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Existence of periodic standing wave
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Abstract. We establish existence of periodic standing waves for a model to
describe the propagation of a light pulse inside an optical fiber taking into
account the Kerr effect. To this end, we apply the Lyapunov Center Theo-
rem taking advantage that the corresponding standing wave equations can be
rewritten as a Hamiltonian system. Furthermore, some of these solutions are
approximated by using a Newton-type iteration, combined with a collocation-
spectral strategy to discretize the system of standing wave equations. Our
numerical simulations are found to be in accordance with our analytical re-
sults.
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Resumen. Establecemos existencia de soluciones estacionarias periódicas para
un modelo que describe la propagación de un pulso de luz en el interior de
una fibra óptica teniendo en cuenta el efecto Kerr. Para este fin, aplicamos el
Teorema Central de Lyapunov tomando ventaja de que las correspondientes
ecuaciones de onda estacionaria pueden escribirse como un sistema Hamil-
toniano. Además, algunas de estas soluciones son aproximadas usando una
iteración de tipo Newton, combinada con un estrategia colocación-espectral
para discretizar el sistema de ecuaciones de onda estacionaria. Las simula-
ciones numéricas presentadas se encuentran de acuerdo con nuestros resulta-
dos anaĺıticos.

Palabras y frases clave. Ecuaciones Schrödinger, soluciones de onda estacionaria,
óptica no lineal, esquema espectral.
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1. Introduction

In this paper, we consider from the theoretical and numerical point of view,
periodic solutions to the system of two coupled nonlinear Schrödinger equations
(henceforth called CNLS system)

i
∂u

∂ξ
+K

∂2u

∂x2
+ σ1u+ a|u|2u+ g|v|2u+ ev2u∗ = 0, (1)

i
∂v

∂ξ
+K

∂2v

∂x2
+ σ2v + c|v|2v + g|u|2v + eu2v∗ = 0, (2)

x ∈ R, ξ ≥ 0, which is a model to describe one-dimensional light propaga-
tion through a linearly birefringent lossless optical fiber, taking into account
the Kerr effect. Here u(ξ, x), v(ξ, x) are the normalized complex slowly-varying
envelopes of the two polarized eigenmodes, ξ is the normalized distance, x is
the normalized time, the coefficients K, a,c,g, e, σ1, σ2 are positive constants,
and u∗ denotes the complex conjugate of the function u. The constant K is
the so-called dispersion coefficient, σ1 − σ2 is the wavenumber difference, the
coefficients a, c describe the self-modulation of the eigenmodes, and g, e are the
coupling parameters of the cross-modulation between the two wave packets. The
model’s coefficients depend on the wavenumber of the carrier wave, the modal
structure, and the birefringence effect inside the optical fiber. The derivation
of system (1)-(2) in the field of optics can be found in the works by Menyuk et
al. [18], [19], and Agrawal [2]. It is worth mentioning that system (1)-(2) with
variable coefficients and e = 0 also arises in different physical scenarios, such as
for instance, in wave propagation in two-component Bose-Einstein condensates
with spatially inhomogeneous interactions, which has been a field of intense re-
search activity in Physics in the last few years [24, 29, 23, 1, 9, 30, 27, 7, 22]. We
refer the readers to the works [8, 4, 12, 13, 33, 34] for derivation and further ap-
plications of the CNLS system. In the case that K = 1, e = 0, σ1 = σ2 = 0, the
CNLS system reduces to the celebrated Manakov system introduced originally
in [16].

