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asintóticamente estable de un sistema Depredador-Presa con
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dependiente
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Abstract. The main concern of this paper is to study the dynamics of a
discrete predator-prey system with Beddington-DeAngelis functional response
and density dependent predator, assuming that the coefficients involved in
the system are almost periodic. More concretely, under certain conditions,
we prove the existence of a unique almost periodic solution which is globally
attractive. We exhibit a few numerical examples of the results.

Key words and phrases. Density dependent predator, Beddington-DeAngelis
functional response, discrete predator-prey, almost periodic solution.

2010 Mathematics Subject Classification. 34K14, 92D25.

Resumen. El objetivo principal de este art́ıculo es el de estudiar la dinámica
de un sistema depredador-presa discreto con respuesta funcional Beddington-
DeAngelis y densamente dependiente del depredador, asumiendo que los co-
eficientes involucrados en el sistema son casi periódicos. De forma más con-
creta, bajo ciertas condiciones, probaremos la existencia de una única solución
casi periódica la cual es globalmente atractiva. Exhibimos algunos ejemplos
numéricos de los resultados.
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Palabras y frases clave. Densamente dependiente depredador, respuesta fun-
cional Beddington-DeAngelis, depredador-presa discreto, solución casi periódica.

1. Introduction

In 1975, Beddington [3] and DeAngelis [8] independently propose the following
predator-prey system

x′(t) = x(t)

(
a− bx(t)− cy(t)

m1 +m2x(t) +m3y(t)

)
,

y′(t) = y(t)

(
− d+

fx(t)

m1 +m2x(t) +m3y(t)

)
,

(1)

where x(t), y(t) represent the population density of prey and predator at time
t > 0, respectively, a, b, c, d, f , m1, m2, m2 are positive constants. a > 0
is the specific growth rate of prey in the absence of predation and without
environment limitation; in the absence of predator the prey population grows
logistically with carrying capacity a/b; the predator consumes the prey with
functional response of Beddington-DeAngelis type cxy/(m1 +m2x+m3y) and
contributes to its growth with rate fxy/(m1 + m2x + m3y). The constant d
is the death rate of predator and the term m3y measures the mutual interfer-
ence between predators and preys. Predator-prey systems with the Beddington-
DeAngelis functional response have been studied extensively in the literature
[7, 4, 5, 14, 13, 24].

Recent researches ([15, 19, 18, 17, 16, 26]) confirm that certain environ-
ments confine the predator to be density dependent and show that predator
dependence is important at not only very high predator densities on per capita
predation rate but also at low predator densities. So it is not enough to only
require the prey to be density dependent, also we need to take into account real-
istic levels of predator dependence. With these considerations, Li and Takeuchi
[18] considered the system

x′(t) = x(t)

(
a− bx(t)− cy(t)

m1 +m2x(t) +m3y(t)

)
,

y′(t) = y(t)

(
− d− ey(t) +

fx(t)

m1 +m2x(t) +m3y(t)

)
,

(2)

where e stands for the predator density dependence rate. The authors in [18]
show the permanence, local and global asympototic stability of system (2).

On the other hand, the assumption that the environment is constant is
rare in real life. Most natural environments are physically highly variable,
and in response, birth rates, death rates, and other vital rates of populations,
vary greatly in time. When this is taken into account, a model must be non-
autonomous and therefore one can take advantage of the properties of those
varying parameters. For example, one may assume that the parameters are pe-
riodic or almost periodic for seasonal reasons. In this context, Li and Takeuchi
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ALMOST PERIODIC SOLUTION 89

[19] considered the density dependent and nonautonomous predator-prey sys-
tem with Beddington-Deangelis functional response

x′(t) = x(t)

(
a(t)− bx(t)− c(t)y(t)

m1(t) +m2(t)x(t) +m3(t)y(t)

)
,

y′(t) = y(t)

(
− d(t)− e(t)y(t) +

f(t)x(t)

m1(t) +m2(t)x(t) +m3(t)y(t)

)
,

(3)

and assumed that a(t), b(t), c(t), d(t), e(t), f(t),m1(t),m2(t),m3(t) are contin-
uous and bounded above and below by positive constant. In [19], the authors
address some basic problems for (3), such as positive invariance, permanence,
dissipativity, and globally asymptotic stability of system (3). Then, the authors
establish sufficient criteria for the existence of a unique positive periodic so-
lution of (3) that is globally asymptotically stable, when all parameters are
periodic.

However, many authors [1, 2, 6, 9, 11, 12, 21, 22, 27, 29] have argued that the
discrete time models governed by difference equations are more appropiate than
the continuous ones when the populations has nonoverlapping generations. In
addition, discrete time models can also provide efficient computational models
of continuous for numerical simulations. In particular, Zhang and Wang [27]
considered the discrete analogous of (3) with e(t) ≡ 0 and with the assumption
that all coeficients are periodic they studied the existence of positive periodic
solutions. This study was extended by Pelen et al. in [23].

