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Abstract. This paper addresses the positive semi-definite procrustes problem 
(PSDP). The PSDP corresponds to a least squares problem over the set of
symmetric and semi-definite positive matrices. These kinds of problems ap-
pear in many applications such as structure analysis, signal processing, among
others. A non-monotone spectral projected gradient algorithm is proposed to
obtain a numerical solution for the PSDP. The proposed algorithm employs the
Zhang and Hager’s non-monotone technique in combination with the Barzilai
and Borwein’s step size to accelerate convergence. Some theoretical results
are presented. Finally, numerical experiments are performed to demonstrate
the effectiveness and efficiency of the proposed method, and comparisons are
made with other state-of-the-art algorithms.
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Resumen. En este art́ıculo abordamos el problema de mı́nimos cuadrados li-
neales sobre el conjunto de matrices simétricas y definidas positivas (PSDP).
Esta clase de problemas surge en un gran número de aplicaciones tales como
análisis de estructuras, procesamiento de señales, análisis de componentes
principales, entre otras. Para resolver este tipo de problemas, proponemos
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un método de gradiente proyectado espectral no-monótono. El algoritmo pro-
puesto usa la técnica de globalización no-monótona de Zhang y Hager, en
combinación con los tamaños de paso de Barzilai y Borwein para acelerar la
convergencia del método. Además, presentamos y comentamos algunos resul-
tados teóricos concernientes al algoritmo desarrollado. Finalmente, llevamos a
cabo varios experimentos numéricos con el fin de demostrar la efectividad y la
eficiencia del nuevo enfoque, y realizamos comparaciones con algunos métodos
existentes en la literatura.

Palabras y frases clave. Algoritmo no-monótono, optimización con restricciones,
restricciones simétricas y semi definidas positivas, problema de mı́nimos cua-
drados.

1. Introduction

The positive semi-definite Procrustes problem (PSDP) is defined as follows:
given two rectangular matrices A,B ∈ Rn×m, we want to find a symmetric and
positive semi–definite matrix X∗ ∈ Rn×n that solves the following optimization
problem

min
X∈Rn×n

F(X) s.t. X ∈ S+(n), (1)

where F : Rn×n → R is defined as F(X) = 1
2 ||XA−B||

2
F , here ||Z||F denotes

the Frobenius norm of Z ∈ Rr×k and S+(n) represents the set of the symmetric
and positive semi-definite n-by-n matrices with real entries, i.e.

S+(n) = {X ∈ Rn×n : X> = X, v>Xv ≥ 0, ∀v ∈ Rn}.

Problem (1) arises frequently in different applications such as: analysis of struc-
tures [5, 17], signal processing [14], estimation of correlation matrices [2], among
others. It is well known that the feasible set S+(n) of the problem (1), is a closed
convex cone of dimensions n× (n+ 1)/2, [9]. From this result and the fact that
the objective function F is continuous, the existence of at least one global min-
imizer of problem (1) is guaranteed. Additionally, if A is full rank then there
exists a unique solution for (1), for more details see [17]. In addition, since F is
a convex function, this converts (1) in a convex minimization problem, which
is relatively easy to solve. There are also some particular cases of the problem
(1) that have an analytical formula for the solution, for example, when A = Im
[9], when rank(A) = 1 [8], or when X is considered a diagonal matrix [8].

