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Abstract. We present a basis of p−adic wavelets for Sobolev-type spaces
consisting of eigenvectors of certain pseudodifferential operators. Our result
extends a well-known result due to S. Kozyrev.
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Resumen. Presentamos una base de wavelets p−ádica para espacios de tipo
Sobolev que consiste de vectores propios de ciertos operadores pseudodiferen-
ciales. Nuestro resultado extiende un conocido resultado debido a S. Kozyrev.
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1. Introduction

The field of p-adic numbers was introduced by the German mathematician
Kurt Hensel in 1897. The construction of the field of p-adic numbers Qp (here
p is a fixed prime number) is very similar to the construction of the field of
real numbers R starting from Q. The field Qp is constructed from the rational
numbers Q as the completation with respect to the p-adic norm |·|p. The p−adic

norm is non-Archimedean, i.e. |x+ y|p ≤ max
{
|x|p , |y|p

}
. As a consequence

of this property the geometry of Qp is completely different from the geometry
of R.

The theory of p-adic numbers has received great attention in the several
areas of mathematics, including number theory, algebraic geometry, algebraic
topology and analysis, among others. In the recent literature there are many
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articles where p-adic analysis is applied to other branches of the science, such
as, physics, biology and psychology, among others.

The conventional description of the physical space-time uses the field R
of real numbers, and there are many mathematical models based on R that
successfully describe physical reality. Nevertheless, there are general arguments
that suggest that one cannot make measurements in regions of extent smaller
than the Planck length ≈ 10−33 cm, see e.g. [8]. This hypothesis conducts
naturally to consider models involving geometry and analysis over Qp instead
of R, as a possible alternative to describe the structure of space-time. In [13]-
[14], I. Volovich posed the conjecture of the non-Archimedean nature of the
space-time at the level of the Planck scale. This conjecture has originated a
lot of research, for instance, in quantum mechanics, see e.g. [5], [10], [11], in
string theory, see e.g. [4], [9]. For a further discussion on non-Archimedean
mathematical physics, the reader may consult [5],[6],[12], [15] and the references
therein.

In this article we present a basis of p−adic wavelets for Sobolev-type spaces
Hl (C) with l ∈ N, see Theorem 3.6. For l = 0 we have Hl (C) = L2, and in this
case our basis of wavelets agrees with the basis introduced by Albeverio and
Kozyrev in [2]. Additionaly we show that these functions are eigenfunctions for
a pseudodifferential operator with a radial symbol, see Theorem 3.8.

The spaces Hl(C) were introduced in [16], these spaces are the completion
of the C-vector space of Bruhat-Schwartz functions with respect to an inner
product 〈·, ·〉l , l ∈ N, (which coincides with the product of L2 when l = 0).
Furthermore, these spaces are very important in the construction of the non-
Archimedean versions of the Kondratiev and Hida spaces, which in turn are
useful in the construction of quantum field theories over a p−adic space-time,
see [3].

This article is organized as follows. In Section 2, we present a brief review of
the p−adic analysis necessary in this article. In Section 3, we introduce spaces
Hl (C) and give wavelets bases for them, see Theorem 3.6. We finally show that

the functions ψ
(l)
γ,η,ζ , are eigenfunctions for a pseudodifferential operator with

a radial symbol.

2. The field of p-adic numbers

In this section we collect some basic results about p-adic analysis that will be
used along this article. For an in-depth review of the p-adic analysis the reader
may consult [1], [7], [12].

Let p be fixed prime number. The field of p−adic numbers Qp is defined as
the completion of the field of rational numbers Q with respect to the p−adic
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norm | · |p, which is defined as

|x|p =


0 if x = 0

p−γ if x = pγ ab ,

(1)

where a and b are integers coprime with p. The integer γ := ord(x), with
ord(0) := +∞, is called the p−adic order of x.

Any p−adic number x 6= 0 has an unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j , (2)

where xj ∈ {0, . . . , p − 1} and x0 6= 0. By using this expansion, we define the
fractional part of x ∈ Qp, denoted {x}p, as the rational number

{x}p =


0 if x = 0 or ord(x) ≥ 0

pord(x)
∑−ordp(x)−1
j=0 xjp

j if ord(x) < 0.