When e(t) 6= 0, Q. Fang et al. in [10] introduced the discrete analogous of
(3), given by the following discrete system:

x(k+1)=x(k)exp

{
a(k)−b(k)x(k)− c(k)y(k)

m1(k)+m2(k)x(k)+m3(k)y(k)

}
,

y(k+1)=y(k)exp

{
−d(k)−e(k)y(k)+

f(k)x(k)

m1(k)+m2(k)x(k)+m3(k)y(k)

}
.

(4)
We refer to the paper of Q. Fang et al. in [10], for the details. In [10] the
authors prove the permanence of system (4) and via a Lyapunov function, they
obtained sufficient conditions which guarantee the global attactivity of positive
solutions of the system (4).

It is pointed out in [20] that various constituent components of the tempo-
rally nonuniform environment have incommensurable periods. Hence, in that
scenario, it is natural to consider that the coefficients of the system (4) are
almost periodic and the model becomes more realistic.

The main goal of this paper is to study system (4), assuming that the coef-
ficients are almost periodic. Concretely, we prove the existence of a unique pos-
itive globally attractive almost periodic solution of the discrete predator-prey
model with Beddigton-DeAngelis functional response and density dependent
(4). This result is contained in Theorem 3.2.
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90 COSME DUQUE

2. Preliminaries

In this section it will be summarized the main facts which will be useful in the
sequel.

Definition 2.1. ([28]). A sequence z : Z −→ R is called an almost periodic
sequence if the ε−translation set of z,

E{ε, z} = {τ ∈ Z : |z(k + τ)− z(k)| < ε,∀k ∈ Z},

is a relatively dense set in Z for all ε > 0; that is, for any given ε > 0, there
exists an integer l(ε) > 0 such that each interval of length l(ε) contains an
integer τ ∈ E{ε, z} such that

|z(k + τ)− z(k)| < ε, ∀k ∈ Z.

τ is called the ε−translation number or ε−almost period.

Definition 2.2. ([28]) A sequence z : Z −→ R is called an asymptotically
almost periodic sequence if

z(k) = p(k) + q(k), ∀k ∈ Z+

where {p(k)} is an almost periodic sequence and limk→∞ q(k) = 0.

Lemma 2.3. ([28]) If {z(k)} is an almost periodic sequence, then {z(k)} is
bounded.

Lemma 2.4. ([28]) {z(k)} is an almost periodic sequence if and only if, for any
sequence {mi} ⊂ Z, there exists a subsequence {mij} ⊂ {mi} such that the se-
quence {z(k+mij )} converges uniformly for all k ∈ Z as j →∞. Furthermore,
the limit sequence is also an almost periodic sequence.

Lemma 2.5. ([28]) {z(k)} is an asymptotically almost periodic sequence if and
only if for any sequence {mi} ⊂ Z satisfying mi > 0 and mi → ∞ as i → ∞
there exists a subsequence {mij} ⊂ {mi} such that the sequence {z(k + mij )}
converges uniformly for all k ∈ Z+ as j →∞.

Lemma 2.6. ([25]) Suppose that {p1(k)} and {p2(k)} are almost periodic
real sequences. Then {p1(k) + p2(k)} and {p1(k)p2(k)} are almost periodic;
{1/p1(k)} is also almost periodic provided that p1(k) 6= 0 for all k ∈ Z. More-
over, if ε > 0 is an arbitrary real number, then there exists a relatively dense
set that is ε−almost periodic common to {p1(k)} and {p2(k)}.
Definition 2.7. System (4) is said to be permanent if there exist positive
constants x∗, x

∗, y∗, y
∗ which are independent of the solutions of the system,

such that any positive solution (x(k), y(k)) of system (4) satisfies

x∗ ≤ lim inf
k−→∞

x(k) ≤ lim sup
k−→∞

x(k) ≤ x∗,

y∗ ≤ lim inf
k−→∞

y(k) ≤ lim sup
k−→∞

y(k) ≤ y∗.
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System (4) is said to be nonpermanent if there is a positive solution (x(k), y(k))
of system (4) satisfying min{lim inf

k→∞
x(k), lim inf

k→∞
y(k)} = 0.