Although there are particular cases where problem (1) has a closed solution,
in most cases, such as in real applications, a solution is only possible computa-
tionally, by an iterative method capable of dealing with non-stationary points,
generating a sequence of feasible points that converge to a local minimizer.
However, designing efficient algorithms that generate a feasible sequence of
points is generally a difficult task, because it usually leads to use some projec-
tion operator, which requires computing spectral decompositions, and this is
computationally expensive for large scale situations.
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Due to the vast number of applications that problem (1) captures, many re-
searchers are interested in studying this problem, both from a theoretical point
of view, as well as from the design of new efficient approaches. In [9, 10] the
authors study a problem related to (1) theoretically, where they derive general
analytical formulas for the solution in some particular cases. Additionally, they
provide sufficient and necessary conditions to guarantee the existence of the so-
lution. On the other hand, the gradient projection method was implemented by
Nicolas Gillis et al. in [8]. Specifically, Nicolas Gillis et.al. propose an algorithm
called “FGM”, which is an accelerated version of the classical gradient projec-
tion method, which uses the Nesterov [11] acceleration technique. In essence,
the FGM is an implementation of the algorithm that appears in [11]. In [8], a
method called “AN-FGM” is also proposed which is a semi-analytic approach
that reduces the problem (1) to the case when A is diagonal and then uses
the FGM to address a more easy problem, this proposal looks quite efficient to
deal with problems where A is ill-conditioned. Another alternative to compute
a numerical solution of problem (1), has been studied in [1], where the authors
propose an algorithm called “Parallel tangents” that is based on the gradient
projection method that incorporates an over-relaxation step. One drawback of
this parallel tangents method is that it does not guarantee optimal convergence.
On the other hand, two algorithms that were designed to solve convex opti-
mization problems over S+(n), “SDPT3” [16] and “QSDP” [15] can be used to
solve the problem (1).

In this work, we study the numerical behaviour of a spectral gradient pro-
jection method to address the positive semi-definite procrustes problem from
a practical point of view. In particular, we adopt a gradient projection scheme
with the non-monotone globalization technique proposed by Zhang and Hager
in [18], in combination with the step size proposed by Barzilai and Borwein
in [3]. Subsequently, we present some computational experiments, in order to
illustrate the effectiveness of the proposed method, solving the PSDP problem
under many conditioning situations of A. Our main contribution is the imple-
mentation of an efficient gradient projection procedure using MATLAB, and
the numerical comparison of the performance of such method against other
existing algorithms of the state of the art.

The rest of this work is organized as follows. In the next section some
important notations and tools are introduced as background for the article. In
Section 3, the update formula of our proposed method is presented. Subsection
3.1, addresses the problem of selecting the step size of the proposed method and
describes a non-monotone globalization technique to regulate such step size,
and we culminate this subsection presenting our new approach. A derivation
of the proposed method from the algorithm presented in [7] is discussed in
subsection 3.2. In Section 4, several numerical experiments are carried out in
order to demonstrate the effectiveness and efficiency of our procedure. Finally,
the conclusions are presented in Section 5.
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2. Notations and Important Tools

In this section, we present some fundamental concepts and tools that we will
need in this paper. Let’s denote by 〈A,B〉 :=

∑
i,j Ai,jBi,j = Tr[A>B] to the

usual inner product on the matrix space Rn×m, here Tr[A] denotes the trace
of A. Given a differentiable function F : Rn×m → R, the gradient of F respect

to X is denoted by ∇F(X) =
(
∂F(X)
∂Xi,j

)
. The directional derivative of F at

X ∈ Rn×m in the direction Z ∈ Rn×m is

∇F(X)[Z] := lim
t→0

F(X + tZ)−F(X)

t
= 〈∇F(X), Z〉. (2)

Another tool that we use is the projection operator over the feasible set S+(n)
which is defined below.

Definition 2.1. Let X ∈ Rn×n be a real square matrix. The projection oper-
ator π : Rn×n → S+(n) over S+(n) is defined by

π(X) = arg min
P∈Rn×n

||P −X||F , s.t. P ∈ S+(n). (3)

Note that the projection of any arbitrary matrix X ∈ Rn×n is defined from
an optimization problem, however, problem (3) has a closed solution, this fact
is established below.

Proposition 2.2. Let X ∈ Rn×n be a real square matrix. Then π(X) is well-
defined. Moreover, consider the symmetric part of X, that is, Xsym = 1

2 (X>+
X) and let Xsym = V ΣV > be the spectral decomposition of Xsym, then π(X) =
V (max(Σ, 0))V >.