In this paper we study the existence of periodic standing waves (u, v) of
system (1)-(2) in the form

u(ξ, x) = eiαξ ũ(x), v(ξ, x) = eiαξ ṽ(x), (3)

where ũ, ṽ are periodic real functions and α is a real constant. It is important
to point out that exact solutions to system (1)-(2) have been obtained only
in particular cases. For example, when e = 0 the work by Tan and Boyd [28]
reviews some explicit periodic cnoidal and dnoidal solutions to system (1)-(2),
and the existence of periodic traveling-wave solutions by using a topological ap-
proach was recently studied by Nguyen [21]. Furthermore, some exact periodic
stationary solutions to system (1)-(2) with non-trivial phase, e = 0 and the
coefficients σ1 = σ1(x), σ2 = σ2(x) taking the form of the square of the Jacobi
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sine function, have been computed by Deconinck et al. in [6]. A family of peri-
odic and quasi-periodic traveling wave solutions of the CNLS system with e = 0
was also computed in [5] (see also references therein). The integrability of the
Manakov system was proved in [16], but only for the case a = g = c. Explicit
single-phase bounded elliptic solutions of the Manakov system were obtained
in [14] in terms of the Weierstrass sigma function with a real quasiperiod. Fur-
thermore, the Manakov system has been studied extensively in the literature
[18, 17, 32, 15, 25, 31, 35, 26] and [2] (chapter 6) and references therein. How-
ever, we point out that the full system (1)-(2) is not integrable for arbitrary
values of model’s parameters and initial conditions, and most solutions can be
computed only by using numerical methods.

In this paper our first goal is to generalize the previous results by establish-
ing analytically existence of periodic standing waves in the form (3) of the full
system (1)-(2), considering the extra cross-mode nonlinear terms preceded by
the coefficient e. It is important to note that these nonlinear terms have been
neglected in several previous works on propagation of light beams along optical
fibers, where the birefringence effect in the fiber is assumed to be high. How-
ever, as pointed by Menyuk [18], these terms could play an important role in a
fiber with very low birefringence. This fact is the physical motivation to include
these extra terms in the CNLS system. Recently, Muñoz and Quiceno [11] also
illustrated by using numerical simulations the effect of these cross-mode terms
on the stability/instability mechanism of periodic plane wave solutions of the
system. Unlike previous works where topological, inverse scattering transform
or quadrature techniques have been used, we apply the Lyapunov Center The-
orem [20] to demonstrate analytically existence of periodic solutions to system
(1)-(2) in the form (3), taking advantage that the corresponding standing wave
equations can be rewritten as a Hamiltonian system.

For our second objective, we compute numerically some solutions to sys-
tem (1)-(2) in the form (3) by using a Newton’s iteration, combined with
a collocation-spectral strategy to discretize the corresponding standing wave
equations. This strategy allows us to compute very accurate approximations
to periodic standing waves of the system for a variety of model’s coefficients.
To the best knowledge of the authors, such numerical approach has not been
performed in previous works on the full CNLS system and it is a contribution
from a numerical point of view of the present paper.

The rest of this paper is organized as follows. In section 2, we present the
main theoretical results employed in the paper to study existence of periodic
solutions of some Hamiltonian systems. In sections 3 and 4, we establish our
analytical results on regard to existence of periodic standing wave solutions in
the form (3) of two coupled nonlinear systems, respectively: the system (1)-(2)
and a CNLS system with generalized nonlinear terms, by using the Lyapunov
center theorem. In section 5, we introduce a numerical Newton-type procedure
combined with a Fourier-collocation strategy to approximate periodic standing
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wave solutions of the CNLS system for a variety of parameter’s regimes covered
by our analytical results. Finally, section 6 contains the conclusions of our work.

2. Mathematical preliminaries

In this section, we will study existence of periodic solutions to system (1)-(2)
in the form

u(ξ, x) = eiαξũ(x), v(ξ, x) = eiαξ ṽ(x),

where ũ, ṽ are periodic real functions. Therefore the pair (ũ, ṽ) must satisfy
the system

−Kũ′′ + (α− σ1)ũ = aũ3 + bṽ2ũ,

−Kṽ′′ + (α− σ2)ṽ = cṽ3 + bũ2ṽ,
(4)

where b = g+ e. In the present work, the theoretical strategy used to establish
existence of periodic solutions to this set of equations is the Lyapunov Center
Theorem, which can be obtained as an application of the Hopf Bifurcation
Theorem. Here α, σ1, σ2, K, a, b and c are positive real constants with α 6= σ1

and α 6= σ2.