Since we are assuming that the coefficients of the system are almost periodic,
they are uniformly bounded. Therefore the permanence of the system (4) is an
immediate consequence of the following:

Theorem 2.8. ([10]) Let (x(k), y(k)) be a solution of (4) with x(0) > 0 and
y(0) > 0. If

fu > dlml
2, alml

3 > cu, −du +
f lx∗

mu
1 +mu

2x∗ +mu
3y
∗ > 0, (5)

then the system (4) is permanent, where

x∗ =
1

bl
exp{au − 1}, y∗ =

1

el
exp

{
fu

ml
2

− dl − 1

}
, (6)

and

x∗=
1

bu

[
al − cu

ml
3

]
exp

{
al − cu

ml
3

− bux∗
}
,

y∗=
1

eu

[
−du+ f lx∗

mu
1 +mu

2x∗+m
u
3y
∗

]
exp

{
− du+ f lx∗

mu
1 +mu

2x∗+m
u
3y
∗−e

uy∗

}
.

(7)

Here gl = mink∈N g(k) and gu = maxk∈N g(k) for any bounded sequence {g(k)}.
Despite that the not permanence of the system (4), it is not quite interesting

from theoretical point of view, in applications is important. By using techniques
of Lemma 4.2 from [24] we have the following:

Theorem 2.9. If there exists K > 0 such that for all k > K,

k−1∑
s=0

−d(s) +
f(s)

m2(s)
< 0, (8)

then the system is not permanent.

Proof. From [23], the equivalent system for system (4) is

x(k + 1)−x(k) =a(k)− b(k) exp(x(k))

− c(k) exp(y(k))

m1(k) +m2(k) exp(x(k)) +m3(k) exp(y(k))
,

(9)

y(k + 1)− y(k) =− d(k)− e(k) exp(y(k))

+
f(k) exp(x(k))

m1(k) +m2(k) exp(x(k)) +m3(k) exp(y(k))
.
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This equivalence is explained in Remark 2 in [23]. By using the second equation
of (9), taking the summation of both sides from 0 to k − 1 and taking the
exponential of both sides, one can obtain

exp(y(k)) ≤ exp(y(0)) exp

(
k−1∑
s=0

−d(s) +
f(s)

m2(s)

)
.

Since

k−1∑
s=0

−d(s) +
f(s)

m2(s)
< 0, then lim

k→∞
exp(y(k)) = 0. Hence the system

cannot be permanent. �X

The following corollary can be deduced from Theorem 2.9

Corollary 2.10. If fu < dlml
2 then the system (4) is not permanent.

Example 2.11. If we take a(k) = 1, b(k) = 5 + 0.5 cos(k
√

3π
3 ), c(k) =

0.1 d(k) = 1.5 + 0.05 sin(k
√

3π
3 ), e(k) = 2, f(k) = 12, m1(k) = 0.125 +

0.05 sin(k
√

3π
3 ), m2(k) = 10 + 0.05 cos(k

√
3π
3 ), m3(k) = 0.5 + 0.05 sin(k

√
3π
3 ),

then fu − dlml
2 ≈ −2.427 which implies, for the Corollary 2.10, that the sys-

tem (4) is not permanent. This can be appreciated in Figure 1.
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Figure 1. Solution of system (4) with (x(0), y(0)) = (0.2, 0.2)
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3. Existence and global stability of almost periodic solutions

This section is devoted in proving the main result of this paper, which concerns
the existence of a unique gobal uniformly asymptotically stable almost periodic
solution of system (4).

The next result tells us that there exists a bounded solution of system (4).

Theorem 3.1. Assume that (5) holds, then the system (4) has a solution
(x(k), y(k)) satisfying x∗ ≤ x(k) ≤ x∗ and y∗ ≤ y(k) ≤ y∗ for k ∈ Z.

Proof. Since the coeficients a(k), b(k), c(k), d(k), e(k), f(k) and mi(k), i =
1, 2, 3 are almost periodic, there exists an integer valued sequence {δp} with
δp →∞ as p→∞ such that

a(k + δp)→ a(k), b(k + δp)→ b(k), c(k + δp)→ b(k),

d(k + δp)→ d(k), e(k + δp)→ e(k), f(k + δp)→ f(k),

mi(k + δp)→ mi(k), i = 1, 2, 3, as p→∞.

Let ε be an arbitrary small positive number. From Theorem 2.8, there exists a
positive integer k0 such that

x∗ − ε ≤ x(k) ≤ x∗ + ε, y∗ − ε ≤ y(k) ≤ y∗ + ε, for k ≥ k0.

Write xp(k) = x(k + δp), yp(k) = y(k + δp) for k ≥ k0 − δp and p = 1, 2, . . . .
For any positive integer q, it is easy to see that there exist sequences {xp(k) :
p ≥ q} and {yp(k) : p ≥ q} such that the sequences {xp(k)} and {yp(k)} have
subsequences, denoted by {xp(k)} and {yp(k)} again, converging on any finite
interval of Z as p→∞, respectively. Thus we have sequences {x(k)} and {y(k)}
such that

xp(k)→ x(k), yp(k)→ y(k), for k ∈ Z, as p→∞.