Proof. The proof of this proposition appear in [9]. �X

3. A feasible Update Scheme

Since F is smooth, a natural idea is to compute the next iterates as Y (τ) =
X − τ∇F(X), where X ∈ S+(n) is the previous iterate and τ > 0 represents
the step size. The drawback of this approach is that the new point Y (τ) may
not satisfy the constraints of problem (1). In order to overcome this issue, we
consider the well-known projected gradient method [4] which computes the new
iterate Z(τ) as a point on the curve

Z(τ) = π(X − τ∇F(X)). (4)

Observe that equation (4) guarantees that the new iterate preserves the feasi-
bility. On the other hand, there are different techniques to select the step size τ .
The condition that is usually used for the gradient projection method is known
as “Armijo’s condition on the arc of projection” [4]. This condition imposes to
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choose the step size τk, at the k-th iteration, as the largest positive number τ ,
such that verifies the following inequality

F(Zk(τ)) < F(Xk)) + σ∇F(Xk)[Zk(τ)−Xk], (5)

where σ ∈ (0, 1) and Zk(τ) = π(Xk − τ∇F(Xk)). The Armijo condition (5) is
used in combination with a heuristic so-called backtracking in order to find an
appropriate step size that satisfies the condition (5), for more details about the
backtracking strategy see [4, 12].

Note that if we ensure that the directional derivative∇F(Xk)[Zk(τ)−Xk] <
0 for all k, then we obtain a sequence {Xk} of points such that the correspond-
ing sequence {F(Xk)} is monotonically decreasing. With the purpose of accel-
erating the convergence of the gradient projection scheme (4), we adopt the
non-monotone globalization technique proposed by Zhang and Hager in [18]
combined with the Barzilai and Borwein step sizes [3] which usually accelerate
the convergence of gradient-based methods. This strategy is described in the
next section.

3.1. The Barzilai-Borwein Step Sizes.

In this subsection, we are focused on a non-monotone strategy for the step size
selection as well as to present the proposed algorithm in detail.

It is well-known that sometimes the Barzilai and Borwein step sizes [3] can
improve the performance of the gradient-based algorithms without increasing
too much the computational cost of the procedure. Typically, this technique
considers the steepest descent method, and proposes to choose any of two step
sizes, presented below, at the k-th iteration,

τBB1
k =

||Sk−1||2F
Tr[S>k−1Yk−1]

, or τBB2
k =

Tr[S>k−1Yk−1]

||Yk−1||2F
, (6)

where Sk−1 = Xk −Xk−1 and Yk−1 = ∇F(Xk)−∇F(Xk−1). Since the values
τBB1
k and τBB2

k (BB-steps) could be negative, we used their absolute value to
avoid negative step sizes that involve growth in the objective function. For more
details see [3, 13]. Since the BB-steps does not necessarily decrease the objective
function values at each iteration, it can invalidate convergence. However, this
issue can be overcome by using a globalization technique, which guarantees
global convergence by regulating the step sizes in (6), see [6, 13]. Taking in
mind this considerations, we adopt a non-monotone line search method based
on a strategy in [18], in our proposed algorithm. Specifically, the iterates are
recursively updated as Xk+1 := Zk(τk) = π(Xk − τk∇F(Xk)), where τk =
ηhτBB1

k or τk = ηhτBB2
k , where h is the smallest integer number that verify the

following condition

F(Zk(τk)) ≤ Ck + σ∇F(Xk)[Zk(τk)−Xk], (7)
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where Ck+1 is defined as the convex combination of Ck and F(Xk+1) given by

Ck+1 = F(Xk+1)+γQkCk

Qk+1
, where Qk+1 = γQk + 1, with Q0 = 1. The proposed

non-monotone gradient projection method to deal with the numerical solution
of the problem (1) is summarized in Algorithm 1.

Algorithm 1 OptPSDP

Require: X0 ∈ S+(n), X−1 = X0 + In, τ > 0, 0 < τm ≤ τM , σ, η ∈ (0, 1),
γ ∈ [0, 1), Q0 = 1, C0 = F(X0), k = 0.