Theorem 2.1 (Lyapunov’s Center Theorem). ([20]) Consider the system

x′ = Ax+ f(x), (5)

where f is a smooth function which vanishes along with its first partial deriva-
tives at the origin x = 0. Assume that system (5) admits a first integral of the
form

H =
1

2
(x,S x) + g(x),

where S is a n × n real symmetric matrix with det S 6= 0. Let the matrix A
have eigenvalues ±iλ1, λ3, ..., λn, with λ1 6= 0. If

λj

iλ1
/∈ Z, for j = 3, 4, ..., n,

(this is called the non-resonance condition) then system (5) has a one parameter
family of periodic solutions emanating from the origin with period 2π

λ1
.

For simpleness, we abandon the tildes in system (4). Observe that with the
change of variables u′ = w and v′ = z, we obtain the system

u′ = w,

v′ = z,

Kw′ = (α− σ1)u− (au3 + bv2u),

Kz′ = (α− σ2)v − (cv3 + bu2v).

(6)

Note that system (6) is a Hamiltonian system, i.e., it can be rewritten in the
form

U ′ = J∇H (U),

Volumen 53, Número 1, Año 2019



EXISTENCE OF PERIODIC STANDING WAVE SOLUTIONS 91

with U = (u, v, w, z), J =

(
0 I

−I 0

)
and H is the Hamiltonian defined as

H (U) =
1

2K

(a
2
u4 +

c

2
v4 + bu2v2 +K(z2 + w2) + (σ1 − α)u2 + (σ2 − α)v2

)
=

1

2
(U,SU) + g(U),

where

S :=


σ1−α
K 0 0 0

0 σ2−α
K 0 0

0 0 1 0

0 0 0 1

 and g(U) :=
1

2K

(a
2
u4 +

c

2
v4 + bu2v2

)
.

Observe that det S 6= 0. A direct calculation gives us the equilibrium points
of system (6)

P0 = (0, 0, 0, 0), P1± = ±

((
α− σ1

a

)1/2
, 0, 0, 0

)
, P2± = ±

(
0,

(
α− σ2

c

)1/2
, 0, 0

)
,

P3± = ±
(
γ1/2, ϕ1/2, 0, 0

)
and P4± = ±

(
γ1/2,−ϕ1/2, 0, 0

)
,

where

γ =
1

ac− b2
(c(α−σ1)−b(α−σ2)) and ϕ =

1

ac− b2
(−b(α−σ1)+a(α−σ2)).

(7)
Finally, let us denote

Γ =
α− σ1

α− σ2
.

3. Existence of periodic solutions of the CNLS system

In order to applicate the Lyapunov Center Theorem 2.1 to the Hamiltonian
system (6), we require the analysis of the eigenvalues of the corresponding
Jacobian matrices evaluated at the equilibrium points P0, P1±, P2±, P3± and
P4±.

3.1. Spectral Analysis for P0, P1± and P2± .

In the first place, observe that the Jacobian matrix A of the vector field of
system (6) evaluated at the equilibrium points P0, P1± and P2± has the form

A =


0 0 1 0

0 0 0 1

η 0 0 0

0 κ 0 0

 , (8)
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where

η =


1
K (α− σ1) for the point P0,

−2
K (α− σ1) for the points P1± ,

1
K

(
(α− σ1)− b

c (α− σ2)
)

for the points P2±

and

κ =


1
K (α− σ2) for the point P0,

1
K

(
(α− σ2)− b

a (α− σ1)
)

for the points P1± ,

−2
K (α− σ2) for the points P2± .