Combined with

xp(k + 1) = xp(k) exp

{
a(k + δp)− b(k + δp)xp(k)

− c(k + δp)yp(k)

m1(k + δp) +m2(k + δp)xp(k) +m3(k + δp)yp(k)

}
,

yp(k + 1) = yp(k) exp

{
− d(k + δp)− e(k + δp)yp(k)

+
f(k + δp)xp(k)

m1(k + δp) +m2(k + δp)xp(k) +m3(k + δp)yp(k)

}
,
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94 COSME DUQUE

gives

x(k + 1)=x(k) exp

{
a(k)−b(k)x(k)− c(k)y(k)

m1(k)+m2(k)x(k)+m3(k)y(k)

}
,

(10)

y(k + 1)=y(k) exp

{
−d(k)−e(k)y(k)+

f(k)x(k)

m1(k)+m2(k)x(k)+m3(k)y(k)

}
.

(x(k), y(k)) is a solution of system (4) and x∗ − ε ≤ x(k) ≤ x∗ + ε, y∗ − ε ≤
y(k) ≤ y∗ + ε for k ∈ Z. By the arbitrariness of ε we have that x∗ ≤ x(k) ≤ x∗
and y∗ ≤ y(k) ≤ y∗ . �X

For convenience, we introduce the following notation:

gp(k) = g(k+τp), η(k, x, y) = m1(k)+m2(k)x(k)+m3(k)y(k), ηu(k, x, y) =
mu

1 +mu
2x(k) +mu

3y(k) and ηl(k, x, y) = ml
1 +ml

2x(k) +ml
3y(k).

Theorem 3.2. Suppose that fu > dlml
2, alml

3 > cu, −du+f lx∗/η
u(k, x∗, y

∗) >
0 and

λ1 = max

{∣∣∣∣1+ clml
2y∗x∗

ηu(k, x∗, y∗)2
−bux∗

∣∣∣∣ , ∣∣∣∣1+
cumu

2y
∗x∗

(ml
1)2

−blx∗
∣∣∣∣}

+
cuy∗

ηl(k, x∗, y∗)
< 1,

λ2 = max

{∣∣∣∣1−[eu+fumu
3x
∗

(ml
1)2

]
y∗
∣∣∣∣ , ∣∣∣∣1−[el+ f lml

3x∗
ηu(k, x∗, y∗)2

]
y∗

∣∣∣∣}
+

fux∗

ηl(k, x∗, y∗)
< 1.

(11)

Then there exists a unique almost periodic sequence solution of system (4) which
is globally attractive.

Proof. It follows from Theorem 3.1 that there exists a solution (x(t), y(t)) such
that x∗ ≤ x(k) ≤ x∗ and y∗ ≤ y(k) ≤ y∗ for k ∈ Z+.

Let {τp} be any integer valued sequence such that τp → ∞ as p → ∞. By
using the Mean Value Theorem, for p 6= q, we get

xp(k)− xq(k) = exp{lnxp(k)} − exp{lnxq(k)}
= ξx(k, τp, τq)[lnxp(k)− lnxq(k)],

yp(k)− yq(k) = exp{ln yp(k)} − exp{ln yq(k)}
= ξy(k, τp, τq)[ln yp(k)− ln yq(k)],

(12)
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where ξx(k, τp, τq) lies between xp(k) and xq(k), and ξy(k, τp, τq) lies between
yp(k) and yq(k), then

|xp(k)− xq(k)| ≤ x∗| lnxp(k)− lnxq(k)|,

|yp(k)− yq(k)| ≤ y∗| ln yp(k)− ln yq(k)|, k ∈ Z+.

(13)

Let u(k, τp, τq) = | lnxp(k)− lnxq(k)| and v(k, τp, τq) = | ln yp(k)− ln yq(k)| for
k ∈ Z+, τp > 0 and τq > 0.