1: while not convergent do
2: while F(Zk(τ)) > Ck + στF(Xk)[Zk(τ)−Xk] do
3: τ = ητ ,
4: end while
5: Xk+1 = Zk(τ), according to (4).
6: Compute Qk+1 = γQk + 1 and Ck+1 = (γQkCk + F(Xk+1))/Qk+1.
7: Take τ = |αBB1

k+1 | or well τ = |αBB2
k+1 |, according to (6).

8: τ = max(min(τ, τM ), τm).
9: k = k + 1.

10: end while
11: X∗ = Xk.

Remark 3.1. Note that if we select γ = 0 in the previous algorithm, then
Algorithm 1 is reduced to the classical gradient projection method. Observe also
that the Algorithm 1 can be used to minimize any objective smooth function
over the matrix set S+(n), however, the interest of this work is focused on the
particular problem (1).

Note that the step 5, in Algorithm 1, is the step that requires the most
computational effort, because it needs to use the operator projection defined
in (3), which in turn requires to compute a spectral decomposition, which it is
computationally inefficient. In order to avoid the calculation of such spectral
decomposition, in each step, we propose the following idea: first note that if the
symmetric part of Yk = Xk − τk∇F(Xk) is positive definite then this matrix
coincides with its projection over S+(n). Thus, we propose to use the Cholesky’s
factorization to make the Algorithm 1 more efficient. Specifically, in the step 5,

we try to compute the Cholesky factorization of
Yk+Y >k

2 , if no error is generated,

then Xk+1 is updated by Xk+1 =
Yk+Y >k

2 , otherwise Xk+1 = Zk(τk) is updated
using the projection operator. In Section 4, we demostraste numerically the
efficiency of this strategy on some numerical tests.

Volumen 55, Número 1, Año 2021



A SGP METHOD FOR THE POSITIVE SEMI-DEFINITE PROCRUSTES PROBLEM 115

3.2. Another Point of View of Algorithm 1.

In this section we derive Algorithm 1 from an algorithm proposed recently by
Francisco et al. in [7]. In addition, we establish a convergence result related to
our Algorithm 1.

In [7] the authors propose a globally convergent non-monotonous algorithm
to numerically solve the following optimization problem,

min f(x) s.t. x ∈ Ω, (8)

where Ω is a closed subset of Rn and f : Rn → R is a continuously differentiable
function on Ω̂ such that Ω ⊂ Ω̂. The proposed algorithm by Francisco et.al.
builds a sequence of iterates as follows: given the current point xk ∈ Ω, ρk > 0
a positive scalar and two symmetric matrices Ak, Bk, with Ak definite positive,
then the next trial point xk+1 is computed as the argument that minimizes the
quadratic model

min
x∈Ω

Qk(x) = 〈∇f(xk), x− xk〉+
1

2
(x− xk)>(Bk + ρkAk)(x− xk), (9)

where ρk works as a regularization parameter. This method is based on the
ideas of the trust region methods [12] and the well-known method of Levenberg-
Marquardt [12]. The authors in [7], combine these ideas with the non-monotone
technique proposed by Zhang and Hager [18], and thus obtain a very general
method to solve the non-linear optimization problem (8).

The rest of this subsection is dedicated to demonstrate that the Algorithm
1 can be seen as a particular case of the algorithm proposed in [7]. To do
this, it is sufficient to demonstrate that the update formula of our method (4)
is equivalent to solve a quadratic model on S+(n), due to the non-monotone
strategy to choose the step size is the same for the two algorithms.

Proposition 3.2. Let Xk ∈ S+(n) be the point generated by Algorithm 1 at
the k-th iteration. If τ > 0 then Zk(τ) = π(Xk − τ∇F(Xk)) is the minimum
of the following quadratic model,

Qk(X) = Tr[∇F(Xk)>(X −Xk)] +
1

2τ
||X −Xk||2F , (10)

over the set S+(n).

