 15 says that given a Bochner integrable function f : S → X , the
vector-valued set function

Σ ∋ A→
∫
A

fdµ ∈ X

is finitely additive.

Lemma 16. The following statements hold:

1. If f is Bochner integrable, then the real-valued function ∥f∥ is integrable. Moreover,∥∥∥∥∫
S

fdµ

∥∥∥∥ ≤
∫
S

∥f∥ dµ. (25)

2. The functions f : S → X that are Bochner integrable form a real linear space.

Proof. To prove 1), we pick a sequence {φk}k≥1 as in Definition 16. Then, there exists
k0 ≥ 0 so that ∫

S

∥∥f − φk0

∥∥ dµ ≤ 1.

Then, ∫
S

∥f∥ dµ ≤ 1 +
∑
j

∥∥∥xk0
j

∥∥∥µ(Mk0
j

)
.
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As for the inequality (25), from 3) in Lemma 13 and 2) in Definition [8],∥∥∥∥∫
S

fdµ

∥∥∥∥ =

∥∥∥∥ lim
k→∞

∫
S

φkdµ

∥∥∥∥ = lim
k→∞

∥∥∥∥∫
S

φkdµ

∥∥∥∥
≤ lim

k→∞

∫
S

∥φk∥ dµ =

∫
S

∥f∥ dµ+ lim
k→∞

∫
S

∥f − φk∥ dµ =

∫
S

∥f∥ dµ.

The proof of 2) is straightforward and will be omitted.

This completes the proof of the lemma.

The converse of 1) in Lemma 16 does not hold generally, even when X is the space
R. To see it, let us consider the measure space (I,LI , λ) (see Example 1). If we fix
A ⊂ [0, 1] that is not Lebesgue measurable and define f : [0, 1] → R as f (t) = 1 if t ∈ A,
f (t) = −1 if t ∈ [0, 1] \A, according to Remark 20, f is not Lebesgue measurable, while
|f | is.

Definition 18.

B1 (S) = {f : S → X : f is Bochner integrable} .

We write B1 (S,X), if we wish to emphasize the space X .

Theorem 3. The space B1 (S) becomes a complete semi-normed linear space defining

∥f∥B1(S) =

∫
S

∥f∥ dµ.

Proof. Taking into account Lemma 16 and well known properties of the Lebesgue integral,
it should be clear that

(
B1 (S) , ∥·∥B1(S)

)
is a semi-normed linear space. Let us see that

it is complete.

Let {fj}j≥1 be a Cauchy sequence in B1 (S). That is to say,∫
S

∥fj − fk∥ dµ →
j,k→∞

0.

By Definition 16, for each j ≥ 1, there is a vector-valued simple function φj so that∫
S

∥∥fj − φj

∥∥ dµ ≤ 1

j
. (26)

Then,∫
S

∥∥φj − φk

∥∥ dµ ≤
∫
S

∥∥fj − φj

∥∥ dµ+

∫
S

∥fk − φk∥ dµ+

∫
S

∥fj − fk∥ dµ

≤ 1

j
+

1

k
+

∫
S

∥fj − fk∥ dµ →
j,k→∞

0.
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So, for each l ≥ 1, there is K = Kl ≥ 1 such that∫
S

∥∥φj − φk

∥∥ dµ ≤ 1

2l
, (27)

for all k, j ≥ K.

Let
{
φjl

}
l≥1

be a subsequence of
{
φj

}
j≥1

so that∫
S

∥∥∥φjl+1
− φjl

∥∥∥ dµ ≤ 1

2l
.

Then, the series
∑

l≥1

∫
S

∥∥∥φkl+1
− φkl

∥∥∥ dµ converges. By Fatou’s lemma (see, for in-

stance, [44], p. 87, Theorem 15), the series
∑

l≥1

∥∥∥φkl+1
− φkl

∥∥∥ is integrable. As a
consequence, it converges µ-a.e. on S (see, for instance, [44], p. 8, Proposition 14). Since
X is complete,

φkL+1
= φk1

+

L∑
l=1

(
φkl+1

− φkl

)
converges µ-a.e. on S (see, for instance, [44], p. 167, Theorem 4). That is to say, there
is a function f : S → X so that φkL+1

→L→∞ f , µ-a.e. on S. Thus, the function f is
strongly measurable, by Definition 12. Let us see that f also satisfies 2) in Definition 16.

∫
S

∥∥∥φkL+1
− f

∥∥∥ dµ =

∫
S

∥∥∥∥∥∥
∑

l≥L+1

(
φkl+1

− φkl

)∥∥∥∥∥∥ dµ
≤

∫
S

∑
l≥L+1

∥∥∥φkl+1
− φkl

∥∥∥ dµ (28)

≤
(i)

∑
l≥L+1

∫
S

∥∥∥φkl+1
− φkl

∥∥∥ dµ →
L→∞

0,

where we have used in (i) Fatou’s lemma. So, f is Bochner integrable.

Finally, fk →k→∞ f in B1 (S). In fact,∫
S

∥fk − f∥ dµ ≤
∫
S

∥fk − φk∥ dµ
(i)

+

∫
S

∥∥φk − φkl

∥∥ dµ
(ii)

+

∫
S

∥∥φkl
− f

∥∥ dµ
(iii)

Let us fix ε > 0. According to (26), (i) is ≤ ε for k ≥ K1 = K1,ε. According to (27),
(ii) is ≤ ε for k, kl ≥ K2 = K2,ε. Since

{
φjl

}
l≥1

is a subsequence of
{
φj

}
j≥1

, there is
L1 = L1,ε ≥ 1 so that l ≥ L1 implies kl ≥ K2. Let K = Kε = max {K1,K2}. As for
(iii), according to (28), there exists L2 = L2,ε ≥ 1 such that (iii) is ≤ ε for l ≥ L2. Thus,
for l ≥ max {L1, L2} and k ≥ K, all three terms are ≤ ε.

This completes the proof of the theorem.
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Remark 24. The proof of Theorem 3 is significantly more involved that its counterpart
for the space L1 (S) of Lebesgue integrable functions. Indeed, in B1 (S) we do not have a
Monotone Convergence Theorem (for the real-valued case see, for instance, [44], p. 83,
Theorem 7). This theorem plays a key role in the case of L1 (S) (see, for instance, [44], p.
208, Theorem 5).

Remark 25. It should be clear that given f, g : S → X that are equal µ-a.e. on S, the
strong measurability or the Bochner integrability of one of them is equivalent, respectively,
to the strong measurability or the Bochner integrability of the other. Moreover,∫

S

fdµ =

∫
S

gdµ.

Equality µ-a.e. on S defines an equivalence relation on B1 (S). As a consequence,
the quotient of B1 (S) by this relation becomes a Banach space (see, for instance, [44], p.
181, Section 5.4). Nevertheless, for now we will continue working in B1 (S) as given by
Definition 18.

