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Un nuevo método iterativo para resolver ecuaciones onduladas no
lineales de orden fraccionario con coeficientes variables
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Abstract. In this work, we suggest a novel iterative method to give approxi-
mate solutions of nonlinear wave-like equations of fractional order with vari-
able coefficients. The advantage of the proposed method is the ability to com-
bine two different methods: Shehu transform method and homotopy analysis
method, in addition to providing an approximate solution in the form of a con-
vergent series with easily computable components, requiring no linearization
or small perturbation. This method can be called Shehu homotopy analysis
method (SHAM). Three different examples are presented to illustrate the pre-
ciseness and effectiveness of the proposed method. The numerical results show
that the solutions obtained by SHAM are in good agreement with the solu-
tions found in the literature. Furthermore, the results show that this method
can be implemented in an easy way and therefore can be used to solve other
nonlinear fractional partial differential equations.
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Caputo fractional derivative, Shehu transform, homotopy analysis method,
approximate solution.

2020 Mathematics Subject Classification. 35L05, 35R11, 26A33, 35A22.

Resumen. En este trabajo, sugerimos un método iterativo novedoso para dar
una solución aproximada de ecuaciones onduladas no lineales de orden frac-
cionario con coeficientes variables. La ventaja del método propuesto es la ca-
pacidad de combinar dos métodos diferentes: el método de transformación
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14 ALI KHALOUTA

de Shehu y el método de análisis de homotoṕıa, además de proporcionar
una solución aproximada en forma de una serie convergente con componentes
fácilmente computables, que no requieren linealización ni pequeñas perturba-
ciones. Este método se puede llamar método de análisis de homotoṕıa Shehu
(SHAM). Se presentan tres ejemplos diferentes para ilustrar la precisión y
eficacia del método propuesto. Los resultados numéricos muestran que las
soluciones obtenidas por SHAM están en buen acuerdo con las soluciones en-
contradas en la literatura. Además, los resultados muestran que este método es
fácil de aplicar y, por lo tanto, se puede utilizar para resolver otras ecuaciones
diferenciales parciales fraccionarias no lineales.

Palabras y frases clave. Ecuaciones onduladas no lineales con coeficientes vari-
ables, derivada fraccional de Caputo, transformada Shehu, método de análisis
de homotoṕıa, solución aproximada.

1. Introduction

In recent years many scientists and researchers have been interested in the
topic of nonlinear fractional partial differential equations because of its broad
applications in various fields, such as physics, mechanics, electrochemistry, vis-
coelasticity, nonlinear control theory, image processing, nonlinear biological sys-
tems, astrophysics, and other fields of science and engineering. See for example
[1, 4, 5, 6, 14, 16].

Numerous semi-analytical methods such as: Adomian decomposition method
(ADM) [25], fractional variational iteration method (FVIM) [26], fractional dif-
ference method (FDM) [22], reduced differential transform method (RDTM)
[3], homotopy analysis method (HAM) [8], homotopy perturbation method
(HPM) [11] are used to solve such nonlinear fractional problems.

Recently, other numerical and analytical methods have appeared to facili-
tate and improve the resolution speed of nonlinear fractional partial differential
equations. They include the combination of Laplace transform, Sumudu trans-
form or natural transform with the previously mentioned methods, among wich
are: Laplace homotopy analysis method [29], Laplace decomposition method
[13], Laplace variational iteration method [27], homotopy perturbation Sumudu
transform method [28], homotopy analysis Sumudu transform method [18],
variational iteration Sumudu transform method [2], natural transform homo-
topy perturbation method [20], natural decomposition method [23], homotopy
analysis natural transform method [24], natural reduced differential transform
method (NRDTM) [15].