Proof. Since Zk(τ) = π(Xk − τ∇F(Xk)) then Zk(τ) is a solution of

minJ (X) =
1

2
||X − (Xk − τ∇F(Xk))||2F , s.t. P ∈ S+(n). (11)
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From the definition of J(X) and using trace properties we have

J (X) =
1

2
Tr[(X − (Xk − τ∇F(Xk)))>(X − (Xk − τ∇F(Xk)))]

=
1

2
Tr[X>X − 2X>Xk + 2τX>∇F(Xk) +X>k Xk − 2τX>k ∇F(Xk)

+ τ2∇F(Xk)>∇F(Xk)].

Now, since τ2∇F(Xk)>∇F(Xk) is constant, then minimizing J (·) is equivalent
to minimize the function Ĵ (·) given by

Ĵ (X) =
1

2
Tr[X>X − 2X>Xk + 2τX>∇F(Xk) +X>k Xk − 2τX>k ∇F(Xk)].

Rewriting this last result we arrive at

Ĵ (X) = τTr[X>∇F(Xk)−X>k ∇F(Xk)] +
1

2
Tr[X>X − 2X>Xk +X>k Xk],

(12)
or equivalently

Ĵ (X) = τ

(
Tr[∇F(X>k )(X −Xk)] +

1

2τ
||X −Xk||2F

)
. (13)

Then, since τ is constant for the optimization process over S+(n), we have that
minimize Ĵ (·) over S+(n), is equivalent to minimize the quadratic function
Qk(X) defined in (10) over the set S+(n), which completes the proof. �X

Note that Proposition 3.2 shows that the Algorithm 1 is a particular case
of the algorithm proposed by Francisco et al. [7], obtained by taking ρk = 1,
Bk the null matrix and Ak = 1

τk
In at each iteration. This result implies that

the Algorithm 1 is globally convergent, which it is established in Theorem 3.3.

Theorem 3.3. Let {Xk} be a sequence generated by Algorithm 1. Assume that
γ < 1, then every accumulation points of {Xk} is a stationary point of the
problem (1).

4. Numerical Experiments

In this section, we illustrate the effectiveness and efficiency of the proposed al-
gorithm (Algorithm 1: OptPSDP) on several positive semi-definite procrustes
problems generated synthetically. An implementation in Matlab of OptPSDP
is available at: http://www.mathworks.com/matlabcentral/fileexchange/64597-
spectral-projected-gradient-method-for-the-positive-semi-definite-procrustes-problem.

All computational experiments were carried out using Matlab 7.0 in an intel
(R) CORE (TM) i7-4770 processor, 3.40 GHz CPU with 500 Gb of HD and 16
Gb of Ram. In all experiments the following values are used for the OptPSDP
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algorithm: σ = 1e-4, τ0 = 1e-3, τmin = 1e-20, τmax = 1e20, ε = 1 e-5, γ = 0.85
and η = 0.2. For the other methods we used the default parameters of each
algorithm, except for the tolerance fixed to ε = 1e-5. As a maximum number
of iterations N = 10000 was selected for all algorithms.

Method Nitr Nfe Time XErr Fval Global Error

E1: n = 100, m = 70, problem = 1, γ = 0.8

Grad 746 747 0.808 9.96e-6 1.06e-6 17.3

FGM 1756 1757 1.889 9.99e-6 7.43e-25 61.3

ParTan 74 75 0.107 2.91e-6 1.02e-8 17.4

OptPSDP 102 103 0.123 8.21e-6 5.86e-7 17.3

E2: n = 150, m = 100, problem = 1, γ = 0.85

Grad 1356 1357 3.166 9.98e-6 2.29e-6 27.7

FGM 2091 2092 4.856 9.99e-6 2.37e-24 101.2

ParTan 101 102 0.316 2.38e-6 1.17e-8 27.8

OptPSDP 153 154 0.393 8.68e-6 1.42e-6 27.6

E3: n = 1000, m = 100, problem = 1, γ = 0.85

Grad 8 9 1.656 4.91e-6 1.60e-11 4.76e-7

FGM 8 9 1.588 2.68e-6 2.22e-12 1.31e-7

ParTan 7 8 2.287 3.83e-6 9.28e-12 3.70e-7

OptPSDP 7 8 1.438 5.86e-6 5.79e-12 2.72e-7

E4: n = 1500, m = 1500, problem = 1, γ = 0.85

Grad 8 9 5.471 4.75e-6 1.65e-11 4.52e-7

FGM 8 9 5.261 1.15e-6 5.64e-13 7.16e-8

ParTan 7 8 7.261 5.15e-6 1.64e-11 4.90e-7

OptPSDP 8 9 4.752 2.72e-6 2.41e-12 1.24e-7

Table 1. Numerical results for well conditioned PSDP (problem = 1).