We must acknowledge that in doing so, we create a minor discrepancy with the space
Lp (I), which we have used before and we will use in future sections. Indeed, since we
think of Lp (I) as a Banach space, its elements are really classes of equivalence. However,
in the instances in which Lp (I) appears, we always end up working with a particular
function, so, really, the discrepancy can go unnoticed.

Theorem 4. (Dominated Convergence Theorem for the Bochner integral) Let {fj}j≥1 be
a sequence in B1 (S) that satisfies the following two conditions:

1. There is an integrable function g : S → [0,∞) such that

∥fj∥ ≤ g,

µ-a.e. on S.

2. There is a function f : S → X such that

fj →
j→∞

f,

µ-a.e. on S.

Then, f ∈ B1 (S) and fj →j→∞ f in B1 (S).

Proof. For any k ≥ 1 fixed,
fj − fk →

j→∞
f − fk,

µ-a.e. on S. Therefore,
∥fj − fk∥ →

j→∞
∥f − fk∥ ,
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µ-a.e. on S. As a consequence, the function ∥f − fk∥ is measurable. Moreover,

∥f − fk∥ →
k→∞

0,

µ-a.e. on S and
∥f − fk∥ ≤ 2g,

µ-a.e. on S. We can now use Lebesgue’s Dominated Convergence Theorem (see, for
instance, [44], p. 87, Theorem 16) to conclude that there is

lim
k→∞

∫
S

∥f − fk∥ dµ = 0.

As a consequence, there is

lim
j,k→∞

∫
S

∥fj − fk∥ dµ = 0.

Using Theorem 3, there is a function f̃ ∈ B1 (S) such that the sequence {fj}j≥1

converges to f̃ in B1 (S). That is to say, there is

lim
j→∞

∫
S

∥∥∥fj − f̃
∥∥∥ dµ = 0.

Then, ∫
S

∥∥∥f − f̃
∥∥∥ dµ ≤

∫
S

∥f − fj∥ dµ+

∫
S

∥∥∥fj − f̃
∥∥∥ dµ →

j→∞
0.

So, f = f̃ , µ-a.e. on S. According to Remark 25, f ∈ B1 (S) and fj →j→∞ f in B1 (S).

This completes the proof of the theorem.

Remark 26. As a consequence of (25) and Theorem 4, we have∫
S

fjdµ →
j→∞

∫
S

fdµ.

For strongly measurable functions we have the following characterization of Bochner
integrability, which is analogous to the characterization of integrability for real-valued
functions (see, for instance, [44], p. 85, Proposition 11):

Proposition 12. Let f : S → X be strongly measurable. Then, the following statements
are equivalent:

1. The function f is Bochner integrable.

2. The function ∥f∥ is integrable.
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Proof. In view of 1) in Lemma 16, we only need to prove that 2) implies 1).

By definition of strong measurability, there is a sequence
{
φj

}
j≥1

of vector-valued
simple functions so that φj →j→∞ f , µ-a.e. on S. For each j ≥ 1, let

Sj =
{
t ∈ S :

∥∥φj (t)
∥∥ ≤ 2 ∥f (t)∥

}
.

By definition, Sj ∈ Σ. We now consider ψj = φjχSj
. It should be clear that each ψj is a

vector-valued simple function. Moreover,
∥∥ψj

∥∥ ≤ 2 ∥f∥ for all j ≥ 1 and ψj →j→∞ f ,
µ-a.e. on S. To see the last assertion, it suffices to observe that there is a µ-null set N so
that

S =

⋃
j≥1

Sj

⋃N .

Then, using Theorem 4 we conclude that f is Bochner integrable.

This completes the proof of Proposition 12.

Remark 27. The proof of 2) ⇒ 1) in Proposition 12, gives a sequence
{
ψj

}
j≥1

of
vector-valued simple functions satisfying both conditions in Definition 16.

Corollary 4. Let us assume that S is a separable topological space, and that Σ contains
the open subsets of S. That is to say, it contains the Borel σ-algebra. Then, continuity
implies Bochner integrability.

Proof. It follows from Lemma 12 and Proposition 12.

The next result that follows is an immediate consequence of Remark 19 and Theorem
4.

Corollary 5. If f : S → X is strongly measurable and bounded, then it is Bochner
integrable over every set A ∈ Σ of finite measure.

Remark 28. According to Remark 21, Proposition 12 and Proposition 11 in ([44], p. 85),
the Bochner integral is the Lebesgue integral, for real-valued functions.

We are now ready to prove the statement made in Remark 18:

Proposition 13. Let {fj}j≥1 be a sequence of strongly measurable functions. If {fj}j≥1

converges, µ-a.e. on S, to a function f : S → X , then f is strongly measurable.
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Proof. It should be clear that for each j ≥ 1, the function 1
1+∥fj∥ is measurable. Then,

according to Lemma 10, the function fj
1+∥fj∥ is strongly measurable, for each j ≥ 1.

Moreover, ∥∥∥∥ fj
1 + ∥fj∥

∥∥∥∥ ≤ 1

and
fj

1 + ∥fj∥
→

j→∞

f

1 + ∥f∥
,

µ-a.e. on S. Thus, Corollary 5 and Theorem 4 imply that f
1+∥f∥ is Bochner integrable

over every set A ∈ Σ of finite measure. In particular, f
1+∥f∥ is strongly measurable on

every set A ∈ Σ of finite measure. Then, Lemma 9 and Remark 19, tell us that f
1+∥f∥ is

strongly measurable on S, and, thus, f is strongly measurable on S.

This completes the proof of the proposition.

Theorem 5. Let X,Y be Banach spaces and let T ∈ L (X,Y ), the Banach space of
those operators T : X → Y , that are linear and continuous, with the operator norm ∥·∥.
Moreover,let f : S → X .

Then, the following statements are true:

1. The application f → T ◦ f preserves strong measurability.

2. The application f → T ◦ f is linear and continuous from B1 (S,X) into B1 (S, Y ).

3.

T

(∫
S

fdµ

)
=

∫
S

(T ◦ f) dµ,

for every f ∈ B1 (S,X).

Proof. If f is the pointwise limit in X , µ-a.e. on S, of a sequence {φk}k≥1 of vector-
valued simple functions, with values in X , then, {T ◦ φk}k≥1 is a sequence of vector-
valued simple functions, with values in Y , that converges pointwise to T ◦ f in Y , µ-a.e.
on S. This proves 1).