Our main goal of this work is to propose a novel iterative method to solve
the nonlinear wave-like equations of fractional order with variable coefficients
called Shehu homotopy analysis method (SHAM). This method is a combina-
tion of two powerful methods: Shehu transform method and homotopy analysis
method.
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A NOVEL ITERATIVE METHOD TO SOLVE. . . 15

Consider the following nonlinear wave-like equations of fractional order with
variable coefficients

Dα
t u =

n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi
, uxj

) (1)

+

n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi

) +H(X, t, u) + S(X, t),

subject to the initial conditions

u(X, 0) = a0(X), ut(X, 0) = a1(X), (2)

where Dα
t is the Caputo fractional derivative operator of order 1 < α ≤ 2, u =

{u(X, t), X = (x1, x2, . . . , xn) ∈ Rn, t ≥ 0, n ∈ N∗} , F1ij , G1i i, j ∈ {1, 2, . . . , n}
are nonlinear functions of X, t and u, F2ij , G2i i, j ∈ {1, 2, . . . , n} are nonlinear
functions of derivatives of u with respect to xi and xj i, j ∈ {1, 2, . . . , n}, re-
spectively. Also H,S are nonlinear functions and k,m, p are nonnegative integer
numbers.

In the case where α = 2, equation (1) simplifies to classical nonlinear wave-
like equations with variable coefficients. These kind of equations are one of the
most widely used wave models to describe the evolution of stochastic systems
for example, erratic motions of small particles that are immersed in fluids,
fluctuations of the intensity of laser light, velocity distributions of fluid particles
in turbulent flows and the stochastic behavior of exchange rates.

The paper is structured as follows. In Section 2, we present necessary defi-
nitions and preliminary results about fractional calculus and Shehu transform.
In Sections 3 and 4, we present our results to solve the nonlinear wave-like
equations of fractional order with variable coefficients (1) subject to the initial
conditions (2) by the Shehu homotopy analysis method (SHAM). In Section 5,
we present three numerical examples to show the accuracy and efficiency of this
method and we present our obtained results (Graphs and Table), comparing
them with their exact associated forms. These results were verified with Matlab
(version R2016a ). Finally, conclusions are drawn in Section 6.

2. Fundamental definitions

In this section, we present necessary definitions and preliminary results about
fractional calculus and Shehu transform that will be applied in this paper.

Definition 2.1. [17] Let f : [0, T ] −→ R be a continuous function. The left
sided Riemann-Liouville fractional integral of order α ≥ 0 is defined by

Iαf(t) =


1

Γ(α)

t∫
0

(t− ξ)α−1
f(ξ)dξ, α > 0,

f(t), α = 0,

(3)
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16 ALI KHALOUTA

where

Γ(α) =

∞∫
0

tα−1e−tdt, α > 0,

is the Euler gamma function.

Definition 2.2. [17] Let f : [0, T ] −→ R be a continuous function. The left
sided Caputo fractional derivative of order α ≥ 0 is defined by

Dαf(t) =


1

Γ(n− α)

t∫
0

(t− ξ)n−α−1
f (n)(ξ)dξ, n− 1 < α < n,

f (n)(t), α = n,

(4)

where n = [α] + 1 with [α] being the integer part of α.

Definition 2.3. [21] The Shehu transform of the function f(t) of exponential
order is defined over the set of functions

A =

{
f(t)/∃N, η1, η2 > 0, |f(t)| < N exp

(
|t|
ηj

)
, if t ∈ (−1)j × [0,∞)

}
,

by the following integral

S [f(t)] = F (s, v) =

∫ ∞
0

exp

(
−st
v

)
f(t)dt. (5)

Theorem 2.4. [7] Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n and
F (s, v) be the Shehu transform of the function f(t), then the Shehu transform
denoted by Fα(s, v) of the Caputo fractional derivative of f(t) of order α, is
given by

S [Dαf(t)] = Fα(s, v) =
sα

vα
F (s, v)−

n−1∑
k=0

( s
v

)α−(k+1) [
Dkf(t)

]
t=0

. (6)

3. SHAM to solve nonlinear wave-like equations of fractional order
with variable coefficients

Theorem 3.1. Consider the nonlinear wave-like equations of fractional or-
der with variable coefficients (1) subject to the initial conditions (2). Then, by
SHAM the accurate approximation solution of equations (1) and (2) is given
in the form of infinite series as follows

u(X, t) =

∞∑
n=0

un(X, t).
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Proof. We consider the following nonlinear wave-like equations of fractional
order with variable coefficients (1) subject to the initial conditions (2).