Thus

u(k + 1, τp, τq) =
∣∣ lnxp(k + 1)− lnxq(k + 1)

∣∣
=

∣∣∣∣[lnxp(k)− lnxq(k)] + [ap(k)− aq(k)]− [bp(k)xp(k)− bq(k)xq(k)]

−
[
cp(k)yp(k)

ηp(k, x, y)
− cq(k)yq(k)

ηq(k, x, y)

]∣∣∣∣
≤
∣∣∣∣[lnxp(k)− lnxq(k)] +

[
− bp(k) +

cp(k)m2p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)

]
[xp(k)− xq(k)]

∣∣∣∣
+

∣∣∣∣[ cp(k)m3p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
− cp(k)

ηq(k, x, y)

]
[yp(k)− yq(k)]

∣∣∣∣+
∣∣ap(k)− aq(k)

∣∣
+
∣∣xq(k)[bp(k)− bq(k)]

∣∣+

∣∣∣∣ cp(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
[m1p(k)−m1q(k)]

∣∣∣∣
+

∣∣∣∣ cp(k)yp(k)xq(k)

ηp(k, x, x)ηq(k, x, y)
[m2p(k)−m2q(k)]

∣∣∣∣
+

∣∣∣∣ cp(k)yp(k)yq(k)

ηp(k, x, y)ηq(k, x, y)
[m3p(k)−m3q(k)]

∣∣∣∣
+

∣∣∣∣ yq(k)

ηq(k, x, y)
[cp(k)− cq(k)]

∣∣.
Analogously,

v(k + 1, τp, τq) =
∣∣ ln yp(k + 1)− ln yq(k + 1)

∣∣
=

∣∣∣∣[ln yp(k)− ln yq(k)]− [dp(k)− dq(k)]− [ep(k)yp(k)− eq(k)yq(k)]

+

[
fp(k)xp(k)

ηp(k, x, y)
− fq(k)xq(k)

ηq(k, x, y)

]∣∣∣∣
≤
∣∣∣∣[ln yp(k)− ln yq(k)] +

[
− ep(k)− fp(k)m3p(k)xp(k)

ηp(k, x, y)ηq(k, x, y)

]
[yp(k)− yq(k)]

∣∣∣∣
+

∣∣∣∣[ fp(k)

ηq(k, x, y)
− fp(k)m2p(k)xp(k)

ηp(k, x, y)ηq(k, x, y)

]
[xp(k)− xq(k)]

∣∣∣∣+
∣∣dp(k)− dq(k)

∣∣
+
∣∣yq(k)[ep(k)− eq(k)]

∣∣+

∣∣∣∣ fp(k)xp(k)

ηp(k, x, y)ηq(k, x, y)
[m1p(k)−m1q(k)]

∣∣∣∣
Revista Colombiana de Matemáticas



96 COSME DUQUE

+

∣∣∣∣ fp(k)xp(k)xq(k)

ηp(k, x, y)ηq(k, x, y)
[m2p(k)−m2p(k)]

∣∣∣∣
+

∣∣∣∣ fp(k)xp(k)yq(k)

ηp(k, x, y)ηq(k, x, y)
[m3p(k)−m3q(k)]

∣∣∣∣+

∣∣∣∣ xq(k)

ηq(k, x, y)
[fp(k)− fq(k)]

∣∣∣∣.
Let ε > 0, since the sequences a(k), b(k), c(k), d(k), e(k), f(k) and mi(k), i =
1, 2, 3 are almost periodic and {x(k)}, {y(k)} are bounded, it follows of lemmas
2.3, 2.4 and 2.6 that there exists a positive integer l0 = l0(ε) such that, for any
τq ≥ τp ≥ l0, and k ∈ Z+ (if necessary, it can choose subsequences of {τp} and
{τq})

∣∣ap(k)−aq(k)
∣∣< ε

6
,
∣∣xp(k)[bp(k)−bq(k)]

∣∣< ε

6
,

∣∣∣∣∣ cp(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
[m3p(k)−m3q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ cp(k)yp(k)xq(k)

ηp(k, x, y)ηq(k, x, y)
[m2p(k)−m2q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ cp(k)yp(k)yq(k)

ηp(k, x, y)ηq(k, x, y)
[m3p(k)−m3q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ yq(k)

ηq(k, x, y)
[cp(k) − cq(k)]

∣∣∣∣∣ < ε

6
,
∣∣dp(k) − dq(k)

∣∣ < ε

6
,
∣∣yq(k)[ep(k) − eq(k)]

∣∣ < ε

6
,

∣∣∣∣∣ fp(k)xp(k)

ηp(k, x, y)ηq(k, x, y)
[m1p(k)−m1q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ fp(k)xp(k)xq(k)

ηp(k, x, y)ηp(k, x, y)
[m2p(k)−m2q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ fp(k)xp(k)yq(k)

ηp(k, x, y)ηp(k, x, y)
[m3p(k)−m3q(k)]

∣∣∣∣∣< ε

6
,

∣∣∣∣∣ xq(k)

ηq(k, x, y)
[fp(k)−fq(k)]

∣∣∣∣∣< ε

6
.