As for 2), it should be clear that the application is linear. Now, given f ∈ B1 (S,X),
by 1), T ◦ f is strongly measurable. Thus, the real-valued function ∥(T ◦ f) (t)∥Y is
measurable. Since

∥(T ◦ f) (t)∥Y ≤ ∥T∥ ∥f (t)∥X ,

for t ∈ S, where ∥T∥ denotes the operator norm, we conclude, according to Proposition
12, that T ◦ f ∈ B1 (S, Y ). This proves 2).
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Finally, to prove 3), we use Definition 16 and Proposition 12. Let {φk}k≥1 be a
sequence of vector-valued simple functions, with values in X , as in Definition 16. Then,
{T ◦ φk}k≥1 is a sequence of vector-valued simple functions, with values in Y , such that

T ◦ φk →
k→∞

T ◦ f,

pointwise in Y , µ-a.e. on S. Moreover, since

∥T ◦ φk − T ◦ f∥Y = ∥T ◦ (φk − f)∥Y ≤ ∥T∥ ∥φk − f∥X ,

we have ∫
S

∥T ◦ φk − T ◦ f∥Y dµ ≤ ∥T∥
∫
S

∥φk − f∥X dµ →
k→∞

0.

Thus, the sequence {T ◦ φk}k≥1 satisfies the conditions in Definition 16, with respect to
T ◦ f . Consequently, T ◦ f ∈ B1 (S, Y ) and, according to Definition 17,∫

S

(T ◦ φk) dµ→k→∞

∫
S

(T ◦ f) dµ,

in Y . Finally,

T

(∫
S

φkdµ

)
=

∫
S

(T ◦ φk) dµ,

for all k ≥ 1 and

T

(∫
S

φkdµ

)
→

k→∞
T

(∫
S

fdµ

)
,

which gives us 3).

This completes the proof of the theorem.

Remark 29. As a consequence of Theorem 5, it should be clear that

T

(∫
A

fdµ

)
=

∫
A

(T ◦ f) dµ, (29)

for every A ∈ Σ.

There is a version of (29) for linear and closed operators (see [18], p. 47, Theorem 6).
For the definition of closed operator see, for instance, ([4], p. 261, Definition 16.1).

Remark 30. When X and Y are the space R, Theorem 5 does not say anything, because a
linear and continuous operator from R into R is given as the multiplication by a fixed real
number. In this sense, we can say that Theorem 5 is of interest when the spaces X and Y
have more than one linear dimension.

The following result is an application of Theorem 5, when the space X has a countable
norming set. We postpone the consideration of the general case until Section 6.



42 J. Alvarez y M. Guzmán-Partida. A Study of Vector Measures

Corollary 6. Let us suppose that the space X has a countable norming set. Then, if
f ∈ B1 (S) and ∫

A

fdµ = 0

for every A ∈ Σ, the function f is zero, µ-a.e. on S.

Proof. According to Theorem 5 and Remark 29, given l ∈ X ′,∫
A

(l ◦ f) dµ = 0,

for every A ∈ Σ. Then (see, for instance, [44], p. 88, Proposition 18), there exists a µ-null
set Nl so that (l ◦ f) (t) = 0 for t ∈ S\Nl. Now, let ∗ ⊆X ′ be a countable norming set
for X , and let N = ∪l∈∗Nl. Then, for t ∈ S\N ,

∥f (t)∥ = sup {|l (x)| : l ∈ Λ} = 0.

This completes the proof of the corollary.

Remark 31. According to Remark 17, every separable space X has a countable norming
set.

Essentially, we conclude here our presentation of the Bochner integral. We will only
add a few words about the vector-valued counterparts of the spaces Lp (S).

We introduce them in the following definitions:

Definition 19. For 1 < p <∞, the space Bp (S) consists of those strongly measurable
functions f : S → X such that ∥f (·)∥p belongs to L1 (S).

Definition 20. An function f : S → X is said to be essentially bounded if there is a µ-null
set N ∈ Σ and a real number C > 0 such that ∥f (t)∥ ≤ C for t ∈ S\N .

The space B∞ (S) consists of those functions functions f : S → X that are strongly
measurable and essentially bounded.

Proposition 14. For 1 < p < ∞, the space Bp (S) becomes a complete semi-normed
linear space if we define

∥f∥Bp(S) =

(∫
S

∥f∥p dµ
)1/p

.

Proposition 15. The space B∞ (S) becomes a complete semi-normed linear space if we
define

∥f∥B∞(S) = inf {C > 0 : ∥f (t)∥ ≥ C for t /∈ N , µ-null set} .

The proofs of these propositions are fairly straightforward applications of previously
used techniques.

Nevertheless, for these propositions and for other results that we are omitting, notably
Fubini’s theorem for the Bochner integral, we refer to [25] and [46].
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Remark 32. The Bochner integral can be viewed as a strong approach to the integration
of vector-valued functions. There are weak approaches as well, for instance, the Pettis
integral, defined by Pettis in [33] (see also [43], p. 334, Section 26.3). For other approaches
to integrating vector-valued functions see, for instance, ([25], p. 62, Section 3.3) and the
references therein. For a history of the integration of vector-valued functions, we refer to
([25], p. 62, Section 3.3) and, specially, to [24] and [5].

We now continue with a section dedicated to reviewing, and comparing, several modes
of convergence.

5 Modes of convergence

So far, we have come across pointwise convergence, µ-a.e. convergence, and the conver-
gence in B1 (S) which may be called convergence in µ-mean.

We now want to extend to vector-valued functions, the notion of convergence in µ-
measure and to compare it with the modes of convergence just mentioned. Our purpose
is mostly to collect definitions and results that will be used later. For the most part, this
section trivially follows the real-valued case, so many proofs will be omitted.

Definition 21. The sequence {fj}j≥1 of strongly measurable functions converges in
µ-measure to the strongly measurable function f if, for each α > 0, there exists

lim
j→∞

µ ({t ∈ S : ∥fj (t)− f (t)∥ > α}) = 0.

This definition is exactly the definition on the real-valued case, with norm instead of
absolute value (see, for instance, [44], p. 107).

Proposition 16. The following statements are true:

1. Let fj , f, gj , g : S → X be strongly measurable for all j ≥ 1 and let a, b ∈ R. Then,
if fj →j→∞ f in µ-measure and gj →j→∞ g in µ-measure, then

afj + bgj →
j→∞

af + bg,

in µ-measure.

2. Let fj : S → X be strongly measurable for all j ≥ 1, and let gj : S → R be
measurable for all j ≥ 1. Then, if fj →j→∞ 0 in µ-measure and gj →j→∞ 0 in
µ-measure,

fjgj →
j→∞

0,

in µ-measure.

3. Assume that µ is a finite measure. Let fj , f : S → X be strongly measurable for all
j ≥ 1, and let g : S → R be measurable. Then, if fj →j→∞ f in µ-measure,

fjg →
j→∞

fg,

in µ-measure.
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4. Assume again that µ is a finite measure. Let fj , f : S → X be strongly measurable
for all j ≥ 1, and let gj , g : S → R be measurable for all j ≥ 1. Then, if
fj →j→∞ f in µ-measure and gj →j→∞ f in µ-measure,

fjgj →
j→∞

fg,

in µ-measure.