First we define

Nu =

n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi
, uxj

),

Mu = +

n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi

),

Ku = H(X, t, u).

Equation (1) is written in the form

Dα
t u(X, t) = Nu(X, t) +Mu(X, t) +Ku(X, t) + S(X, t). (7)

Applying the Shehu transform with respect to the time variable t on both sides
of (7) and from Theorem 2.4 and the initial conditions (2), we obtain

S [u(X, t)]−
(
v

s
a0(X) +

(v
s

)2

a1(X) +
vα

sα
S [S(X, t)]

)
(8)

− vα

sα
S [Nu(X, t) +Mu(X, t) +Ku(X, t)] = 0.

Define the nonlinear operator

R [φ(X, t, q] = S [φ(X, t, q)]−
(
v

s
a0(X) +

(v
s

)2

a1(X) +
vα

sα
S [S(X, t)]

)
− vα

sα
S [Nφ(X, t, q) +Mφ(X, t, q) +Kφ(X, t, q)] .

By means of homotopy analysis method [19], we construct the so-called zero-
order deformation equation

(1− q)S [φ(X, t, q)− φ(X, t, 0)] = qhH(X, t)R [φ(X, t, q)] , (9)

where q, is an embedding parameter and q ∈ [0; 1], h 6= 0 is an auxiliary
parameter, H(X, t) 6= 0 is an auxiliary function, φ(X, t, q) is an unknown func-
tion and S is an auxiliary linear Shehu operator. When q = 0 and q = 1, we
have {

φ(X, t, 0) = u0(X, t),

φ(X, t, 1) = u(X, t).
(10)

When q increases from 0 to 1, the φ(X, t, q) varies from u0(X, t) to u(X, t).
Expanding φ(X, t, q) in Taylor series with respect to q, we have

φ(X, t, q) = u0(X, t) +

+∞∑
n=1

qnun(X, t), (11)
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18 ALI KHALOUTA

where

un(X, t) =
1

n!

∂nφ(X, t, q)

∂qn

∣∣∣∣
q=0

. (12)

When q = 1, (11) becomes

u(X, t) = u0(X, t) +

+∞∑
n=1

un(X, t). (13)

We define the vectors

−→u = {u0(X, t), u1(X, t), u2(X, t), . . . , un(X, t)} . (14)

Differentiating (9) n−times with respect to q, then setting q = 0 and finally
dividing them by n!, we obtain the so-called nth order deformation equation

S [un(X, t)− χnun−1(X, t)] = hH(X, t)Rn [−→u n−1(X, t)] , (15)

where

Rn [−→u n−1(X, t)] =
1

(n− 1)!

∂n−1R [φ(X, t, q)]

∂qn−1

∣∣∣∣
q=0

, (16)

and

χn =

{
0, n ≤ 1,

1, n > 1.

Applying the inverse Shehu transform on both sides of (15), we get

un(X, t) = χnun−1(X, t) + S−1 [hH(X, t)Rn−→u n−1(X, t)] . (17)

The nth deformation equation (17) is linear and it can be easily solved. So, the
N th-order approximation of u(X, t) is given by

u(X, t) =

N∑
n=0

un(X, t).

When N →∞, the accurate approximation solution of (7), is give by

u(X, t) =

+∞∑
n=0

un(X, t). (18)

The proof is complete. �X
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A NOVEL ITERATIVE METHOD TO SOLVE. . . 19

4. Convergence of the SHAM

Assume that B = (C (Ω) , ‖.‖) is the Banach space, the space of all continuous
functions on Ω ⊂ Rn × R+ with the norm, ‖u(X, t)‖B = sup

(X,t)∈Ω

|u(X, t)| .

Theorem 4.1. Let un(X, t) and u(X, t) be defined in Banach space B, then

the series
+∞∑
n=0

un(X, t) converges to the solution u(X, t) of equation (1) if there

exists 0 < θ < 1 such that

‖un(X, t)‖ ≤ θ ‖un−1(X, t)‖ ,∀n ∈ N. (19)

Proof. Define that {Sn(X, t)}n≥0 is the sequence of partial sums of the series
(18), as

Sn(X, t) =

n∑
k=0

uk(X, t), (20)

and we need to show that {Sn(X, t)}n≥0 is a Cauchy sequence in Banach space
B.