Therefore, the characteristic equation of the Jacobian matrix A is

λ4 − (η + κ)λ2 + ηκ = 0, (9)

and the characteristic exponents of the equilibrium points are

λ1 =
√
η = −λ2, and λ3 =

√
κ = −λ4. (10)

In case of the points P0 and P1± note that, if η < 0 and κ > 0, then λ1, λ2 ∈ iR,

λ3, λ4 ∈ R and
λj

λ1
/∈ Z for j = 3, 4. Similarly for the points P0 and P2± , we

have that η > 0 and κ < 0 imply that λ1, λ2 ∈ R and λ3, λ4 ∈ iR and
λj

λ3
/∈ Z

for j = 1, 2. Therefore, we have verified the hypotheses of Lyapunov’s Center
Theorem for system (6). More concretely,

Theorem 3.1. Assume that α < σ1 and α > σ2 or α > σ1 and α < σ2.
Then system (6) has a one parameter family of periodic solutions (u, v, w, z)
emanating from the point P0 with period L0 defined as

L2
0 =

4π2K

σ1 − α
or L2

0 =
4π2K

σ2 − α
,

respectively.

Theorem 3.2. Assume that α > σ1 and (a − b)α > aσ2 − bσ1. Then system
(6) has a one parameter family of periodic solutions (u, v, w, z) emanating from
each point of P1± with period L0 defined as

L2
0 =

2π2K

α− σ1
.

Theorem 3.3. Assume that (c − b)α > cσ1 − bσ2 and α > σ2. Then system
(6) has a one parameter family of periodic solutions (u, v, w, z) emanating from
each point of P2± with period L0 defined as

L2
0 =

2π2K

α− σ2
.
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Furthermore for all equilibrium points, in case of η, κ < 0, we have λj ∈ iR
for j = 1, 2, 3, 4. If λ1

λ3
6= 1 , then λ1

λ3
or λ3

λ1
is not an integer. It follows that

the Lyapunov Center Theorem can be applied. With this in mind, we have
established the following theorems:

Theorem 3.4. Assume that α < σ1, α < σ2 and Γ 6= 1. Then system (6) has a
one parameter family of periodic solutions (u, v, w, z) emanating from P0 with
period L0 given by

L2
0 =

4π2K

σ2 − α
, or L2

0 =
4π2K

σ1 − α
,

depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.

Theorem 3.5. Suppose that α > σ1, (a−b)α < aσ2−bσ1 (particularly α < σ2)
and Γ 6= a

b−2a . Then system (6) has a one parameter family of periodic solutions
(u, v, w, z) emanating from each point of P1± with period L0 given by

L2
0 =

4aπ2K

b(α− σ1)− a(α− σ2)
or L2

0 =
2π2K

α− σ1
,

depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.

Theorem 3.6. Suppose that (c−b)α < cσ1−bσ2 (particularly α < σ1), α > σ2

and Γ 6= b−2c
c . Then system (6) has a one parameter family of periodic solutions

(u, v, w, z) emanating from each point of P2± with period L0 given by

L2
0 =

4cπ2K

b(α− σ2)− c(α− σ1)
or L2

0 =
2π2K

α− σ2
,

depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.

3.2. Spectral Analysis for P3± and P4± .

Now, our focus is on the analysis of the equilibrium points P3± and P4± . The
matrix A corresponding to the Jacobian of the vector field of system (6) has
the form

A =


0 0 1 0

0 0 0 1

η ∓τ 0 0

∓τ κ 0 0

 ,

around P3± and P4± , respectively, with

η =
−2a

K
γ, κ =

−2c

K
ϕ and τ = −2b

K
(γϕ)

1/2
, (11)
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where γ and ϕ are as in (7) and observe that τ2 = b2

acηκ. A direct calculation
shows us that the eigenvalues λ of A must satisfy the equation

λ4 − (η + κ)λ2 + (ηκ− τ2) = 0,

whose roots are given by

λ1 =

√
2

2

((
(η − κ)2 +

4b2

ac
ηκ

)1/2

+ η + κ

)1/2

= −λ2,

λ3 =

√
2

2

(
−
(

(η − κ)2 +
4b2

ac
ηκ

)1/2

+ η + κ

)1/2

= −λ4.