5. Let fj , f1, f2 : S → X be strongly measurable for all j ≥ 1. Then, if fj →j→∞ f1

in µ-measure and fj →j→∞ f2 in µ-measure, f1 = f2 µ-a.e. on S.

Proof. The proof follows, word by word, the real-valued case, if we replace absolute
values with norms, in the appropriate places (for the proof of the real-valued case, see, for
instance, [44], p. 107, Proposition 1).

Remark 33. That the measure µ be finite is a necessary condition for 3) and 4) to hold,
even in the real-valued case (see, for instance, [44], p. 108, Example 2).

Proposition 17. (Tchebyshev’s inequality) Given f ∈ B1 (S), the following inequality
holds:

µ ({t ∈ S : ∥f (t)∥ > α}) ≤ 1

α

∫
{t∈S:∥f(t)∥>α}

∥f∥ dµ,

for each α > 0.

Proof.

αµ ({t ∈ S : ∥f (t)∥ > α}) =

∫
{t∈S:∥f(t)∥>α}

αdµ

≤
∫
{t∈S:∥f(t)∥>α}

∥f∥ dµ.

This completes the proof of the proposition.

The following result is essentially a reformulation of Tchebyshev’s inequality:

Proposition 18. Convergence in µ-mean implies convergence in µ-measure.

Proof. Let fj →j→∞ f in B1 (S). Then, according to Proposition 17, for α > 0 fix, we
can write

µ ({t ∈ S : ∥fj (t)− f (t)∥ > α}) ≤ 1

α

∫
S

∥fj − f∥ dµ →
j→∞

0.

This completes the proof of the corollary.

Remark 34. The converse implication in Corollary 18 is not generally true, even in the
real-valued case (see, for instance, [44], p. 112).
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The proof of the following result follows the proof in the real-valued case (see, for
instance, [44], p. 112 and p. 108, Theorem 3).

Proposition 19. Convergence in µ-measure does not generally imply µ-a.e. convergence,
even in the real-valued case. However, if fj →j→∞ f in µ-measure, there is a subsequence
{fjk}k≥1 that converges to f µ-a.e. on S.

Corollary 7. If fj →j→∞ f in B1 (S), there is a subsequence {fjk}k≥1 that converges
to f µ-a.e. on S.

Remark 35. Convergence µ-a.e. does not imply, in general, convergence in µ-mean or
convergence in µ-measure, even in the real-valued case (see, for instance, [44], p. 112).

Definition 22. Let

B0 (S) = {f : S → X : f is strongly measurable} .

According to Remark 15, B0 (S) is a real linear space. When it is necessary to identify
the Banach space, we will write B0 (S,X).

Proposition 20. When the measure µ is finite, B0 (S) becomes a semi-metric space with
the semi-metric

dB0 (f, g) =

∫
S

∥f − g∥
1 + ∥f − g∥

dµ.

Proof. It follows the real-valued case (see, for instance, [44], p. 110, Lemma 7).

Proposition 21. We assume that the measure µ is finite. Then, given a sequence {fj}j≥1

and a function f in B0 (S), the following statements are equivalent:

1. fj →j→∞ f in µ-measure.

2. dB0 (fj , f) →j→∞ 0.

Proof. It follows the real-valued case (see, for instance, [44], p. 110, Theorem 9 (i)).

Proposition 22. Again, we assume that the measure µ is finite. Then,
(
B0 (S) , dB0

)
is a

complete semi-metric space.

Proof. It follows the real-valued case (see, for instance, [44], p. 109, Theorem 6 and
Theorem 9).

When the measure µ is finite, instead of Remark 35, we have the following positive
results:

Proposition 23. If the measure µ is finite, the following statements hold:

1. Convergence µ-a.e. implies convergence in µ-measure.
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2. Convergence µ-a.e. implies convergence in µ-mean.

Proof. We fix a sequence {fj}j≥1 and a function f , in B0 (S), so that fj →j→∞ f , µ-a.e.
on S. Then,

∥fj (t)− f (t)∥
1 + ∥fj (t)− f (t)∥

→
j→∞

0,

for µ-a.a. t ∈ S. Let us recall that µ-a.a. t ∈ S means for t ∈ S\N , where N is a µ-null
set. Moreover,

∥fj (t)− f (t)∥
1 + ∥fj (t)− f (t)∥

≤ 1,

for µ-a.a. t ∈ S and for all j ≥ 1. Since µ is a finite measure, Lebesgue’s Dominated
Convergence Theorem tell us that

dB0 (fj , f) →j→∞ 0.

That is to say, according to Proposition 23, fj →j→∞ f in µ-measure. So, we have 1).

To prove 2), we use again Lebesgue’s Dominated Convergence Theorem, to conclude
that there exists

lim
j→∞

∫
S

∥fj − f∥ dµ = 0.

Thus, we have 2).

This completes the proof of the proposition.

There are other forms of convergence, for example, those related to uniform conver-
gence, that we will not consider here (for the real-case see, for instance, [44], p. 112). For
a complete analysis and comparison of modes of convergence in the real-valued case, see
([32], p. 237).

6 The Radon-Nikodým Property for the Bochner integral

It is often said that the Bochner integral is, for the most part, “just” the Lebesgue integral,
with norms instead of absolute values. While this assertion might appear to be true some
times, other times becomes a gross underestimation of the Bochner integral. Nowhere is
this underestimation more patent than when one considers the problem of representing the
action of a vector measure as an integral. This is the subject we are about to take up.

Once again, we fix a complete and σ-finite measure space (S,Σ, µ). We also fix a
Banach space X .

We begin with a definition.

Definition 23. Given f ∈ B1 (S), let mf : Σ → X be the vector-valued set function
defined as

mf (A) =

∫
A

fdµ.
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Theorem 6. The following statements hold:

1. There exists
lim

µ(A)→0
mf (A) = 0.

2. The set function mf is a vector measure.

3. The vector measure mf has finite variation and

|mf | (A) =
∫
A

∥f∥ dµ, (30)

for every A ∈ Σ.

Proof. To prove 1), we use Remark 22 and 1) in Lemma 16, to obtain

∥mf (A)∥ =

∥∥∥∥∫
A

fdµ

∥∥∥∥ ≤
∫
A

∥f∥ dµ →
µ(A)→0

0,

according, for instance to ([44], p. 88, Theorem 17).

Let us prove 2). By convention, if no other way, mf (∅) = 0. Next, let {Aj}j≥1 ⊆ Σ

be a family of pairwise disjoint sets. Then,∥∥∥∥∥∥mf

⋃
j≥1

Aj

−
k∑

j=1

mf (Aj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫
⋃

j≥1 Aj

fdµ−
k∑

j=1

∫
Aj

f

∥∥∥∥∥∥
=

∥∥∥∥∥
∫
⋃

j≥1 Aj

fdµ−
∫
⋃

1≤j≤k Aj

fdµ

∥∥∥∥∥
=

∥∥∥∥∥
∫
⋃

j≥k+1 Aj

fdµ

∥∥∥∥∥ →
k→∞

0,

since µ
(⋃

j≥k+1A
)
→k→∞ 0, according to Proposition 1, which applies, word by word,

to the case of a measure µ : Σ → [0,∞].

