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Abstract. In this paper, we give an elementary proof of the fact that the rings

Z
[
1+
√
−d

2

]
are unique factorization domains for the values d = 3, 7, 11, 19, 43,

67, 163. While the result in itself is well known, our proof is new and completely
elementary and uses neither the Minkowski convex body theorem, nor the
Dedekind and Hasse theorems. Furthermore, it does not use either the theory
of algebraic integers, or the theory of Noetherian rings. It only uses basic
notions from the theory of commutative rings.
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Resumen. En este art́ıculo, damos una demostración elemental de que los

anillos Z
[
1+
√
−d

2

]
son dominios de factorización única para los valores d =

3, 7, 11, 19, 43, 67, 163. Si bien este resultado es conocido, nuestra prueba es
nueva y completamente elemental, y no hace uso del teorema del cuerpo con-
vexo de Minkowski, ni del teorema de Dedekind y Hasse. Además, no utiliza
la teoŕıa de los enteros algebraicos, ni la teoŕıa de los anillos noetherianos.
Sólo utiliza nociones básicas de la teoŕıa de los anillos conmutativos.

Palabras y frases clave. Dominio de factorización única, primo, irreducible.
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1. Introduction

The main purpose of this paper is give an elementary proof of the fact that

the rings Z
[

1+
√
−d

2

]
are unique factorization domains, for the values d =

3, 7, 11, 19, 43, 67, 163. While the result in itself is well known (See [2] p. 107
and p. 151; [3]; [4] p. 124; [1] p. 62 and p. 315), our proof is new and com-
pletely elementary and uses neither the Minkowski convex body theorem (See
[2] Chapter VIII), nor the Dedekind and Hasse theorems (See [4] Theorem 9.5,
p. 124). Furthermore, it does not use either the theory of algebraic integers, or
the theory of Noetherian rings. It only uses basic notions from the theory of
commutative rings.

2. Preliminary lemmas

In this paper we shall denote, as usual, the field of complex numbers by C, the
ring of rational integers by Z

In all what follows α ∈ C is a root of the irreducible polynomial x2+tx+q ∈
Z[x]. Its ther root is denoted by ᾱ.

N : Z[α] −→ Z, N(a+ bα) = (a+ bα)(a+ bᾱ) = a2 − tab+ qb2

N is the norm map and it is easy to verify that N(δγ) = N(δ)N(γ) for all
δ, γ ∈ Z[α]

Lemma 2.1. If π ∈ Z[α] is such that N(π) is prime number, then π is prime
in Z[α].

Proof. Put p = N(π). It is then easy to check that

#

(
Z[α]

pZ[α]

)
= p2, and #

(
πZ[α]

pZ[α]

)
6= 1. (1)

Since p is prime number and

Z[α]

πZ[α]
∼=

(Z[α]/pZ[α])

(πZ[α]/pZ[α])
,

it follows from (1) that Z[α]/πZ[α] has p elements and is therefore a field. Thus,
π is prime in Z[α]. �X

Lemma 2.2. If Z[α] is not an unique factorization domain, then there is a
prime number p which is not prime in Z[α] such that whenever ω ∈ Z[α] is
such that

if p|N(ω), then p2 ≤ |N(ω)|. (2)
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Proof. Let S be the set of all elements of Z[α] which can be written as a
product of primes in Z[α]. Let

S ′ = U(Z[α]) ∪ S, and W = Z[α] \ S ′.

Since Z[α] is not an unique factorization domain, it follows thatW is nonempty.
Let β ∈ W be such that

|N(β)| = min{|N(ω)| : ω ∈ W, ω 6= 0}. (3)

Note that since β ∈ W it is not prime in Z[α]. Also, by using the multiplicative
property of N and the minimal property of β one can deduce easily that β is
irreducible, so by Lemma 2.1 N(β) is not a prime number. Thus, there exists
a prime number

p|N(β) and p ≤
√
|N(β)|. (4)

Note that p is not prime in Z[α], because otherwise, since p|N(β), we would
obtain that p would be an associate of β or β̄, which is imposible since β ∈ W.