In the rest of this section, we denote by “Nitr” the average number of iterations,
“Nfe” the average number of functions evaluations, “Time” the average execu-
tion time in seconds, “Fval” the average value of the evaluation of the objective
function at point X̂ which denotes the optimum estimated by each algorithm,
“Error” the average global error, that is, ||X∗ − X̂||F , where X∗ denotes the
global optimum each PSDP problem, and finally we denote by “XErr”, the av-
erage error ||X̂−Xk||F , and Xk penultimate point generated by each algorithm.
In addition, we denote by Grad to the classical gradient projection method
proposed in [8], FGM denotes the accelerated gradient projection method pro-
posed in [8], ParTan denotes parallel tangent method introduced in [1] and
OptPSDP denotes our proposal.

For the numerical experiments, we consider problem (1) where the matrix
A ∈ Rn×m is build as A = PΛQ>, where P ∈ Rn×n and Q ∈ Rm×m are
orthogonal matrices randomly generated and Λ ∈ Rn×m is a diagonal matrix
defined as we explain below. The starting point X0 was generated as X0 =
π(X̄0), where X̄0 was randomly generated. In order to monitoring the behavior
of the algorithms, the optimal solution is generated by X∗ = π(X̃) where
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X̃ ∈ Rn×n was randomly generated. Then, the matrix B ∈ Rn×m was taken
as B = XA, in this way, X∗ is a global optimum of the problem (1) with
optimal value zero, i.e. F(X∗) = 0. All random values were generated following
a standard normal distribution using the randn function of Matlab.

Method Nitr Nfe Tiempo XErr Fval Global Error

E5: n = 30, m = 10, problem = 2, γ = 0.85

Grad 4392 4393 0.81 1.15e-6 6.2e-5 9.7

FGM 1289 1290 0.251 9.96e-6 3.55e-9 16.5

ParTan 187 188 0.041 5.04e-6 3.49e-6 9.8

OptPSDP 392 395 0.086 8.5e-6 1.22e-5 9.7

E6: n = 100, m = 50, problem = 2, γ = 0.55

Grad 10000 10001 12.123 3.4e-5 1.41e-2 25.3

FGM 5181 5182 6.4699 9.85e-6 5.1e-6 54.9

ParTan 1073 1074 1.553 8.32e-6 1.27e-4 25.6

OptPSDP 1221 1231 1.57 9.68e-6 2.4e-3 25.3

E7: n = 60, m = 60, problem = 2, γ = 0.85

Grad 6149 6150 2.731 1.16e-6 6.97e-4 1.93e-2

FGM 442 443 0.236 9.86e-6 2.04e-7 3.77e-4

ParTan 291 292 0.196 4.63e-6 2.51e-6 1.1e-3

OptPSDP 318 322 0.184 8.6e-6 1.24e-4 9.3e-3

E8: n = 120, m = 120, problem = 2, γ = 0.55

Grad 9962 9963 14.679 4.55e-6 1.46e-1 2.58e-1

FGM 784 785 1.394 9.93e-6 8.4e-7 6.82e-4

ParTan 498 499 1.14 5.1e-6 1.68e-5 2.7e-3

OptPSDP 728 743 1.387 9.08e-6 1.7e-3 3.11e-2

Table 2. Numerical results for ill conditioned PSDP (problem = 2).

In addition, we consider the following three distributions of the entries of Λ,

Problema 1: The Λ diagonal entries are generated by a truncated normal
distribution in the interval [10,12].

Problema 2: The diagonal of Λ is given by λii = i + 2ri, where ri is a
randomly generated from the uniform distribution in the interval [0,1].