We remark that η > 0 or κ > 0 imply that γ < 0 or ϕ < 0 and therefore
the points P3± and P4± do not exist in R2. For this reason, we consider the
case η < 0 and κ < 0. Observe that η, κ < 0 and ac − b2 < 0 imply that the
quantities(

(η − κ)2 +
4b2

ac
ηκ

)1/2

+ η + κ and −
(

(η − κ)2 +
4b2

ac
ηκ

)1/2

+ η + κ,

are positive and negative, respectively. It follows that λ1, λ2 ∈ R and λ3, λ4 ∈ iR
and

λj

λ3
/∈ Z for j = 1, 2. Moreover, observe that if the inequality

a

b
<
α− σ1

α− σ2
<
b

c

holds, then η, κ < 0 and ac− b2 < 0. Similarly η, κ < 0 and ac− b2 > 0 imply
that

±
(

(η − κ)2 +
4b2

ac
ηκ

)1/2

+ η + κ < 0.

It follows that λj ∈ iR for i = 1, 2, 3, 4. Furthermore we have that

0 <

(
(η − κ)2 + 4b2

ac ηκ
)1/2

+ η + κ

−
(
(η − κ)2 + 4b2

ac ηκ
)1/2

+ η + κ
< 1.

In consequence
λj

λ3
/∈ Z for i = 1, 2. Note that α > σ1, α > σ2 and

b

c
<
α− σ1

α− σ2
<
a

b
,

imply that ηκ < 0 and ac − b2 > 0. Again, we have verified the hypotheses
of Lyapunov’s Center Theorem for system (6). Therefore, we can state the
following theorem:
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Theorem 3.7. Suppose that the positive constants a, b and c are such that
α > σ1, α > σ2 and

a

b
< Γ <

b

c
or

b

c
< Γ <

a

b
.

Then system (6) has a one parameter family of periodic solutions (u, v, w, z)
emanating from each point of P3± and P4± with period L0 defined as

L2
0 =

8π2(
(η − κ)2 + 4b2

ac ηκ
)1/2 − η − κ,

where η and κ are as in (11).

3.3. Explicit periodic solutions in some particular cases of the CNLS
system and some comments on orbital stability

We point out that nontrivial solutions (i.e. when ũ or ṽ is not constant ) of the
form (3) with ũ = ṽ to system (1)-(2) exist only when a = c, σ1 = σ2 = σ.
In fact, in that case the standing wave equations (4) reduce to a unique scalar
equation

ũ′′ +
σ − α
K

ũ+
a+ b

K
ũ3 = 0. (12)

Observe that using the change of variables η =
√

a+b
K ξ, ũ(ξ) = U(η), we get

that U(η) satisfies the equation

U ′′ − wU + U3 = 0, (13)

where w = α−σ
a+b , and the second derivative U ′′ is taken with respect to the

variable η. In [3] is constructed a family of exact periodic solutions (of dnoidal
type) to equation (13). We refer the interested reader to [3] for details. Note
that if U is a solution to equation (13), then u(ξ, x) = eiwξU(x) is a standing
wave solution of the cubic Schrödinger equation

i
∂u

∂ξ
+
∂2u

∂x2
+ |u|2u = 0. (14)

In consequence, since equation (12) admits exact periodic solutions, we ob-
tain exact periodic solutions corresponding to the CNLS system (1)-(2) in the
particular form u(ξ, x) = v(ξ, x) = eiαξũ(ξ).

A very important concept connected to traveling wave solutions of a dis-
persive system, such as the Schrödinger equation, is called orbital stability. In
a few words, we say that the solution

u(ξ, x) = eiwξU(x) (15)
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to equation (14) is orbitally stable if any solution with the initial data at ξ = 0
sufficiently close to U(x), forever remains (modulo phase and translation sym-
metries) in a given small neighborhood of the trajectory of eiwξU(x). A com-
plete analysis of orbital stability of solutions of the scalar Schrödinger equation
(14) was developed by Angulo in [3]. He proved that the standing waves in the
form (15) are nonlinearly stable in the energy space H1

per([0, L]) with regard to
the L-periodic flow of the Schrödinger equation (14), and unstable by pertur-
bations with period 2L. However, we found that there are still some technical
details in order to adapt the methodology used in [3] to the study of orbital
stability of periodic solutions to the CNLS system (1)-(2), even for the sim-
pler case ũ = ṽ, σ1 = σ2, a = c, mentioned above, due to the structure of
the conserved quantities available for this system. We are working on this very
interesting problem and we expect to present these results in a future paper.