To prove 3), let {Aj}j ⊆ Σ be any finite partition of S. Then,

∑
j

∥mf (Aj)∥ =
∑
j

∥∥∥∥∥
∫
Aj

fdµ

∥∥∥∥∥ ≤
(i)

∑
j

∫
Aj

∥f∥ dµ =

∫
S

∥f∥ dµ,

where in (i) we have used Remark 22 and 1) in Lemma 16. Thus,

|mf | (S) ≤
∫
S

∥f∥ dµ,

which proves that mf has finite variation.

To prove (30), we explain in detail the proof sketched in ([18], p. 46, Theorem 4 iv)).



48 J. Alvarez y M. Guzmán-Partida. A Study of Vector Measures

For starters, we take A ∈ Σ and we fix a sequence
{
φj

}
j≥1

of vector-valued simple
functions, so that ∫

A

∥∥φj − f
∥∥ dµ →

j→∞
0.

That is, for each ε > 0 fixed, there exists J = Jε ≥ 1 such that∫
A

∥∥φj − f
∥∥ dµ < ε, (31)

for j ≥ J . We fix j = J and write

φJ =

KJ∑
k=1

xJχAJ .

For the same fixed ε > 0, there exists a finite partition {Bε
l }1≤l≤Lε ⊆ Σ, of S, so that

|mf | (A)− ε <

Lε∑
l=1

∥mf (B
ε
l )∥ . (32)

Since the sets AJ
k , jointly with the set A\

⋃
1≤j≤Kj AJ

k form a partition of A, we can
write

Lε∑
l=1

∥mf (B
ε
l )∥ =

Lε∑
l=1

∥∥∥∥∥∥mf

KJ⋃
j=1

AJ
k

⋂Bε
l

⋃A\KJj⋃
j=1

AJ

⋂Bε
l

∥∥∥∥∥∥
=

Lε∑
l=1

∥∥∥∥∥∥
KJ∑

k=1

mf

(
AJ

k

⋂
Bε

l

)+mf

A\ KJ⋃
j=1

AJ
k

⋂Bε
l

∥∥∥∥∥∥
≤

Lε∑
l=1

KJ∑
k=1

∥∥∥mf

(
AJ

k

⋂
Bε

l

)∥∥∥
+

Lε∑
l=1

∥∥∥∥∥∥mf

A\ KJ⋃
j=1

AJ
k

⋂Bε
l

∥∥∥∥∥∥ . (33)

Thus, (32) also holds for the new partition, which is a refinement of the partition
{Bε

l }1≤l≤Lε . For brevity, let us denote this refinement P and let us call C the sets in P .
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We have,

∑
C∈P

∥∥mφJ
(C)
∥∥ =

Lε∑
l=1

KJ∑
k=1

∥∥∥mφJ

(
AJ

k

⋂
Bε

l

)∥∥∥
+

Lε∑
l=1

∥∥∥∥∥∥mφJ

A\ KJ⋃
k=1

AJ
k

⋂Bε
l

∥∥∥∥∥∥
=

Lε∑
l=1

Kj∑
k=1

∥∥∥∥∥∥
KJ∑
m=1

xJmµ
(
AJ

k

⋂
Bε

l

⋂
AJ

m

)∥∥∥∥∥∥
+

Lε∑
l=1

∥∥∥∥∥∥xJmµ
AJ

m

⋂A\ KJ⋃
j=1

AJ
k

⋂Bε
l

∥∥∥∥∥∥
=

Lε∑
l=1

KJ∑
k=1

∥∥∥xJmµ(AJ
k

⋂
Bε

l

)∥∥∥ =

Lε∑
l=1

KJ∑
k=1

∥∥xJm∥∥µ(AJ
k

⋂
Bε

l

)
=

∫
A

∥φJ∥ dµ.

Thus, ∣∣∣∣|mf | (A)−
∫
A

∥f∥ dµ
∣∣∣∣ ≤ |mf | (A)−

∑
C∈P

∥mf (C)∥

(i)

+

∣∣∣∣∣∑
C∈P

∥mf (C)∥ −
∑
C∈P

∥∥mφJ
(C)
∥∥∣∣∣∣∣

(ii)

+

∣∣∣∣∫
A

∥φJ∥ dµ−
∫
A

∥f∥ dµ
∣∣∣∣

(iii)

.

According to (33), (i) is < ε. As for (ii), it can be bound by∑
C∈P

∣∣∥mf (C)∥ −
∥∥mφJ

(C)
∥∥∣∣ ≤

∑
C∈P

∥∥mf (C)−mφJ
(C)
∥∥

=
∑
C∈P

∥∥∥∥∫
C

fdµ−
∫
C

φJdµ

∥∥∥∥
≤

∫
A

∥f − φJ∥ dµ < ε,

according to (31).
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Likewise, we bound (iii) by ∫
A

∥f − φJ∥ dµ < ε.

Since ε > 0 was arbitrarily chosen and R has the Archimedean Property, we conclude
that (30) is true.

This completes the proof of the theorem.

As a consequence of Theorem 6, we present now the general version of Corollary 6.

Corollary 8. If f ∈ B1 (S) and
∫
A
fdµ = 0 for all A ∈ Σ, f = 0 µ-a.e. on S.

Proof. Since

mf (A) =

∫
A

fdµ = 0,

for every A ∈ Σ, according to 3) in Theorem 6, and∫
S

∥f∥ dµ = |mf | (S) = 0.

Thus, we can conclude (see, for instance, [44], p. 84, Proposition 10) that there exists
a µ-null set N in Σ, so that ∥f∥ (t) = 0, for t ∈ S\N .

This completes the proof of the corollary.

Corollary 9. The vector measure mf in Definition 23 and Theorem 6, is absolutely
continuous with respect to µ.

Proof. Since 1) in Theorem 6 shows that mf is µ-continuous, the proof of this corollary
follows immediately from Definition 9 and 1) in Proposition 8.

Remark 36. The series
∑

j≥1mf (Aj) converges, not only unconditionally (see Remark
1), but also absolutely. In fact,

∑
j≥1

∥mf (Aj)∥ =
∑
j≥1

∥∥∥∥∥
∫
Aj

fdµ

∥∥∥∥∥ ≤
∑
j≥1

∫
Aj

∥f∥ dµ

=

∫
⋃

j≥1 Aj

∥f∥ dµ ≤
∫
S

∥f∥ dµ.