(3)

In addition, any non-zero p−adic number can be represented uniquely as x =
pord(x)ac (x) where ac (x) =

∑∞
j=0 xjp

j , x0 6= 0, is called the angular component
of x. Notice that |ac (x)|p = 1.

We extend the p−adic norm to QNp by taking

||x||p := max
1≤i≤N

|xi|p, for x = (x1, . . . , xN )QNp . (4)

We define ord(x) = min1≤i≤N{ord(xi)}, then ||x||p = p−ord(x). The met-
ric space

(
QNp , || · ||p

)
is a complete ultrametric space. For r ∈ Z, denote

by BNr (a) = {x ∈ QNp ; ||x − a||p ≤ pr} the ball of radius pr with center

at a = (a1, . . . , aN ) ∈ QNp , and take BNr (0) := BNr . Note that BNr (a) =
Br(a1) × · · · × Br(aN ), where Br(ai) := {x ∈ Qp; |xi − ai|p ≤ pr} is the
one-dimensional ball of radius pr with center at ai ∈ Qp. The ball BN0 equals
the product of N copies of B0 = Zp, the ring of p−adic integers of Qp. We
also denote by SNr (a) = {x ∈ QNp ; ||x − a||p = pr} the sphere of radius pr

with center at a = (a1, . . . , aN ) ∈ QNp , and take SNr (0) := SNr . We notice that

S1
0 = Z×p (the group of units of Zp), but

(
Z×p
)N ( SN0 . The balls and spheres

are both open and closed subsets in QNp . In addition, two balls in QNp are either
disjoint or one is contained in the other.

As a topological space
(
QNp , || · ||p

)
is totally disconnected, i.e., the only

connected subsets of QNp are the empty set and the points. A subset of QNp is

compact if and only if it is closed and bounded in QNp , see e.g. [12, Section 1.3],
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or [1, Section 1.8]. The balls and spheres are compact subsets. Thus
(
QNp , || · ||p

)
is a locally compact topological space.

We use Ω (p−r||x− a||p) to denote the characteristic function of the ball
BNr (a). For other sets, we use the notation 1A for the characteristic function
of a set A. Along the article dNx will denote a Haar measure on

(
QNp ,+

)
normalized by the condition

∫
ZNp

dNx = 1.

2.1. Some function spaces

2.1.1. The Bruhat-Schwartz space

A complex-valued function ϕ defined on QNp is called locally constant if for

any x ∈ QNp there exist a positive integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for any x′ ∈ BNl(x). (5)

Denote by E
(
QNp
)

the linear space of locally constant C-valued functions on

QNp . A function ϕ : QNp → C is called a Bruhat-Schwartz function (or a test
function) if it is locally constant with compact support. Any test function can
be represented as a linear combination, with complex coefficients, of charac-
teristic functions of balls. The C-vector space of Bruhat-Schwartz functions is
denoted by D := DC(QNp ) := D(QNp ).

Definition 2.1. For ϕ ∈ D(QNp ), the largest number l = l(ϕ) satisfying (5) is

called the parameter of constancy of the function ϕ. Let us denote by DlM (QNp )

the finite-dimensional space of test functions having supports in the ball BNM
and with parameters of constancy ≥ l.

Given ρ ∈ [0,∞), we denote by Lρ := Lρ
(
QNp
)

:= Lρ
(
QNp , dNx

)
, the

C−vector space of all the complex valued functions g satisfying
∫
QNp
|g (x)|ρ dNx

< ∞. The corresponding R-vector spaces are denoted as LρR := LρR
(
QNp
)

=

LρR
(
QNp , dNx

)
, 1 ≤ ρ ≤ ∞.

2.2. The Fourier transform of test functions

Set χp(y) := exp(2πi{y}p) for y ∈ Qp. The map χp(·) is an additive character
on Qp, i.e., a continuous map from (Qp,+) into S (the unit circle considered
as multiplicative group) satisfying χp(x0 + x1) = χp(x0)χp(x1), x0, x1 ∈ Qp.
The additive characters of Qp form an Abelian group which is isomorphic to
(Qp,+). The isomorphism is given by ξ → χp(ξx), see e.g. [1, Section 2.3].