This implies that

u(k + 1, τp, τq) ≤

∣∣∣∣∣[lnxp(k) − lnxq(k)]

+

[
cp(k)m2p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
− bp(k)

]
[xp(k) − xq(k)]

∣∣∣∣∣
+

∣∣∣∣∣
[
cp(k)m3p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
−

cp(k)

ηq(k, x, y)

]
[yp(k) − yq(k)]

∣∣∣∣∣ + ε

and

v(k + 1, τp, τq) ≤

∣∣∣∣∣[ln yp(k) − ln yq(k)]

−
[
fp(k)m3p(k)xp(k)

ηp(k, x, y)ηq(k, x, y)
+ ep(k)

]
[yp(k) − yq(k)]

∣∣∣∣∣
+

∣∣∣∣∣
[

fp(k)

ηq(k, x, y)
−

fp(k)m2p(k)xp(k)

ηp(k, x, y)ηq(k, x, y)

]
[xp(k) − xq(k)]

∣∣∣∣∣ + ε.
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Using (12) we obtain

u(k + 1, τp, τq) ≤

∣∣∣∣∣1 +

[
cp(k)m2p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
− bp(k)

]
ξx(k, τp, τq)

∣∣∣∣∣u(k, τp, τq)

+

∣∣∣∣∣
[
cp(k)m3p(k)yp(k)

ηp(k, x, y)ηq(k, x, y)
−

cp(k)

ηq(k, x, y)

]
ξy(k, τp, τq)

∣∣∣∣∣v(k, τp, τq) + ε,

v(k + 1, τp, τq) ≤

∣∣∣∣∣1 −
[
fp(k)m3p(k)xp(k)

ηp(k)ηq(k)
+ ep(k)

]
ξy(k, τp, τq)

∣∣∣∣∣v(k, τp, τq)

+

∣∣∣∣∣
[
fp(k)

ηq(k)
−

fp(k)m2p(k)xp(k)

ηp(k, x, y)ηq(k, x, y)

]
ξx(k, τp, τq)

∣∣∣∣∣u(k, τp, τq) + ε.

It follows from (11) that, for k ∈ Z+ and τq ≥ τp ≥ l0,

u(k + 1, τp, τq) ≤ λ1 max{u(k, τp, τq), v(k, τp, τq)}+ ε,

v(k + 1, τp, τq) ≤ λ2 max{u(k, τp, τq), v(k, τp, τq)}+ ε,

which implies that

max{u(k + 1, τp, τq), v(k + 1, τp, τq)} ≤ λmax{u(k, τp, τq), v(k, τp, τq)}+ ε,

where λ = max{λ1, λ2}. Hence

max{u(k, τp, τq), v(k, τp, τq)} ≤ λk+τp max{u(0, 0, τq − τp), v(0, 0, τq − τp)}

+ε
1− λk+τp

1− λ
.

Since λ < 1, for arbitrary ε > 0, there exists l1 = l1(ε) > l0 such that, for any
τq ≥ τp ≥ l0,

max{u(k, τp, τq), v(k, τp, τq)} ≤
ε

max{x∗, y∗}
for k ∈ Z+. (14)

In view of (13) and (14) it follows that

|x(k + τp)− x(k + τq)| < ε and |y(k + τp)− y(k + τq)| < ε,

for τq ≥ τp ≥ l1 and k ∈ Z+. By Lemma (2.5), the sequences {x(k)}, {y(k)} are
asymptotically almost periodic. Therefore {x(k)} and {y(k)} can be expresed
as

x(k) = w1(k) + z1(k) and y(k) = w2(k) + z2(k), (15)

where w1(k) and w2(k) are almost periodics in k ∈ Z, z1(k)→ 0 and z2(k)→ 0
as k →∞.
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Now, we will show that {w1(k)} and {w2(k)} are almost periodic solutions
of (4).

Let

f1(k) = a(k) + b(k)[w1(k) + z1(k)]− c(k)[w2(k) + z2(k)]

η(k,w1 + z1, w2 + z2)

g1(k) = a(k) + b(k)w1(k)− c(k)w2(k)

η(k,w1, w2)

f2(k) = −d(k)− e(k)[w2(k) + z2(k)] +
f(k)[w1(k) + z1(k)]

η(k,w1 + z1, w2 + z2)

g2(k) = d(k)− e(k)w2(k) +
f(k)w1(k)

η(k,w1, w2)
.

By using (4), (15) and the Mean Value Theorem we obtain that

x(k + 1) = w1(k + 1) + z1(k + 1) = (w1(k) + z1(k)) exp{f1(k)}
= w1(k) exp{γ1(k)}[f1(k)− g1(k)] + w1(k) exp{g1(k)}

+z1(k) exp{f1(k)},
y(k + 1) = w2(k + 1) + z2(k + 1) = (w2(k) + z2(k)) exp{f2(k)}

= w2(k) exp{γ2(k)}[f2(k)− g2(k)] + w2(k) exp{g2(k)}
+z2(k) exp{f2(k)},

where γi(k) = θi(k)fi(k) + (1− θi(k))gi(k) for some θi(k) ∈ [0, 1], i = 1, 2.