For this purpose, we consider

‖Sn+1(X, t)− Sn(X, t)‖ ≤ ‖un+1(X, t)‖ ≤ θ ‖un(X, t)‖
≤ θ2 ‖un−1(X, t)‖ ≤ · · · ≤ θn+1 ‖u(X, t)‖ . (21)

For every, n,m ∈ N, n ≥ m, by using (21) and triangle inequality successively,
we have

‖Sn(X, t)− Sm(X, t)‖ = ‖Sn(X, t)− Sn−1(X, t) + Sn−1(X, t)− Sn−2(X, t)

+ · · ·+ Sm+1(X, t)− Sm(X, t)‖
≤ ‖Sn(X, t)−Sn−1(X, t)‖+‖Sn−1(X, t)−Sn−2(X, t)‖+

· · ·+ ‖Sm+1(X, t)− Sm(X, t)‖
≤θn ‖u0(X, t)‖+θn−1‖u0(X, t)‖+ · · ·+θm+1‖u0(X, t)‖
= θm+1

(
1 + θ + · · ·+ θn−m−1

)
‖u0(X, t)‖

≤ θm+1

(
1− θn−m

1− θ

)
‖u0(X, t)‖ . (22)

Since 0 < θ < 1, we have 1− θn−m < 1, then

‖Sn(X, t)− Sm(X, t)‖ ≤ θm+1

1− θ
‖u0(X, t)‖ . (23)

So ‖Sn(X, t)− Sm(X, t)‖ → 0 as n,m→∞ as u0(X, t) is bounded.
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20 ALI KHALOUTA

Thus {Sn(X, t)}n≥0 is a Cauchy sequence in Banach space and hence con-
vergent. Therefore, there exists u(X, t) ∈ B such that

∞∑
n=0

un(X, t) = u(X, t). (24)

The proof is complete. �X

Corollary 4.2. The maximum absolute truncation error of the series solution
(18) for equations (1) and (2) is estimated to be∥∥∥∥∥u(X, t)−

N∑
k=0

uk(X, t)

∥∥∥∥∥ ≤ θN+1

1− θ
‖u0(X, t)‖ . (25)

Proof. From Theorem 4.1 and (23), we have

‖Sn(X, t)− SN (X, t)‖ ≤ θN+1

1− θ
‖u0(X, t)‖ . (26)

But we assume that Sn(X, t) =
n∑
k=0

uk(X, t) and since n → +∞, we obtain

Sn(X, t)→ u(X, t), so (26) can be rewritten as

‖u(X, t)− SN (X, t)‖ =

∥∥∥∥∥u(X, t)−
N∑
k=0

uk(X, t)

∥∥∥∥∥ ≤ θN+1

1− θ
‖u0(X, t)‖ . (27)

The proof is complete. �X

5. Illustrative Examples

In this section, we apply the proposed Shehu homotopy analysis method to
solve three examples of nonlinear wave-like equations of fractional order with
variable coefficients in order to establish the applicability and the accuracy of
the method.

Example 5.1. Consider the 2-dimensional nonlinear wave-like equation of frac-
tional order with variable coefficients

Dα
t u =

∂2

∂x∂y
(uxxuyy)− ∂2

∂x∂y
(xyuxuy)− u, (28)

subject to the initial conditions

u(x, y, 0) = exy, ut(x, y, 0) = exy, (29)

where Dα
t is the Caputo fractional derivative operator of order 1 < α ≤ 2, and

u is a function of x, y, t ∈ R× R× R+.
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The exact solution of equations (28) and (29) for α = 2, is given by

u(x, y, t) = (sin t+ cos t) exy.

Taking the Shehu transform on both sides of (28) and from Theorem 2.4
and the initial conditions (29), we obtain

S [u]−
(
v

s
exy +

(v
s

)2

exy
)
− vα

sα
S
[
∂2

∂x∂y
(uxxuyy)− ∂2

∂x∂y
(xyuxuy)− u

]
= 0.