Given ξ = (ξ1, . . . , ξN ) and y = (x1, . . . , xN ) ∈ QNp , we set ξ · x :=∑N
j=1 ξjxj . The Fourier transform of ϕ ∈ D(QNp ) is defined as

(Fϕ)(ξ) =

∫
QNp

χp(ξ · x)ϕ(x)dNx for ξ ∈ QNp , (6)
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where dNx is the normalized Haar measure on QNp . The Fourier transform is

a linear isomorphism from D(QNp ) onto itself satisfying (F(Fϕ))(ξ) = ϕ(−ξ),
see e.g. [1], [12].

We will also use the notation Fx→ξϕ and ϕ̂ for the Fourier transform of ϕ.

If f ∈ L1 its Fourier transform is defined as

(Ff)(ξ) =

∫
QNp

χp(ξ · x)f(x)dNx, for ξ ∈ QNp . (7)

If f ∈ L2, its Fourier transform is defined as

(Ff)(ξ) = lim
k→∞

∫
||x||p≤pk

χp(ξ · x)f(x)dNx, for ξ ∈ QNp , (8)

where the limit is taken in L2. We recall that the Fourier transform is unitary
on L2, i.e. ||f ||L2 = ||Ff ||L2 for f ∈ L2 and (F(Fϕ))(ξ) = ϕ(−ξ) is also valid
in L2, see e.g. [7, Chapter III, Section 2].

3. A Wavelet basis for the spaces Hl (C)

3.1. The spaces Hl (C)

We denote the set of non-negative integers by N, and set [ξ]p := [max(1, ‖ξ‖p)]
for ξ ∈ QNp . We define for ϕ, θ ∈ D(QNp ), and l ∈ N, the following scalar
product:

〈ϕ, θ〉l =

∫
QNp

[ξ]
2l
p ϕ̂ (ξ) θ̂ (ξ)dNξ, (9)

where the overbar denotes the complex conjugate. We also set ‖ϕ‖2l := 〈ϕ,ϕ〉l.
Notice that ‖·‖l ≤ ‖·‖m for l ≤ m. We denote by Hl(C) := Hl(QNp ,C) the

complex Hilbert space obtained by completing D(QNp ) with respect to 〈·, ·〉l.

Remark 3.1. The spaces Hl(C), for any l ∈ N, are nuclear and consequently
they are separable. The spaces Hl(QNp ,C) were introduced in [16], see also [3].

3.2. A Wavelet basis for the spaces Hl (C)

In this section we introduce orthonormal bases for the spaces Hl (C), where l
is a non-negative integer.

Let us consider the following set of functions

ψ
(l)
γ,η,ζ(x) =

p
−Nγ

2 χ(p−1ζ · (pγx− η))Ω(‖pγx− η‖p)
[max(1, p1−γ)]l

,with x ∈ QNp , γ ∈ Z,

(10)

Revista Colombiana de Matemáticas
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η ∈ QNp /ZNp , η = (η(1), η(2), . . . , η(N)), η(l) =

−1∑
i=βl

ηl(i)p
i, βl ∈ Z−,

η
(l)
i = 0, 1, . . . , p− 1, ζ = (ζ1, ζ2, . . . , ζN ), ζl = 0, 1, . . . , p− 1,

where at least one of ζl is not equal to zero.

Remark 3.2. In the case l = 0, the set of functions ψ
(0)
γ,η,ζ coincides with the

N -dimensional basis of p-adic wavelets of QN , introduced by Albeverio and
Kozyrev in [2].

Proposition 3.3. The Fourier transform of ψ
(l)
γ,η,ζ is given by

ψ̂(l)
γηζ(ξ) =

p
Nγ
2

[max(1, p1−γ)]l
χ(p−γξ · η)Ω(‖p−γξ + p−1ζ‖p). (11)

Proof. It is sufficient to compute the Fourier transform of function of type
ϕζ(x) = χ(p−1ζ ·x)Ω(‖x‖p). Now for the calculation of the formula (11) we use
the above function and the result presented in ([12], VII, 2.17). �X

Remark 3.4. Let us l, k ∈ Z with l ≤ k. We remember that the product of
indicators is either an indicator or zero see e.g. [1] and [12]:

Ω(‖plx− a‖p)Ω(‖pkx− b‖p) = Ω(‖plx− a‖p)Ω(‖pk−la− b‖p), (12)

with x, a, b ∈ QNp .