Thus

w1(k + 1)− w1(k) exp{g1(k)} = w1(k) exp{γ1(k)}[f1(k)− g1(k)]

+z1(k) exp{f1(k)},
w2(k + 1)− w2(k) exp{g2(k)} = w2(k) exp{γ2(k)}[f2(k)− g2(k)]

+z2(k) exp{f2(k)}.

Since a(k), b(k), c(k), d(k), e(k), f(k),mi(k), for i = 1, 2, 3 are bounded,

f1(k)−g1(k) = b(k)z1(k)

−c(k)

{
(m1(k) +m2(k))z2(k)− w2(k)m2(k)z1(k)

η(k,w1, w2)η(k,w1 + z1, w2 + z2)

}
,

f2(k)−g2(k) = −ez2(k)

+f(k)

{
(m1(k) +m3(k)w2(k))z1(k)− w1(k)m3(k)z2(k)

η(k,w1, w2)η(k,w1 + z1, w2 + z2)

}
,

and the fact that z1(k), z2(k)→ 0 as k →∞, we obtain

wi(k + 1)− wi(k) exp{gi(k)} → 0, i = 1, 2,

as k →∞.
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Now, wi(k+ 1)−wi(k) exp{g1(k)} ≡ 0, i = 1, 2, in fact, suppose that there
exist k1 and k2 such that wi(ki + 1)− wi(ki) exp{gi(ki)} 6= 0, i = 1, 2. By the
almost periodicity of a(k), b(k), c(k), d(k), e(k), f(k), mi(k), for i = 1, 2, 3, and
wi(k), i = 1, 2 there exists an integer valued sequence {δp} such that δp → ∞
as p→∞ and

a(k + δp)→ a(k), b(k + δp)→ b(k), c(k + δp)→ b(k), d(k + δp)→ d(k),

e(k + δp)→ e(k), f(k + δp)→ f(k), mi(k + δp)→ mi(k), i = 1, 2, 3,

wi(k + δp)→ wi(k), i = 1, 2.

uniformly for all k ∈ Z. Then,

wi(ki + δp + 1)−wi(ki + δp) exp{gi(ki + δp)} → wi(ki + 1)−wi(ki) exp{gi(ki)}

as p → ∞ and i = 1, 2, which is a contradiction. Hence (w1(k), w2(k)) is an
almost periodic sequence solution of (4).

Now, to finish we will prove that limk→∞ |x(k) − w1(k)| = 0 and limk→∞
|y(k) − w2(k)| = 0, where (x(k), y(k)) is any positive solution of (4). In order
to accomplish this, let us define

u(k) = ln

(
x(k)

w1(k)

)
and v(k) = ln

(
y(k)

w2(k)

)
;

then,

x(k) = w1(k) exp{u(k)} and y(k) = w2(k) exp{v(k)}.

So that (4) is equivalent to

u(k + 1) = u(k) + b(k)w1(k)[1− exp{u(k)}]

+c(k)w2(k)

[
1

η(k,w1, w2)
− exp{v(k)}

η(k, x, y)

]
,

v(k + 1) = v(k) + e(k)w2(k)[1− exp{v(k)}]

−f(k)w1(k)

[
1

η(k,w1, w2)
− exp{u(k)}

η(k, x, y)

]
.

Therefore,
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u(k + 1) =

[
1− b(k)w1(k) exp{θ1(k)u(k)}

+
c(k)m2(k)w1(k)w2(k)

η(k,w1, w2)η(k, x, y)
exp{θ1(k)u(k)}

]
u(k)

−c(k)(m1(k) +m2(k)w1(k))w2(k)

η(k,w1, w2)η(k, x, y)
exp{θ2(k)v(k)}v(k),

v(k + 1) =

[
1− e(k)w2(k) exp{θ2(k)v(k)}

−f(k)m3(k)w1(k)w2(k)

η(k,w1, w2)η(k, x, y)
exp{θ2(k)v(k)}

]
v(k)

+
f(k)(m1(k) +m3(k)w2(k))w1(k)

η(k,w1, w2)η(k, x, y)
exp{θ1(k)u(k)}u(k),

(16)

where θ1(k), θ2(k) ∈ [0, 1]. If limk→∞ u(k) = 0 and limk→∞ v(k) = 0 then the
proof will be complete.