4. Periodic standing wave solutions for a generalized CNLS system

In this section, we will establish existence of periodic solutions of the form (3)
for the generalized CNLS system

i
∂u

∂ξ
+K

∂2u

∂x2
+ σ1u+ a|u|2pu+ gv(v∗)2p−1u2p−1 + ev2p(u∗)2p−1 = 0, (16)

i
∂v

∂ξ
+K

∂2v

∂x2
+ σ2v + c|v|2pv + gu(u∗)2p−1v2p−1 + eu2p(v∗)2p−1 = 0, (17)

where x ∈ R, ξ ≥ 0, p ≥ 1 is a natural number, the constants K, a, c, g, e, σ1 and
σ2 are as in system (1)-(2), and the notation u∗ denotes the complex conjugate
of the function u. We remark that the system above reduces to system (1)-(2)
in the case that p = 1.

By replacing (3) into system (16)-(17) and ignoring the tildes, we get the
system

−Ku′′ + (α− σ1)u = au2p+1 + bv2pu2p−1,

−Kv′′ + (α− σ2)v = cv2p+1 + bu2pv2p−1,

where b = g + e. Observe that by using the change of variables u′ = w and
v′ = z, we get the Hamiltonian system

u′ = w,

v′ = z,

Kw′ = (α− σ1)u− (au2p+1 + bv2pu2p−1),

Kz′ = (α− σ2)v − (cv2p+1 + bu2pv2p−1),

(18)
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where the Hamiltonian is defined as

H (U) =
1

2K

(
1

p+ 1

(
au2p+2 + cv2p+2

)
+
b

p
u2pv2p +K(z2 + w2)

+ (σ1 − α)u2 + (σ2 − α)v2

)
.

A simple calculation gives us the following equilibrium points:

P0 = (0, 0, 0, 0), P1±=±

((
α− σ1

a

)1/2p
, 0, 0, 0

)
, P2±=±

(
0,

(
α− σ2

c

)1/2p
, 0, 0

)
.

In order to show existence of periodic solutions to system (16)-(17), we need
again to perform a spectral analysis for the system’s equilibrium states. The
Jacobian matrix A of the vector field of system (18) around the equilibrium
points P0, P1± and P2± has the form (8), with

η =


1
K (α− σ1) for the point P0,

−2p
K (α− σ1) for the points P1± ,

1
K (α− σ1) for the points P2±

and

κ =


1
K (α− σ2) for the point P0,

1
K (α− σ2) for the points P1± ,

−2p
K (α− σ2) for the points P2± .

The characteristic equation is the same given in (9) and the characteristic
exponents λi, i = 1, 2, 3, 4 are as in (10). For the equilibrium point P0, a similar
analysis as in the previous section allows us to conclude that theorems 3.1 and
3.4 are still valid for system (18). In case of the points P1± and P2± , we can
state the following results:

Theorem 4.1. Suppose that α > σ1 and α > σ2. Then system (18) has a one
parameter family of periodic solutions (u, v, w, z) emanating from each point of
P1± with period L0 defined as

L2
0 =

2π2K

p(α− σ1)
.

Theorem 4.2. Let be α > σ1, α < σ2 and Γ 6= −1
2p (wich implies that λ1

λ3
or

λ3

λ1
is not an integer). Then system (18) has a one parameter family of periodic

solutions (u, v, w, z) emanating from each point of P1± with period L0 given by

L2
0 =

4π2K

σ2 − α
, or L2

0 =
2π2K

p(α− σ1)
,
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depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.

Theorem 4.3. Assume that α > σ1 and α > σ2. Then system (18) has a one
parameter family of periodic solutions (u, v, w, z) emanating from each point of
P2± with period L0 defined as

L2
0 =

2π2K

p(α− σ2)
.