Lemma 3.5.

(1) The support of the function ψ̂
(l)
γ,η,ζ is

supp

(
ψ̂

(l)
γ,η,ζ

)
= −pγ−1ζ + pγZNp = BN−γ

(
−pγ−1ζ

)
.

(2) The product ψ̂(l)
γ,η,ζ(ξ)ψ̂

(l)
γ†,η†,ζ†(ξ) is non-zero if γ = γ† and ζ = ζ†.

Proof. (1) It follows from observation:

ξ ∈ supp(ψ̂(l)
γ,η,ζ)⇔ ‖p

−γξ + p−1ζ‖p ≤ 1⇔ There exists w ∈ ZNp , and

p−γξ + p−1ζ = w ⇔ ξ ∈ −pγ−1ζ + pγZNp .
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(2) Consider ξ ∈ supp

(
ψ̂

(l)
γ,η,ζ

)
∩ supp

(
̂
ψ

(l)

γ†,η†,ζ†

)
, then ξ ∈ supp

(
ψ̂

(l)
γ,η,ζ

)
and ξ = −pγ−1ζ + pγw for some w ∈ ZNp . Using the formula (11) we have

ψ̂(l)
γ,η,ζ(ξ)ψ̂

(l)
γ†,η†,ζ†(ξ)

=
p
N(γ+γ†)

2

[max(1, p1−γ)]l[max(1, p1−γ†)]l
χ(−p−1ζ · η)χ(w · η)χ(−pγ−γ

†−1ζ · η†)×

χ(pγ−γ
†
w · η†)Ω(‖w‖p)Ω(‖pγ−γ

†
w + p−1ζ† − pγ−γ

†−1ζ)‖p).

Since ‖pγ−γ†w‖p ≤ pγ
†−γ , ‖p−1ζ†‖p = p and ‖pγ−γ†−1ζ)‖p = pγ

†−γ+1, then if

γ 6= γ† we have Ω(‖pγ−γ†w + p−1ζ† − pγ−γ†−1ζ)‖p) = 0.

If γ = γ† and ζ 6= ζ†, for the above Ω(‖w + p−1ζ† − p−1ζ)‖p) = 0.

We conclude that for ξ in supp

(
ψ̂

(l)
γ,η,ζ

)
, the product ψ̂(l)

γ,η,ζ(ξ)ψ̂
(l)
γ†,η†,ζ†(ξ)

is non-zero if γ = γ† and ζ = ζ†. A similar result is obtained when considering

ξ ∈ supp
(

̂
ψ

(l)

γ†,η†,ζ†

)
. �X

Theorem 3.6. The set of functions

ψ
(l)
γηζ(x) =

p
−Nγ

2

[max(1, p1−γ)]l
χ(p−1ζ · (pγx− η))Ω(‖pγx− η‖p), (13)

with γ, ζ, η as before, is an orthonormal basis of Hl (C).

Proof. We first show that the functions (13) are orthonormal, with respect to
the scalar product 〈·, ·〉l given above:

〈ψ(l)
γ,η,ζ , ψ

(l)

γ†,η†,ζ
† 〉l =

∫
QNp

[ξ]
2l
p ψ̂

(l)
γ,η,ζ(ξ)ψ̂

(l)
γ†,η†,ζ†,(ξ)d

Nξ

=
p
N(γ+γ†)

2

[max(1, p1−γ)]l[max(1, p1−γ†)]l

∫
QNp

[ξ]
2l
p χ(p−γξ · η)χ(−p−γ

†
ξ · η†)

× Ω(‖p−γξ + p−1ζ‖p)Ω(‖p−γ
†
ξ + p−1ζ†‖p)dNξ.