(30)
We take the nonlinear part as

R [φ(x, y, t, q] = S [φ]−
(
v

s
exy +

(v
s

)2

exy
)

− vα

sα
S
[
∂2

∂x∂y
(φxxφyy)− ∂2

∂x∂y
(xyφxφy)− φ

]
.

In view of the HAM technique and, assuming H(x, y, t) = 1, we construct the
so-called zero-order deformation equation as follows

(1− q)S [φ(x, y, t, q)− φ(x, y, t, 0)] = qhR [φ(x, y, t, q)] . (31)

When q = 0 and q = 1, we get{
φ(x, y, t, 0) = u0(x, y, t),

φ(x, y, t, 1) = u(x, y, t).

Thus, we obtain the nth order deformation equation

S [un(x, y, t)− χnun−1(x, y, t)] = hRn [−→u n−1(x, y, t)] . (32)

Applying the inverse Shehu transform on both sides of equation (32), we get

un(x, y, t) = χnun−1(x, y, t) + S−1 [hRn−→u n−1(x, y, t)] . (33)

From (33), we have

u1(x, y, t) = hS−1 [R1
−→u 0(x, y, t)] ,

u2(x, y, t) = u1(x, y, t) + hS−1 [R2
−→u 1(x, y, t)] , (34)

u3(x, y, t) = u2(x, y, t) + hS−1 [R3
−→u 2(x, y, t)] ,

...
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22 ALI KHALOUTA

where

R1
−→u 0(x, y, t) = S [u0]−

(
v

s
exy +

(v
s

)2

exy
)

− vα

sα
S
[
∂2

∂x∂y

(
(u0)xx (u0)yy

)
− ∂2

∂x∂y

(
xy (u0)x (u0)y

)
− u0

]
,

R2
−→u 1(x, y, t) = S [u1]− vα

sα
S
[
∂2

∂x∂y

(
(u1)xx (u0)yy + (u0)xx (u1)yy

)
− ∂2

∂x∂y

(
xy
(

(u1)x (u0)y + (u0)x (u1)y

))
− u1

]
, (35)

R3
−→u 2(x, y, t) =S[u2]− v

α

sα
S
[
∂2

∂x∂y

(
(u2)xx(u0)yy+(u

1
)xx(u

1
)yy+(u

0
)xx(u

2
)yy

)
− ∂2

∂x∂y

(
xy
(

(u
2
)x (u

0
)y + (u

1
)x (u

1
)y + (u

0
)x (u

2
)y

))
− u2

]
,

...

Using the initial condition (29) and the iteration formulas (34) and (35), we
obtain

u0(x, y, t) = (1 + t)exy,

u1(x, y, t) = h

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

u2(x, y, t) =
(
h+ h2

)( tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy

+ h2

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy,

u3(x, y, t) =
(
h+ h2

)( tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy

+ 3(h2 + h3)

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy

+ h3

(
t3α

Γ(3α+ 1)
+

t3α+1

Γ(3α+ 2)

)
exy,

...

Finally, according to the SHAM, the approximate solution of (28) and (29) is

u(x, y, t) =

(
1 + t+ (3h+ 2h2)

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
+ (4h2 + 3h3)

×
(

t2α

Γ(2α+1)
+

t2α+1

Γ(2α+2)

)
+h3

(
t3α

Γ(3α+1)

t3α+1

Γ(3α+2)

)
+· · ·

)
exy. (36)
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When h = −1, the approximate solution of equations (28) and (29) can be
written as

u(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
(37)

+
t2α+1

Γ(2α+ 2)
− t3α

Γ(3α+ 1)
− t3α+1

Γ(3α+ 2)
+ · · ·

)
exy.

For the special case α = 2, we obtain from (37)

u(x, y, t) =

(
1 + t− t2

2!
− t3

3!
+
t4

4!
+
t5

5!
− t6

6!
− t7

7!
+ · · ·

)
exy

= (sin t+ cos t) exy,

which is the exact solution and is the same as obtained via ADM [9], RDTM
[10] and HPM [12].