Problema 3: Each element of the diagonal matrix Λ is generated as λii =

1+ 99(i−1)
m+1 +2ri, with ri is a randomly generated from the uniform distribution

in the interval [0,1].

Observe that if the Λ is generated following the structure of Problema 1
then A is a well-conditioned matrix, while it is generated by the diagonal struc-
tures described in Problema 2 and Problema 3 then A is a ill-conditioned
matrix. In order to study the numerical behavior and performance of all meth-
ods, we consider several size of problems PSDP and different conditions number
of A. In all tables, we present the averages of the comparing values obtained
by each algorithm in a total of 50 independent instances.
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In the first experiment, we study the efficiency of the proposed method on
well-conditioned PSDP problems. Table 1 summarizes the numerical results
of this comparison. From Table 1, we observe that the fastest methods are
ParTan and OptPSDP. In addition, it’s seen that if A is rectangular then
the most efficient method in terms of CPU-time is ParTan. However, clearly
we note that our proposal is more efficient for problems where A is square.
According to the error XErr, all algorithms reach an order less than 1e-5 and
additionally, we can see that the value Fval is close to zero for all algorithms.
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Method Nitr Nfe Time XErr Fval Global Error

E9: n = 50, m = 10, problem = 3, γ = 0.55

Grad 10000 10001 3.539 6.17e-5 1.45e-1 19.51

FGM 6233 6234 2.287 1.08e-6 1.11e-5 26.29

ParTan 514 515 0.21 7.06e-6 3.89e-4 19.53

OptPSDP 1867 1885 0.734 9.62e-6 4.1e-3 19.68

E10: n = 100, m = 10, problem = 3, γ = 0.55

Grad 10000 10001 10.299 1.2e-4 5.73e-1 43.44

FGM 7108 7109 7.951 1.39e-6 6.86e-6 48.15

ParTan 626 627 0.791 5.21e-6 1.19e-4 43.3

OptPSDP 3817 3840 4.206 1.04e-6 9.7e-3 43.58

E11: n = 100, m = 100, problem = 3, γ = 0.55

Grad 9250 9251 9.625 3.14e-6 4.89e-2 1.52e-1

FGM 686 687 0.86 9.9e-6 5.56e-7 5.91e-4

ParTan 437 438 0.7 4.72e-6 8.88e-6 2.2e-3

OptPSDP 606 611 0.801 8.94e-6 9.07e-4 2.42e-2

E12: n = 150, m = 150, problem = 3, γ = 0.55

Grad 9660 9661 21.894 4.17e-6 7.5e-2 2.04e-1

FGM 729 730 1.986 9.91e-6 5.63e-7 6.2e-4

ParTan 486 487 1.764 2.9e-6 3.68e-6 1.3e-3

OptPSDP 649 665 1.896 8.87e-6 1e-3 2.66e-2

Table 3. Numerical results for ill conditioned PSDP (problem = 3).

In tables 2 and 3 we present the results obtained by the four procedures solving
ill-conditioned PSDP. These tables clearly show that Grad algorithm is the
method that obtain the worst results, because sometimes it runs the maximum
number of iterations allowed and it is the slowest in terms CPU-time. On the
other hand, we observe that the FGM, ParTan and OptPSDP methods
show similar performance both in the number of iterations, and in execution
time when m = n. However, when A is a rectangular matrix, the most efficient
method is ParTan. In spite of this, all the methods reach convergence, since
all obtain small values of XErr.