From (11), let ε > 0 such that

λε1 = max

{ ∣∣∣∣1 +
clml

2(y∗ − ε)(x∗ − ε)
ηu(k, x∗ + ε, y∗ + ε)2

− bu(x∗ + ε)

∣∣∣∣ ,∣∣∣∣1 +
cumu

2 (y∗ + ε)(x∗ + ε)

(ml
1)2

− bl(x∗ − ε)
∣∣∣∣ }+

cu(y∗ + ε)

ηl(k, x∗ − ε, y∗ − ε)
< 1,

λε2 = max

{ ∣∣∣∣1− [eu +
fumu

3 (x∗ + ε)

(ml
1)2

]
(y∗ + ε)

∣∣∣∣ ,∣∣∣∣1−[el+ f lml
3(x∗ − ε)

ηu(k, x∗ + ε, y∗ + ε)2

]
(y∗ − ε)

∣∣∣∣ }+
fu(x∗ + ε)

ηl(k, x∗ − ε, y∗ − ε)
< 1.

By using the Theorem 2.8 we have that there exist k0 ∈ N such that

x∗ − ε ≤ x(k), w1(k) ≤ x∗ + ε, y∗ − ε ≤ y(k), w2(k) ≤ y∗ + ε,

for k ≥ k0.

Since θ1(k), θ2(k) ∈ [0, 1], then w1(k) exp{θ1(k)u(k)}, w2(k) exp{θ2(k)v(k)}
lies between w1(k) and x(k), and, w2(k) and y(k) respectively. From (16), it
follows that
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|u(k + 1)| ≤ max

{∣∣∣∣1 +
clml

2(y∗ − ε)(x∗ − ε)
ηu(k, x∗ + ε, y∗ + ε)2

− bu(x∗ + ε)

∣∣∣∣,∣∣∣∣1 +
cumu

2 (y∗ + ε)(x∗ + ε)

(ml
1)2

−bl(x∗ − ε)
∣∣∣∣}|u(k)|+ cu(y∗ + ε)

ηl(k, x∗ − ε, y∗ − ε)
|v(k)|,

|v(k + 1)| ≤ max

{∣∣∣∣1− [eu +
fumu

3 (x∗ + ε)

(ml
1)2

]
(y∗ + ε)

∣∣∣∣,∣∣∣∣1−[el+ f lml
3(x∗ − ε)

(ηu(k, x∗ + ε, y∗+ε)2

]
(y∗−ε)

∣∣∣∣
}
|v(k)|+ fu(x∗+ε))

ηl(k, x∗ − ε, y∗−ε)
|u(k)|,

for k ≥ k0. Hence,

max{|u(k + 1)|, |v(k + 1)|} ≤ λε max{|u(k)|, |v(k)|}, k ≥ k0,

where λε = max{λε1, λε2} < 1. This implies that

max{|u(k + 1)|, |v(k + 1)|} ≤ λk−k0ε max{|u(k0)|, |v(k0)|}, k ≥ k0.

So, limk→∞ u(k) = 0 and limk→∞ v(k) = 0.

Since (w1(k), w2(k)) is the global attractor of all positive solutions of (4)
then (w1(k), w2(k)) is the unique almost periodic sequence solution of system
(4). This concludes the proof. �X

Example 3.3. Let a(k) = 0.9, b(k) = 3 + 0.05 cos(k
√

3/4), c(k) = 0.3, d(k) =
0.01 + 0.01 cos(k

√
3/4), e(k) = 6, f(k) = 2.3, m1(k) = 10 + 0.1 sin(k

√
3/4),

m2(k) = 65 + 0.02 cos(k
√

3/4), m3(k) = 60 + 0.01 cos(k
√

3/4).

We can calculate

fu−dlml
2 ≈ 2.297, alml

3−cu ≈ 53.691, −du+
flx∗

mu
1 +m2x∗ +m3y∗

≈ 0.001

and

λ1 ≈ 0.173, λ2 ≈ 0.999.

Hence coeficient functions satisfy the conditions of Theorem 3.2, therefore sys-
tem (4) has a unique almost periodic sequence solution which is globally at-
tractive. This can be appreciated in Figure 2.
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102 COSME DUQUE
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Figure 2. Solutions of system (4) with (x(0), y(0)) = (0.29, 0.00215), (x(0), y(0)) =
(0.31, 0.0025) and (x(0), y(0)) = (0.3, 0.0022). The solutions tend to the
almost periodic solution.

4. Conclusion

In this paper, we studied the discrete predator-prey model (4) of Beddington-
DeAngelis type functional response with density dependent predator. We found
sufficient conditions where the predator cannot survive (Theorem 2.9, Corollary
2.10). We were able to prove, under some reasonable conditions, the existence
of a unique globally attractive almost periodic solution when the coeficients are
almost periodic (Theorem 3.2). Finally, the claims in theorems were illustrated
using numerical simulations.
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