1

1

1.5

1

u

α=1.5

x

0.5

t

2

0.5
0 0

1

1

2

1

u

α=1.75

x

0.5

t

3

0.5
0 0

1

1

2

1

u

α=2

x

0.5

t

3

0.5
0 0

1

1

2

1

u

Exact solution

x

0.5

t

3

0.5
0 0

Figure 1. 3D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (28) and (29) when h = −1 and y = 0.5
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Figure 2. 2D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (28) and (29) when h = −1 and x = y = 0.5

t uADM uRDTM uHPM uSHAM (α = 2) uexact |uexact − uSHAM |
0.1 1.4058 1.4058 1.4058 1.4058 1.4058 3.2196× 10−13

0.3 1.6061 1.6061 1.6061 1.6061 1.6061 2.1569× 10−9

0.5 1.7424 1.7424 1.7424 1.7424 1.7424 1.3095× 10−7

0.7 1.8093 1.8093 1.8093 1.8093 1.8093 1.9680× 10−6

0.9 1.8040 1.8040 1.8040 1.8040 1.8040 1.4947× 10−5

Table 1. Comparison of ADM, RDTM, HPM and SHAM solution for the first four
approximations with exact solution for equations (28) and (29) at h = −1
and x = y = 0.5

Example 5.2. Consider the following nonlinear wave-like equation of frac-
tional order with variable coefficients

Dα
t u = u2 ∂

2

∂x2
(uxuxxuxxx) + u2

x

∂2

∂x2
(u3
xx)− 18u5 + u, (38)

subject to the initial conditions

u(x, 0) = ex, ut(x, 0) = ex, (39)

where Dα
t is the Caputo fractional derivative operator of order 1 < α ≤ 2 and

u is a function of x, t ∈ ]0, 1[× R+.

The exact solution of equations (38) and (39) for α = 2, is given by

u(x, t) = ex+t.
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Taking the Shehu transform on both sides of (38) and from Theorem 2.4 and
the initial conditions (39), we obtain

S [u]−
(
v

s
ex+

(v
s

)2

ex
)
−v

α

sα
S
[
u2 ∂

2

∂x2
(uxuxxuxxx)+u2

x

∂2

∂x2
(u3
xx)−18u5 + u

]
=0.

(40)
We take the nonlinear part as

R [φ(x, t, q] = S [φ]−
(
v

s
ex +

(v
s

)2

ex
)

− vα

sα
S
[
φ2 ∂

2

∂x2
(φxφxxφxxx) + φ2

x

∂2

∂x2
(φ3
xx)− 18φ5 + φ

]
.

In view of the HAM technique and assuming H(x, t) = 1, we construct the
so-called zero-order deformation equation as follows

(1− q)S [φ(x, t, q)− φ(x, t, 0)] = qhR [φ(x, t, q)] . (41)

When q = 0 and q = 1, we get

{
φ(x, t, 0) = u0(x, t),

φ(x, t, 1) = u(x, t).

Thus, we obtain the nth order deformation equation

S [un(x, t)− χnun−1(x, t)] = hRn [−→u n−1(x, t)] . (42)

Applying the inverse Shehu transform on both sides of equation (42), we get

un(x, t) = χnun−1(x, t) + S−1 [hRn−→u n−1(x, t)] . (43)

From (43), we have

u1(x, t) = hS−1 [R1
−→u 0(x, t)] ,

u2(x, t) = u1(x, t) + hS−1 [R2
−→u 1(x, t)] , (44)

...
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where

R1
−→u 0(x, t) = S [u0]−

(
v

s
ex +

(v
s

)2

ex
)

− vα

sα
S
[
u2
0
∂2

∂x2

[
(u0)x (u0)xx (u0)xxx

]
+ (u0)2x

∂2

∂x2
(u0)3xx − 18u5

0 + u0

]
,

(45)

R2
−→u1(x, t)=S[u1]−

vα

sα
S
[
2u0u1

∂2

∂x2

[
(u0)x(u0)xx(u0)xxx

]
+u2

0
∂2

∂x2

[
(u1)x(u0)xx(u0)xxx

+ (u0)x (u1)xx (u0)xxx + (u0)x (u0)xx (u1)xxx
]

+ 2 (u0)x (u1)x
∂2

∂x2
(u0)3xx

+ (u0)2x
∂2

∂x2

[
3 (u0)2xx (u1)xx

]
− 90u4

0u1 + u1

]
,

...