Theorem 4.4. Suppose that α < σ1, α > σ2 and Γ 6= −2p (wich implies that
λ1

λ3
or λ3

λ1
is not an integer). Then system (18) has a one parameter family of

periodic solutions (u, v, w, z) emanating from each point of P2± with period L0

given by

L2
0 =

4π2K

σ1 − α
, or L2

0 =
2π2K

p(α− σ2)
,

depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.

We point out that in case that p > 1, the system (18) has additional equi-
librium points of the form (u, v, 0, 0), where u, v satisfy the equations

au2p + bv2pu2p−2 = (α− σ1),

cv2p + bu2pv2p−2 = (α− σ2).

Unfortunately, no explicit solutions of the system above are available for arbi-
trary values of the constants a, g, c, e and the exponent p. Therefore, here we
only consider the particular case b = g + e = 0 (in which case, the theorems
4.1, 4.2, 4.3 and 4.4 are still valid), and obtain the following four equilibrium
points:

P4± =

(
±
(
α− σ1

a

)1/2p

,±
(
α− σ2

c

)1/2p

, 0, 0

)
.

For these equilibrium points, the corresponding Jacobian matrices have the
form of (8) with

η =
−2p

K
(α− σ1), κ =

−2p

K
(α− σ2)

and the characteristic exponents are as in (10). In this case, we obtain the
following existence theorem of periodic solutions to system (18):

Theorem 4.5. Assume that that α > σ1, α > σ2, p > 1, and Γ 6= 1. Then
system (18) with the parameter b = g + e = 0, has a one parameter family of
periodic solutions (u, v, w, z) emanating from each point of P4± with period L0

given by

L2
0 =

2π2K

p(α− σ2)
or L2

0 =
2π2K

p(α− σ1)
,

depending on whether λ1

λ3
/∈ Z or λ3

λ1
/∈ Z, respectively.
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5. Numerical results

In this section, we compute approximations of some periodic standing wave
solutions to system (1)-(2), whose existence was established in the previous
section. As showed above, this is reduced to compute periodic solutions (ũ, ṽ)
to system (4). To do this, we use a Newton’s procedure combined with a
collocation-spectral technique introduced by the author in [10] for approxi-
mating periodic solutions of a weakly-dispersive, weakly nonlinear Boussinesq
system, related to the propagation of water waves on the surface of a shallow
channel.

In the first place, we set K = 1, σ1 = 1.5, σ2 = 0.5, α = 1, a = 1, e = 2,
g = 2, b = e+ g = 4, c = 1. Thus, the expected period of the standing wave is

L0 =

√
4π2K

σ1 − α
= 8.8858,

in accordance with Theorem 2.2. Therefore the computational domain for the
variable x is the interval [0, 2l], with l = L0/2, and we set N = 29 FFT points in
all computations with Newton’s method. The starting profiles for the iterative
procedure are

u0(x) = cos
(4πx

2l

)
, v0(x) = cos

(2πx

2l

)
,

where l = 4.4429. The resulting profiles (ũ, ṽ) after 10 iterations are displayed
in Figure 1. In order to check that we have computed really a periodic standing
wave solution to system (1)-(2), we run the numerical solver also introduced by
the author in [10] for computing the evolution of the solution by using as initial
values the profiles (ũ, ṽ) given in Figure 1. The computational domain of the
variable x is the interval [0, L0], with 27 FFT points, and the step size for the
variable ξ is ∆ξ = 10−4. In Figures 2, 3, we compare the real and imaginary
parts of the solution to system (1)-(2) computed with the numerical scheme in
[10] at ξ = 20 (solid line) with the expected profiles (showed in dotted line)

u(ξ, x) = eiαξũ(x), v(ξ, x) = eiαξ ṽ(x).

We see that these profiles agree with good accuracy of approximately 2e− 4 in
the supremum norm.

In second place, we set K = 1, σ1 = 1, σ2 = 0.5, α = 1.5, a = 4, e = 1,
g = 1, b = g + e = 2, c = 3. The period in accordance with Theorem 2.3 is

L0 =

√
2π2K

α− σ1
= 6.2832.