Let us recall that this is not the case for an arbitrary vector measure, unless X has finite
linear dimension (see Remark 1 and (16) in Remark 11).
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It is natural to ask whether, given a vector measure m : Σ → X , there is a function
fm ∈ B1 (S) so that

m (A) =

∫
A

fmdµ, (34)

for every A ∈ Σ.

On account of Theorem 6, for m to be written as in (34), m would need, at least, to
have finite variation and to be µ-continuous. For a vector-measure that has finite variation,
µ-continuity is equivalent to absolute continuity with respect to µ (see, Proposition 8). So,
we can, equivalently, say that m needs to be absolutely continuous with respect to µ.

For such a vector measure, the answer to the question of representability is, generally,
no. Before giving an example, we need to prove an auxiliary known result, which admits
various formulations (see, for instance, [1], p. 29, Lemma 4).

Lemma 17. Let F : I → B1
(
I, L1 (I)

)
be a strongly measurable function. Then, there

exists f ∈ L1 (I × I) and a λ-null set N ⊆ I so that F = f (t, ·), for t ∈ I\N .

Proof. Let us first observe that L1 (I × I) is defined with respect to the measure space
(I × I,LI×I , λ× λ), where LI×I is the σ-algebra of the Lebesgue measurable subsets of
the unit square I × I , and the measure λ× λ, defined on LI×I , is the (completed) product
measure, (see, for instance, [44], p. 118), that is to say, the Lebesgue measure on LI×I .

By Definition 12, there exists a sequence
{
φj

}
j≥1

of vector-valued simple functions
so that φj → F , µ-a.e. on I , as j → ∞. That is, for each j ≥ 1, we can write

φj (t, s) =

Kj∑
k=1

xjk(s)χAj
k
(t) ,

with xjk ∈ L1 (I), and ∫
I

∣∣φj (t)− F (t)
∣∣ dλ →

j→∞
0, (35)

for t ∈ I\N1, where N1 is a λ-null set. Let us observe that, in fact, we have selected a
representative xjk, of the class xjk in the Banach space L1 (I). It should be clear that the
function φj (t, s) belongs to L1 (I × I).

For each j ≥ 1, let Aj be the measurable set defined as

Aj =
{
t ∈ I :

∥∥φj (t)
∥∥
L1(I)

≤ 2 ∥F (t)∥L1(I)

}
.

Set
ψj = φjχAj

.

We claim that
{
ψj

}
j≥1

is a Cauchy sequence in L1 (I × I). Indeed, from (35), we can
say that there is

lim
j,m→∞

∫
I

∣∣ψj (t, s)− ψm (t, s)
∣∣ dλs = 0,
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for t ∈ I\N1. For l ≥ 1, let

Bl =
{
t ∈ I : ∥F (t)∥L1(I) ≤ l

}
.

Then, ∫
I

∣∣ψj (t, s)− ψm (t, s)
∣∣ dλ ≤ 4l,

for all j,m ≥ 1, t ∈ Bl. Using Theorem 4 on the sequence
{
ψj − ψm

}
j,m≥1

, there is

lim
j,m→∞

∫
Bl

(∫
I

∣∣ψj (t, s)− ψm (t, s)
∣∣ dλs) dλt = 0,

for each l ≥ 1. So, there is a function f l ∈ L1 (I × I) so that

ψj →
j→∞

f l

in L1 (Bl × I) for each l ≥ 1. Moreover, f l+1/Bl × I = f l, (λ× λ)-a.e.

Now, we define a function f , unique up to a (λ× λ)-null set, as f = f l on Bl × I . It
should be clear that f is (λ× λ)-measurable. Moreover, there exists

lim
j→∞

∫
Bl×I

∣∣ψj − f
∣∣ d (λ× λ) =

(i)
lim
j→∞

∫
Bl

(∫
I

∣∣ψj (t, s)− f (t, s)
∣∣ dλs) dλt = 0,

for each l ≥ 1, where the equality (i) follows from Fubini’s Theorem (see, for instance,
[44], p. 119, Theorem 3). Thus (see, Corollary 7), there is a subsequence

{
ψjk

}
k≥1

and a
λ-null set N2 ⊆ I , so that∫

I

∣∣ψjk
(t, s)− f (t, s)

∣∣ dλs →
jk→∞

0,

for t ∈ I\N2. According to (35),∫
I

∣∣ψj − F (t)
∣∣ dλ →

j→∞
0,

for t ∈ I\N1, so, we conclude that f (t, s) = F (t) (s), λ-a.e. in I , for each t ∈
I\ (N1

⋃
N2).

This completes the proof of the lemma.

Now, we are ready to present the example, which is mentioned, with some differences,
in several sources (see, for instance, [6], p. 103):

Example 3. We consider the Lebesgue measure space (I,LI , λ) and the measure m1 :

LI → L1 (I) defined as m1 (A) = χA (see Example 1). According to Example 2, m1

has finite variation and, since |m1| = λ, the vector measure m1 is obviously absolutely
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continuous with respect to µ. Let us suppose that there is a function fm1 ∈ B1
(
I, L1 (I)

)
so that

m1 (A) =

∫
A

fm1dλ, (36)

for each A ∈ Σ.

According to Lemma 17, we can view fm1 as a function fm1 (s, t) defined and Lebesgue
integrable on the unit square I × I . Thus, we can write

χA (t) =

∫
A

fm1
(t, s) dλs.

Now, given A,B ∈ LI , disjoint,∫
A×B

fm1
d (λ× λ) =

∫
B

χA (t) dλt = λ
(
A
⋂
B
)
= 0.

So, the function fm1
ends up being zero outside the diagonal in I × I (see, for instance,

[44], p. 88, Proposition 18). That is to say, fm1
is zero, (λ× λ)-a.e., which goes against

the assumed representation (36).

Remark 37. If c0 denotes the Banach space of real sequences that converge to zero, with
the sup norm, an example involving trigonometric series (see [18], p. 60, Example 1)
or ([6], p. 103, (ii)), shows that vector measures with values in c0 are not, generally,
representable. A third example, can be seen in ([6], p. 103, (iii)), showing the same for the
Banach space C (I) of real valued functions that are continuous on I , with the sup norm.
For a discussion on the role played by atoms (see Definition 6) in the representability of
measures, see ([18], p. 61).

When m is a signed measure, the question of whether it can be represented as an
integral, has an affirmative answer, given by the Radon-Nikodým theorem, which we state
as follows:

Theorem 7. Let m be a signed measure m : Σ → R that is absolutely continuous with
respect to µ. Then, there exists f = fm ∈ L1 (S) so that (34) holds for every A ∈ Σ.

Let us recall that a signed measure m : Σ → R is always bounded (see, for instance,
[44], p. 30, Theorem 5). Moreover, a signed measure m : Σ → R is bounded if, and only
if, it has finite variation (see, for instance, [44], p. 31, Corollary 8). Thus, in the statement
of Theorem 7, absolute continuity is equivalent to µ-continuity (see, for instance, [44], p.
132, Proposition 5 (ii)).