By part 2 of Lemma 3.5, the scalar product can be non-zero only when γ = γ†,
and ζ = ζ†. Then the previous integral equals

〈ψγ,η,ζ , ψγ†,η†,ζ†〉l = δγ,γ†δζ,ζ†
pNγ

[max(1, p1−γ)]2l

×
∫
QNp

[ξ]
2l
p χ(p−γξ · (η − η†))Ω(‖p−γξ + p−1ζ‖p)dNξ.
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Suppose that ξ ∈ supp
(
ψ̂

(l)
γ,η,ζ

)
. Then ξ ∈ −pγ−1ζ + pγZNp , and ‖ξ‖p = p1−γ .

〈ψγ,η,ζ , ψγ†,η†,ζ†〉l = δγ,γ†δζ,ζ†
pNγ

[max(1, p1−γ)]2l
[max(1, p1−γ)]2l

×
∫
QNp

χ(p−γξ · (η − η†))Ω(‖p−γξ + p−1ζ‖p)dNξ.

By changing variables as z = p−γξ + p−1ζ, dNξ = p−NγdNz, in the previous
integral, we obtain

〈ψγ,η,ζ , ψγ†,η†,ζ†〉l

= δγ,γ†δζ,ζ†p
Nγ

∫
QNp

χ(p−γ(η − η†) · (z − p−1ζ)pγ)Ω(‖z‖p)p−NγdNz

= δγ,γ†δζ,ζ†χ(−p−1(η − η†) · ζ)

∫
QNp

χ[(η − η†) · z]Ω(‖z‖p)dNz

= δγ,γ†δζ,ζ†χ(−p−1(η − η†) · ζ)Ω(‖η − η†‖p). (14)

If η 6= η†, then ‖η − η†‖p ≥ p > 1 and so the previous integral is zero. Conse-
quently we have

〈ψγ,η,ζ , ψγ†,η†,ζ†〉l = δγ,γ†δζ,ζ†δη,η† .

We can conclude that the system of functions (13) is orthonormal.

To prove the completeness of the system of functions (13), we use fact that

the space DC(QNp ) is dense in Hl(C) and that the set of functions ψ
(l)
γ,ζ,n is

invariant under dilations and translations, therefore, it is sufficient to verify
the Parseval identity for the characteristic function Ω(‖x‖p):

〈Ω(‖x‖p), ψ(l)
γ,η,ζ〉l =

1

[max(1, p1−γ)]l

∫
QNp

∫
QNp

[ξ]
2l
p Ω̂(‖ξ‖p)ψ̂γ,η,ζ(ξ)dNξ

=
1

[max(1, p1−γ)]2l

∫
QNp

∫
QNp

[ξ]
2l
p Ω(‖ξ‖p)p

Nγ
2 χ(p−γξ·η)Ω(‖p−γξ+p−1ζ‖p)dξ.

(15)

Suppose that 0 ≤ −γ (γ ≤ 0). By using (12), we obtain that the product of
indicators is zero:

Ω(‖ξ‖p)Ω(‖p−γξ + p−1ζ‖p) = Ω(‖ξ‖p)Ω(‖p−1ζ‖p).

Suppose that −γ < 0 (0 < γ). By using (12), we obtain that the product of
indicators is non-zero:

Ω(‖p−γξ + p−1ζ‖p)Ω(‖ξ‖p) = Ω(‖p−γξ + p−1ζ‖p)Ω(‖ − pγ−1ζ‖p), if γ ≥ 1.
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Therefore we have that

〈Ω(‖x‖p), ψ(l)
γ,η,ζ〉l =

p
Nγ
2

[max(1, p1−γ)]2l

∫
QNp

∫
QNp

[ξ]
2l
p χ(p−γξ · η)Ω(‖ξ‖p)

× Ω(‖p−γξ + p−1ζ‖p)dNξ

=
p
Nγ
2 [max(1, p1−γ)]2l

[max(1, p1−γ)]2l
Ω(‖ − pγ−1ζ‖p)

∫
QNp

∫
QNp

[ξ]
2l
p χ(p−γξ · η)

× Ω(‖p−γξ + p−1ζ‖p)dNξ

= p
Nγ
2 Ω(‖ − pγ−1ζ‖p)

∫
QNp

χ[p−γ(pγ(z − p−1ζ)) · η]Ω(‖z‖p)p−NγdNz

= p−
Nγ
2 Ω(‖ − pγ−1ζ‖p)χ(−p−1ζ · η)

∫
QNp

χ(z · η)Ω(‖z‖p)dNz

= p−
Nγ
2 χ(−p−1ζ · η)Ω(‖η‖p), for γ ≥ 1. (16)

If η 6= 0, then the previous product is zero. Therefore if η = 0, and γ ≥ 1 we
have

〈Ω(‖x‖p), ψ(l)
γ,η,ζ〉l = p−

Nγ
2 .