For the fourth experiment group, the PSDP problems were constructed with
randomly generated synthetic data as explained at the beginning of this section,
however, the optimum X∗ matrix was built as follows, first a matrix M ∈ Rn×n
is randomly generated with entries following a standard normal distribution,
afterwards V is obtained as the orthogonal matrix of the QR factorization of
M , from this matrix, we set X∗ = V >ΣV , where Σ ∈ Rn×n is a diagonal
matrix whose diagonal elements were generated by Σ(1, 1) = Σ(2, 2) = 0 and
Σ(i, i) = rand for all i ∈ {3, 4, . . . , n} using Matlab notation. Thus, the optimal
solution of the PSDP generated is a symmetric and positive semi-definite matrix
with only two eigenvalues equal to zero and n− 2 strictly positive eigenvalues.
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Method Nitr Nfe Time XErr Fval Global Error

E13: n = 10, m = 70, problem = 1, γ = 0.55

Grad 25 26 0.031 7.61e-6 5.02e-9 18.85

FGM 788 789 0.956 9.98e-6 5.73e-26 22.27

ParTan 12 13 0.019 4.38e-6 1.7e-10 18.91

OptPSDP 11 12 0.009 6.00e-6 2e-9 18.82

E14: n = 1000, m = 1000, problem = 1, γ = 0.85

Grad 8 9 1.868 4.57e-6 1.56e-11 4.73e-7

FGM 8 9 1.825 1.86e-6 1.51e-12 9.8e-8

ParTan 7 8 2.482 3.76e-6 8.44e-12 3.53e-7

OptPSDP 8 9 0.935 2.88e-6 3.09e-12 1.45e-7

E15: n = 60, m = 30, problem = 2, γ = 0.85

Grad 3737 3738 1.892 9.99e-6 2.97e-5 15.9

FGM 1876 1877 0.9692 9.22e-6 2.39e-6 16.4

ParTan 185 186 0.113 3.43e-6 3.6e-7 15.9

OptPSDP 178 183 0.063 7.49e-6 8.42e-6 15.9

E16: n = 100, m = 100, problem = 2, γ = 0.55

Grad 9437 9438 11.787 3.18e-6 5.76e-2 1.57e-1

FGM 642 643 0.814 9.91e-6 5.84e-7 5.78e-4

ParTan 378 379 0.601 4.2e-6 8.99e-6 1.6e-3

OptPSDP 511 536 0.47 8.27e-6 8.05e-4 2.13e-2

E17: n = 60, m = 30, problem = 3, γ = 0.55

Grad 10000 10001 5.073 6.14e-5 1.77e-1 15.8

FGM 4179 4180 2.168 9.49e-6 6.1e-5 16.3

ParTan 596 597 0.365 6.54e-6 3.87e-5 15.9

OptPSDP 1366 1390 0.429 8.69e-6 1.1e-3 17.8

E18: n = 120, m = 120, problem = 3, γ = 0.55

Grad 9281 9282 16.522 4.21e-6 8.85e-2 2.13e-1

FGM 672 673 1.218 9.91e-6 5.64e-7 6.01e-4

ParTan 393 394 0.897 3.07e-6 6.98e-6 1.4e-3

OptPSDP 557 582 0.686 8.29e-6 8.56e-4 2.32e-2

Table 4. Numerical results for several PSDP (problem = 1,2,3).

The numerical results corresponding to the third experiment are shown in Table
4. This table shows that the ParTan algorithm obtained the best performance
in terms of the number of iterations, in almost all experiments. In addition,
we observe that the our OptPSDP is the most efficient procedure in terms of
CPU-time in both well-conditioned and ill-conditioned problems. From all the
experiments performed, we concluded that the our proposal is a competitive
alternative to solve the problem 1 under different situations of conditioning and
scale of A.

5. Conclusions

The problem (1) has a wide range of applications in the fields of structure anal-
ysis, physical problems, signal processing, estimation of correlation matrices,
among others. To address this problem, we design and implement an efficient
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and globally convergent algorithm that preserves feasibility in each iteration.
Our proposal is based on the gradient projection method and we incorporate
a non-monotone strategy in combination with the Barzilai and Borwein step
sizes in order to accelerate the convergence. The bottleneck of the proposed
algorithm is the computation of the projection operator, which is computa-
tionally inefficient. In order to improve the efficiency of our algorithm, we
present a strategy based on Cholesky factorization to reduce the number of
projections. This technique can be a good alternative to deal with large-scale
problems. Some theoretical results were presented. Finally, from the numerical
experiments we note that the performance of the resulting algorithm is quite
competitive with some of the state of the art methods.
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