Let us see that the prime p satisfies condition (2). Let ω ∈ Z[α] be such
that p|N(ω). An argument similar to the previous one leads to ω ∈ W. Thus,
using (3) and (4), we get that

p2 ≤ |N(β)| ≤ |N(ω)|.

�X

Lemma 2.3. Let p be a prime number. Then p is prime in Z[α] if and only if
x2 + tx+ q is prime in Zp[x].

Proof. This is an immediate consequence of the chain of isomorphisms

Zp[x]

(x2 + tx+ q)Zp[x]
∼=

(Z[x]/pZ[x])

((x2 + tx+ q, p)Z[x]/pZ[x])
∼=

Z[x]

(x2 + tx+ q, p)Z[x]

∼=
(Z[x]/p(x2 + tx+ q)Z[x])

(x2 + tx+ q, p)Z[x]/(x2 + tx+ q)Z[x])
∼=

Z[α]

pZ[α]
.

�X

3. Main Theorems

Theorem 3.1. Let d ∈ N with d ≡ 1 (mod 4). We assume that Z
[

1 +
√
−d

2

]
is not an unique factorization domain. Then, there is a prime number p which

is not prime in Z
[

1 +
√
−d

2

]
such that p ≤

√
d/3.
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Proof. We denote α =
(
1 +
√
−d
)
/2, is a root of the polynomial x2 − x +

(1 + d)/4 and N(a+ bα) = a2 + ab+ (1 + d)b2/4. Since Z[α] is not an unique
factorization domain, by Lemma 2.2, there exists a prime number p such that

ω ∈ Z[α] and p|N(ω) implies that p2 ≤ |N(ω)|. (5)

Since p is not prime in Z[α], by Lemma 2.3, we get that there exists b ∈ Z such
that

0 ≤ b ≤ (p+ 1)/2 and b2 − b+
1 + d

4
≡ 0 (mod p), (6)

and since

N(b− α) = b2 − b+
1 + d

4
,

we get that p|N(b− α). Combining (5) and (6), we get

4p2 ≤ 4N(b− α) = (2b− 1)2 + d ≤ p2 + d,

giving p ≤
√
d/3. �X

Theorem 3.2. The rings Z
[

1 +
√
−d

2

]
with d ∈ 3, 7, 11, 19, 43, 67, 163 are

Unique Factorization Domains.

Proof. If d = 3, 7, 11, then
√
d/3 < 2. By Theorem 3.1, we get that Z

[
1 +
√
−d

2

]
is an Unique Factorization Domain.

If d = 19, 43, 67, then
√
d/3 < 5. Furthermore, by Lemma 2.3 we get that 2

and 3 are primes in Z
[

1 +
√
−d

2

]
. By Theorem 3.1, we get that Z

[
1 +
√
−d

2

]
is an Unique Factorization Domain.

If d = 163, then
√
d/3 < 11. Furthermore, applying Lemma 2.3, we get

that 2, 3, 5, 7 are primes in Z
[

1 +
√
−d

2

]
. By Theorem 3.1, we get that

Z
[

1 +
√
−d

2

]
is an Unique Factorization Domain. �X
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Volumen 50, Número 2, Año 2016



A NEW PROOF OF THE UNIQUE FACTORIZATION 143

References

[1] S. Alaca and K. S. Williams, Introductory algebraic number theory, Cam-
bridge University Press, 2004.

[2] H. Cohn, Advanced number theory, Dover, New York, 1980.

[3] A. Oneto and V. Ramirez, Dominios principales no euclidianos, Divul.Mat.
1 (1993), 55–65.

[4] H. Pollard, The theory of algebraic numbers, Carus Monograph 9, MAA,
Wiley, New York, 1975.

(Recibido en enero de 2016. Aceptado en marzo de 2016)

Department of Pure and Applied Mathematics

Universidad Simon Bolivar

Caracas, Venezuela

e-mail: ramirezv@usb.ve

Revista Colombiana de Matemáticas