We remember that the number of vectors ζ is |ζ| = pN − 1.

Finally,

pN−1∑
γ∈Z, η∈QNp /ZNp , |ζ|=1

|〈Ω(‖x‖p), ψ(l)
γ,η,ζ〉l|

2 =

∞∑
γ=1

pN−1∑
|ζ|=1

(p−
Nγ
2 )2

=

∞∑
γ=1

(pN − 1)p−Nγ = 1 = ‖Ω(‖x‖p)‖2l . (17)

�X

Definition 3.7. Let a : R+ → C be a fixed function. We define the pseudodi-
fferential operators A with symbol a (‖ξ‖) as follows:

D(QNp ) → L2

ϕ → (Aϕ) (x) ,

where
(Aϕ) (x) = F−1

ξ→x{a(‖ξ‖p)Fx→ξϕ}. (18)

Theorem 3.8. The set of functions

ψ
(l)
γηζ(x) =

p
−Nγ

2

[max(1, p1−γ)]l
χ(p−1ζ · (pγx− η))Ω(‖pγx− η‖p), (19)
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with γ, ζ, η as before, are eigenfunctions of the pseudodifferential operator A
defined in Definition 3.7. The corresponding eigenvalues are λ = a(p1−γ).

Proof. Let us prove that the functions in (19) are eigenfunctions of the oper-

ator (18), i.e. (A(ψ
(l)
γηζ))(x) = a(p1−γ)ψ

(l)
γηζ . By using that

(A(ψ
(l)
γηζ))(x)=F−1

ξ→x{a(‖ξ‖p)Fx→ξψ(l)
γηζ}=

∫
QNp
χ(−ξ · x)a(‖ξ‖p)ψ̂(l)

γηζ(ξ)d
Nξ

and the proposition 3.3, we obtain

(A(ψ
(l)
γηζ))(x)

=
p
Nγ
2

[max(1, p1−γ)]l

∫
QNp

χ(−ξ · x)a(‖ξ‖p)χ(p−γξ · η)Ω(‖p−γξ + p−1ζ‖p)dNξ

=
p
Nγ
2

[max(1, p1−γ)]l

∫
QNp

χ((p−γη − x) · ξ)a(‖ξ‖p)Ω(‖p−γξ + p−1ζ‖p)dNξ

Suppose that ξ ∈ supp
(
ψ̂

(l)
γ,η,ζ

)
. Then ξ ∈ −pγ−1ζ + pγZNp and ‖ξ‖p = p1−γ .

Now we have

(A(ψ
(l)
γηζ))(x) =

p
Nγ
2 a(p1−γ)

[max(1, p1−γ)]l

∫
QNp

χ((p−γη − x) · ξ)Ω(‖p−γξ + p−1ζ‖p)dNξ.

By changing variables as z = p−γξ + p−1ζ, dNξ = p−NγdNz, in the previous
integral, we obtain

(A(ψ
(l)
γηζ))(x)

=
p
Nγ
2 a(p1−γ)

[max(1, p1−γ)]l

∫
QNp

χ[pγ(p−γη − x) · (z − p−1ζ)]Ω(‖z‖p)p−NγdNz

=
p
−Nγ

2 a(p1−γ)

[max(1, p1−γ)]l
χ[−pγ−1(p−γη − x) · ζ]

∫
QNp

χ[pγ(p−γη − x) · z]Ω(‖z‖p)dNz

=
p
−Nγ

2 a(p1−γ)

[max(1, p1−γ)]l
χ[−pγ−1(p−γη − x) · ζ]Ω(‖pγ(p−γη − x)‖p)

=
p
−Nγ

2 a(p1−γ)

[max(1, p1−γ)]l
χ[p−1ζ · (pγx− η)]Ω(‖pγx− η‖p) = a(p1−γ)ψ

(l)
γηζ(x).
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