The starting profiles for Newton’s iteration are

u0(x) = 0.5 cos
(2πx

2l

)
, v0(x) = cos

(4πx

2l

)
,
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where l = 3.1416. The results after 15 iterations are displayed in Figure 4.

Next, we set K = 1, σ1 = 1, σ2 = 0.5, α = 3, a = 5, e = 1, g = 1,
b = g + e = 2, c = 4. The period of the periodic wave obtained in accordance
with Theorem 2.4 is given by

L0 =

√
2π2K

α− σ2
= 2.8099.

The starting profiles for Newton’s iteration are

u0(x) = 0.5 cos
(2πx

2l

)
, v0(x) = cos

(4πx

2l

)
,

where l = 1.4050. The results after 9 iterations are displayed in Figure 5.

Finally, we set K = 0.5, σ1 = 0.2, σ2 = 0.3, α = 1, a = 2, e = 1, g = 1,
b = g + e = 2, c = 0.1. Thus Γ = 1.1429 and the period of the periodic wave
obtained from Theorem 2.8 (case a/b < Γ < b/c) becomes

L0 =

√
8π2

((η − κ)2 + 4b2

ac ηκ)1/2 − η − κ
= 3.5387.

The starting profiles for Newton’s iteration are

u0(x) = 2.5 cos
(4πx

2l

)
, v0(x) = 2.5 cos

(2πx

2l

)
,

where l = 1.7694. The results after 8 iterations are displayed in Figure 6.

In all numerical experiments performed, we corroborated the existence of
an approximate standing wave solution whose period coincides with the one
expected theoretically.

6. Conclusions

In this paper, we considered the existence of periodic standing wave solutions
to the CNLS system (1)-(2), which is a model for several physical scenarios.
In particular, it describes the propagation of a pulse along an optical fiber in
the presence of nonlinearity (Kerr effect) and anomalous dispersion. We further
consider a type of CNLS system with generalized nonlinear terms. In each case,
the problem was reduced to that of finding periodic solutions of a system of two
coupled second-order ordinary differential equations, which has a Hamiltonian
structure. Then by using the Lyapunov Center Theorem, we established ana-
lytically the existence of periodic solutions to the original system (1)-(2) and
for the generalized CNLS system considered for several parameter’s regimes.
Furthermore, in order to illustrate the geometric properties of such solutions,
we computed some approximations by employing a Newton’s iteration together
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with a collocation-spectral scheme for discretization of the variable x. All of
the numerical results are in perfect agreement with the theory presented. In
particular, the period of each numerical approximation coincides with the one
expected theoretically. Thus, we found that the numerical scheme introduced
in the paper is a valuable tool to compute further periodic standing wave so-
lutions for a variety of parameter regimes of the CNLS system. An important
problem we would wish to consider in a future work is the instability/stability
under small initial disturbances of the standing wave solutions obtained the-
oretically and numerically in the present paper. This study could be initiated
for instance by using the numerical schemes introduced here.
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Figure 1. Approximation of functions ũ, ṽ in the periodic solution (3) to system (4).
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Figure 2. Checking the approximation of the periodic solution to system (1)-(2)
given by u(ξ, x) = eiαξũ(x), v(ξ, x) = eiαξṽ(x), where ũ, ṽ are the profiles
displayed in Figure 1.
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Figure 3. Checking the approximation of the periodic solution to system (1)-(2)
given by u(ξ, x) = eiαξũ(x), v(ξ, x) = eiαξṽ(x), where ũ, ṽ are the profiles
displayed in Figure 1.
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Figure 4. Approximation of functions ũ, ṽ in the periodic solution (3) to system (4).
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Figure 5. Approximation of functions ũ, ṽ in the periodic solution (3) to system (4).
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Figure 6. Approximation of functions ũ, ṽ in the periodic solution (3) to system (4).
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Universidad del Valle

Facultad de Ciencias

Calle 13 Nro 100-00

Cali, Colombia

e-mail: felipe.pipicano@correounivalle.edu.co

e-mail: juan.munoz@correounivalle.edu.co

Revista Colombiana de Matemáticas