Using the initial condition (39) and the iteration formulas (44) and (45), we
obtain

u0(x, t) = (1 + t)ex,

u1(x, t) = −h
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

u2(x, t) = −
(
h+ h2

)( tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex

− h
(

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex,

...

Finally, according to the SHAM, the approximate solution of (38) and (39 is

u(x, t) =

(
1 + t− (2h+ h2)

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
−h
(

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
+ · · ·

)
ex.

When h = −1, the approximate solution of equations (38) and (39) can be
written as

u(x, t) = ex
(

1 + t+
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ · · ·

)
.

(46)
For the special case α = 2, we obtain from (46)

u(x, t) =

(
1 + t+

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ · · ·

)
ex = ex+t,
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which is the exact solution and is the same as obtained via ADM [9], RDTM
[10] and HPM [12].
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Figure 3. 3D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (38) and (39) when h = −1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1.5

2

2.5

3

3.5

4

4.5

5

u

Exact solution

α=2

α=1.95

α=1.8

α=1.7

Figure 4. 2D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (38) and (39) when h = −1 and x = 0.5
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t uADM uRDTM uHPM uSHAM (α = 2) uexact |uexact − uSHAM |
0.1 1.8221 1.8221 1.8221 1.8221 1.8221 4.1350× 10−13

0.3 2.2255 2.2255 2.2255 2.2255 2.2255 2.7750× 10−9

0.5 2.7183 2.7183 2.7183 2.7183 2.7183 1.6907× 10−7

0.7 3.3201 3.3201 3.3201 3.3201 3.3201 2.5543× 10−6

0.9 4.0552 4.0552 4.0552 4.0552 4.0552 1.9535× 10−5

Table 2. Comparison of ADM, RDTM, HPM and SHAM solution for the first four
approximations with exact solution for equations (38) and (39) at h = −1
and x = 0.5

Example 5.3. Consider the following one dimensional nonlinear wave-like
equation of fractional order with variable coefficients

Dα
t u = x2 ∂

∂x
(uxuxx)− x2(uxx)2 − u, (47)

subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = x2, (48)

where Dα
t is the Caputo fractional derivative operator of order 1 < α ≤ 2 and

u is a function of (x, t) ∈ ]0, 1[× R+.

The exact solution of equations (47) and (48) for α = 2, is given by

u(x, t) = x2 sin t.

Taking the Shehu transform on both sides of (47) and from Theorem 2.4 and
the initial conditions (48), we obtain

S [u]−
(v
s

)2

x2 − vα

sα
S
[
x2 ∂

∂x
(uxuxx)− x2(uxx)2 − u

]
= 0. (49)

We take the nonlinear part as

R [φ(x, t, q] = S [φ]−
(v
s

)2

x2 − vα

sα
S
[
x2 ∂

∂x
(φxφxx)− x2(φxx)2 − φ

]
.

In view of the HAM technique and assuming H(x, t) = 1, we construct the
so-called zero-order deformation equation as follows

(1− q)S [φ(x, t, q)− φ(x, t, 0)] = qhR [φ(x, t, q)] . (50)

When q = 0 and q = 1, we get{
φ(x, t, 0) = u0(x, t),

φ(x, t, 1) = u(x, t).
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Thus, we obtain the nth order deformation equation

S [un(x, t)− χnun−1(x, t)] = hRn [−→u n−1(x, t)] . (51)

Applying the inverse Shehu transform on both sides of equation (51), we get

un(x, t) = χnun−1(x, t) + S−1 [hRn−→u n−1(x, t)] . (52)

From (52), we have

u1(x, t) = hS−1 [R1
−→u 0(x, t)] ,

u2(x, t) = u1(x, t) + hS−1 [R2
−→u 1(x, t)] , (53)

u3(x, t) = u2(x, t) + hS−1 [R3
−→u 2(x, t)] ,

...