For the proof of Theorem 7 as stated, see, for instance, ([38], p. 238, Theorem 23). Let
us recall that µ is a σ-finite measure. Without this assumption, the conclusion of Theorem
7 is not generally true (see, for instance, [44], p. 134, Example 9). For slightly different
versions of Theorem 7 and their proofs see, for instance, ([44], p. 133, Theorem 8), ([12],
p. 132, Theorem 4.2.2 and p. 135, Theorem 4.2.3), ([39], p. 121, Theorem 6.10) and, of
course, many other sources.



54 J. Alvarez y M. Guzmán-Partida. A Study of Vector Measures

H. Lebesgue proved the first version of Theorem 7 in 1904 [28]. In fact, the evolution
of the Radon-Nikodým theorem for measures, runs parallel to that of the Lebesgue de-
composition theorem. For a fairly detailed account of these historical matters, see ([3], pp.
89-90; [19], p. 414, Notes and Remarks 11), and the references therein.

In the words of Diestel and Uhl ([18], p. 51), “The failure of the Radon-Nikodým
theorem for the Bochner integral is not to be interpreted as a negative aspect of the Bochner
integral. Indeed, the failure ... has powerful repercussions in operator theory, the geometry
of Banach spaces, duality theory for Banach spaces, vector-valued probability theory and
integration theory itself.” We may add that the failure has been, indeed, very fruitful.

So, instead of looking for the Radon-Nikodým theorem for the Bochner integral, we
need to talk about the Radon-Nikodým property for the Bochner integral, which is the title
of this section.

Definition 24. A Banach space X has the Radon-Nikodým property with respect to a
complete and σ-finite measure space (S,Σ, µ), if given a vector measure m : Σ → X that
has finite variation and is absolutely continuous with respect to µ, there exists fm ∈ B1 (S)

so that (34) holds.

A Banach space X has the Radon-Nikodým property, in short RNp, if it has the RNp
with respect to every complete and σ-finite measure space (S,Σ, µ).

Remark 38. When the function fm in Definition 24 exists, it is unique up to a µ-null set.
In fact, if there are two such functions, fm,1 and fm,2, their difference should represent
the zero measure, so, (see (30)),∫

S

∥fm,1 − fm,2∥ dµ = 0,

and the conclusion follows.

When m and f are related by

m (A) =

∫
A

fdµ,

for all A ∈ Σ, it is usual to write
m = fdµ

and to refer to f as the Radon-Nikodým derivative of m with respect to µ, denoted dm
dµ . In

this case, we refer to m as the indefinite integral of f . Of course, the inspiration for this
terminology comes from Calculus. At least in the case of signed measures, the terminology
is justified by properties that echo those encountered in Calculus (see, for instance, [38],
p.241; [44], p. 135).

Proposition 24. Fix a complete and σ-finite measure space (S,Σ, µ) and assume that the
Banach space X has the Radon-Nikodým property with respect to (S,Σ, µ). Let

Mf,a = {m : Σ → X : m is a vector measure of finite variation and m≪ µ} .

Then, the following statements hold:
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1. The space Mf,a is a normed linear subspace of Mf (for the definition, see Proposi-
tion 7).

2. The map Λ : B1 (S) → Mf,a, defined as Λ (f) = fdµ, is an isometric semi-
isomorphism. That is to say, it is linear, surjective, |fdµ| (S) = ∥f∥B1(S) and
Λ (f) = 0 implies that f = 0, µ-a.e. on S.

3. The space Mf,a is Banach.

Proof. The proof of 1) is an immediate consequence of Proposition 7. As for 2), it follows
from Definition 24 and Theorem 6, since given m ∈ Mf,a,

∥m∥ = ∥fm∥B1(S) .

Finally, if {mj}j≥1 is a Cauchy sequence in Mf,a, the sequence
{
fmj

}
j≥1

is Cauchy
in B1 (S), so it converges to some f ∈ B1 (S). Therefore, fdµ ∈ B1 (S) and

∥mj − fdµ∥ =
∥∥fmj

− f
∥∥
B1(S)

→
j→∞

0,

which proves 3).

This completes the proof of the proposition.

When X is the real space R, we can say quite a bit more.

Proposition 25. The linear space

MR = {m : Σ → R : m is a signed measure} ,

is complete with the norm ∥m∥ = |m| (S).

Proof. We give a fairly direct proof of this known result.

First, let us observe that m ∈ MR being finite, automatically implies that m has finite
variation (see Remark 7). Next, let {mj}j≥1 be a Cauchy sequence in MR. That is to say,
given ε > 0, there is J = Jε ≥ 1 so that

∥mj −mk∥ < ε,

for j, l ≥ J . According to (5), this implies that,

|mj (A)−mk (A)|
(i)

≤ |mj −mk| (S)
(ii)

→
j,k→∞

0, (37)

for every A ∈ Σ, so the sequence {mj}j≥1 of set functions from Σ to R is Cauchy,
uniformly on Σ. Let us observe that |·| in (i) is the absolute value in R, while |·| in (ii)
indicates the variation of the signed measure mj −mk. This slight ambiguity should not
cause any trouble.



56 J. Alvarez y M. Guzmán-Partida. A Study of Vector Measures

From (37), the real sequence {mj (A)}j≥1 is a Cauchy sequence in R for each A ∈ Σ,
so it has limit. We define a set function m : Σ → R as

m (A) = lim
j→∞

mj (A) . (38)

Since the sequence {mj}j≥1 is Cauchy, uniformly on Σ, the limit in (38) is uniform on
Σ. We claim that the set function m is a signed measure. First, it is clear that m (∅) = 0.
To prove that m is countably additive, we begin by observing that m is finitely additive, by
its definition. In fact, if {Al}l is any finite family of pairwise disjoint sets in Σ,

m

(⋃
l

Al

)
= lim

j→∞
mj

(⋃
l

Al

)
= lim

j→∞

∑
l

mj (Al)

=
∑
l

lim
j→∞

mj (Al) =
∑
l

m (Al) .

Next, let us consider any countable family of pairwise disjoint sets in Σ, {Al}l≥1, and let
us write A =

⋃
l≥1Al. For L ≥ 1 and j ≥ 1 to be chosen later, we can write∣∣∣∣∣m (A)−
L∑

l=1

m (Al)

∣∣∣∣∣ ≤ |m (A)−mj (A)|+

∣∣∣∣∣
L∑

l=1

(mj (Al)−m (Al))

∣∣∣∣∣
+

∣∣∣∣∣∣
∑

l≥L+1

mj (Al)

∣∣∣∣∣∣ = (i) + (ii) + (iii) .

Let us estimate each of these three terms.

For (i), |m (A)−mj (A)| < ε/3, for j ≥ J = Jε, independently of A ∈ Σ. We then
fix j = J in the other two terms. For (iii), since

∑
l≥1mJ (Al) converges, to mJ (A),∣∣∣∑l≥L+1mJ (Al)

∣∣∣ < ε/3, for L ≥ L0. Finally, for L ≥ L0, we can write (ii) as∣∣∣∣∣
L∑

l=1

(mJ (Al)−m (Al))

∣∣∣∣∣ =
∣∣∣∣∣(mJ −m)

(
L⋃

l=1

Al

)∣∣∣∣∣ < ε/3,

since we already observed that the convergence is uniform on Σ. Thus, m is a signed
measure and, hence, it has finite variation. That is to say, m ∈ MR.

The last step is to prove that {mj}j≥1 converges to m in MR, for which we use the
right hand side of the following inequality (see (13) in Remark 7):

sup
A∈Σ

|mj (A)−m (A)| ≤ |mj −m| (S) ≤ 2 sup
A∈Σ

|mj (A)−m (A)| .

If we use again the uniform convergence of {mj}j≥1 to m, given ε > 0, we have
|mj (A)−m (A)| < ε/2, for j ≥ J = Jε and for all A ∈ Σ. This completes the proof of
the proposition.
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So far, we haven’t said much about when the Radon-Nikodým property holds or doesn’t
hold. We dedicate the rest of the section to remedy this deficiency.

Remark 39. According to Remark 37, Example 3 shows that L1 (I) does not have the
Radon-Nikodým property. The Banach space c0 does not have it either (see [18], p. 60,
Example 1; [6], p. 103, (ii)). Example (iii) in ([6], p. 103), as well as Example 8 in ([18],
p. 73), show that C (I) does not have the Radon-Nikodým property.

The question of when a Banach space has the Radon-Nikodým property has grown
into a huge subject, with vast repercussions, on which we do not intend to dwell for long.
To show how diverse the answers to the question of representability can be, we state two
of these answers.

Theorem 8. ([37]) Let (S,Σ, µ) be a complete and σ-finite measure space. For a vector
measure m : Σ → X , the following statements, 1) and 2), are equivalent:

1. There exists a function f ∈ B1 (S), such that m = fdµ.

2. The vector measure m satisfies the following conditions:

(a) m≪ µ.

(b) m has finite variation.

(c) For each A ∈ Σ with 0 < µ (A) < ∞, there exists E ⊆ A, E ∈ Σ and a
compact set K ⊆ X not containing zero, so that µ (E) > 0 and for all E′ ⊆ E,
E′ ∈ Σ, the set m (E′) is contained in the cone generated by K.

Remark 40. When the space X has finite linear dimension, 2)c) in Theorem 8 is satisfied
by any vector measure m : Σ → X . In fact, when we choose

K = {x ∈ X : ∥x∥ = 1} ,

the cone generated by K, which is defined as

{λx : x ∈ K, λ ≥ 0} ,

is X , so 2) c) holds. That is to say, Theorem 8 becomes the familiar Radon-Nikodým
theorem, when X is finite dimensional.

Theorem 8 is considered the first general Radon-Nikodým theorem for the Bochner
integral. By general we mean that, although X needs to satisfy a certain geometric
condition, it is not a particular type of Banach space.

As for the promised second answer to the question of representability, it appears as
Theorem 5.21 in ([6], p. 112). Benyamini attributes it to S. Qian [35]. To simplify matters,
of the two statements that are proved to be equivalent to the Radon-Nikodým property, we
only mention one, which involves differentiability. The other equivalent statement involves
the notion of ε-differentiability (see [6], p. 111, Definition 5.19).
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Theorem 9. ([35]) Let X be a Banach space. Then, the following two assertions are
equivalent:

1. X has the Radon-Nikodým property.

2. Every absolutely continuous function F : [0, 1] → X is differentiable almost every-
where.

Absolute continuity of a vector-valued function is defined in the same way as for a
real-valued function (for the real case see, for instance, [44], p. 160, Definition 1). That is
also the case for the notion of differentiability (see, for instance, [15], Chapter VIII).

Remark 41. The Banach space l1 of absolutely summable real sequences {xj}j≥1 with
the norm

∑
j≥1 |xj |, has the Radon-Nikodým property (see [18], p. 64). That is also the

case for separable Hilbert spaces (see [18], p. 64, Theorem 6; p. 67) and for Banach spaces
that are duals and separable ([18], p. 79, Theorem 1).

Many results on vector measure representability, run parallel to the representability of
certain linear and continuous operators. This is a very interesting principle, which, at least
for some spaces, has been known for a long time (see, for instance, ([19], p. 415, Notes
and Remarks 12 and the references therein).

Indeed, if (S,Σ, µ) is a complete and finite measure space, the Riesz representation
theorem tells us that the topological dual of L1 (S) is L∞ (S), while Theorem 7 gives us
the representability of certain signed measures. The same two results can be stated for
vector-valued functions and measures. Specifically, ([18], p. 59),

Theorem 10. (Riesz representation theorem) If X is a Banach space, each linear and
continuous operator T : L1 (S) → X can be represented as

T (f) =

∫
S

fgdµ, (39)

for a function g ∈ B∞ (S).

Theorem 11. (Radon-Nikodým theorem) Given a vector measure m : Σ → X that has
finite variation and is absolutely continuous with respect to µ, there exists g ∈ B1 (S) so
that

m (A) =

∫
A

gdµ,

for all A ∈ Σ.

Diestel and Uhl discuss (see [18], pp. 60-61) several examples that illustrate the inter-
play between these two theorems. Furthermore, they prove, among others, the following
result (see [18], p. 63, Theorem 5), that makes this interplay official:

Theorem 12. Let X be a Banach space and let (S,Σ, µ) be a complete and finite measure
space. Then, X has the Radon-Nikodým property with respect to (S,Σ, µ) if, and only if,
each linear and continuous T : L1 (S) → X is representable as in (39).
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Benyamini states (see [6], p. 123) a version of Theorem 12 in terms of the topological
dual of Bp (I), for 1 ≤ p < ∞: It is always the case that Bq (I,X ′) is isometrically
embedded in the topological dual (Bp (I,X))

′, where 1
p + 1

q = 1 and X ′. That this
embedding is onto if X has the Radon-Nikodým property, is due to S. Bochner and A. E.
Taylor [9]. For a detailed discussion, see ([18], Chapter III).

For a historical account of the Riesz representation theorem, see [22].

There is a large body of work dedicated to the Radon-Nikodým property in all its
manifestations. Besides the three monographs already mentioned and their extensive bibli-
ographies, we mention, for instance, [10], [34], [16], [29], [17], [42], and the references
therein.

The article [17] presents, in great detail, the evolution of the Radon-Nikodým property,
in the vector-valued setting.

Thus, we conclude the study of vector measures we set to write.
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