where

R1
−→u 0(x, t)=S [u0]−

(v
s

)2
x2− v

α

sα
S
[
x2 ∂

∂x
((u0)x (u0)xx)− x2 ((u0)xx)

2 − u0

]
,

R2
−→u 1(x, t) = S [u1]− vα

sα
S
[
x2 ∂

∂x
((u0)x (u1)xx + (u1)x (u0)xx)

−2x2 (u0)xx (u1)xx − u1

]
, (54)

R3
−→u 2(x, t) = S [u2]− vα

sα
S
[
x2 ∂

∂x
((u0)x (u2)xx + (u1)x (u1)xx + (u2)x (u0)xx)

−x2((u1)
2
xx + 2 (u0)xx (u2)xx)− u2

]
,

...

Using the initial condition (48) and the iteration formulas (53) and (54), we
obtain

u0(x, t) = tx2,

u1(x, t) = hx2 tα+1

Γ(α+ 2)
,

u2(x, t) =
(
h+h2

)
x2 tα+1

Γ(α+2)
+ h2x2 t2α+1

Γ(2α+ 2)
,

u3(x, t) =
(
h+2h2+h3

)
x2 tα+1

Γ(α+2)
+2(h2 + h3)x2 t2α+1

Γ(2α+ 2)
+h3x2 t3α+1

Γ(3α+ 2)
,

...
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Finally, according to the SHAM, the approximate solution of (47) and (48) is

u(x, t) =

(
t+
(
3h+ 3h2 + h3

) tα+1

Γ(α+ 2)
+ (3h2 + 2h3)

t2α+1

Γ(2α+ 2)

+h3 t3α+1

Γ(3α+ 2)
+ · · ·

)
x2.

When h = −1, the approximate solution of equations (47) and (48) can be
written as

u(x, t) = x2

(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− t3α+1

Γ(3α+ 2)
+ · · ·

)
. (55)

For the special case α = 2, we obtain from (55)

u(x, t) = x2

(
t− t3

3!
+
t5

5!
− t7

7!
+ · · ·

)
= x2 sin t,

which is the exact solution and is the same as obtained via ADM [9], RDTM
[10] and HPM [12].
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Figure 5. 3D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (47) and (48) when h = −1
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Figure 6. 2D plots for the 4−term approximate solution by SHAM and exact solu-
tion for equations (47) and (48) when h = −1 and x = 0.5

t uADM uRDTM uHPM uSHAM (α = 2) uexact |uexact − uSHAM |
0.1 0.02496 0.02496 0.02496 0.02496 0.02496 6.8887× 10−16

0.3 0.07388 0.07388 0.07388 0.07388 0.07388 1.3549× 10−11

0.5 0.11986 0.11986 0.11986 0.11986 0.11986 1.3425× 10−9

0.7 0.16105 0.16105 0.16105 0.16105 0.16105 2.7677× 10−8

0.9 0.19583 0.19583 0.19583 0.19583 0.19583 2.6495× 10−7

Table 3. Comparison of ADM, RDTM, HPM and SHAM solution for the first four
approximations with exact solution for equations (47) and (48) at h = −1
and x = 0.5

Remark 5.4. The numerical results presented in the figures 1-6 and tables
1-3 show that the present method approximates the exact solution very well.

6. Conclusion

In this work, a novel iterative method called Shehu homotopy analysis method
(SHAM) is proposed to obtain an approximate solution for nonlinear wave-like
equations of fractional order with variable coefficients . The SHAM were used
in a direct way without using linearization, perturbation or restrictive assump-
tions. Numerical solutions are obtained in a form of rapidly convergent series
with easily computable components. Numerical results show the effectiveness
and good accuracy of the proposed method. It is observed that the proposed
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method is highly suitable for such problems. It may be concluded that the
SHAM is very powerful and efficient in finding the solutions for a large class of
nonlinear partial differential equations of fractional order.

Acknowledgements. The author would like to thank Professor Francisco José
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valuable and careful comments which improved the paper considerably.
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