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Abstract. In this work we determine the total component of the partial Schur
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Resumen. En este trabajo determinamos la componente total del multiplicador
parcial de Schur para los 3-grupos abelianos elementales.
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1. Introduction

Structural results on partial representations, their associated domains, and the
corresponding partial group algebras of a group G, were obtained in [3, 5, 9, 11,
13] and recently in [10]. With the intention of developing a cohomological theory
based on partial actions, the concept of partial projective representations was
introduced and developed in [6] and [7], this naturally led to the definition of
the partial Schur multiplier pM(G) of G, over a field K, and as in the classical
case, a key problem in the theory of partial projective representations of G is
the study of the structure of pM(G). The latter contains the Schur multiplier
M(G) and, different from it, the set pM(G) is not a group, but it is a semilattice
of abelian groups pMX(G), called components, indexed by certain subsets X ⊆
G×G, which are exactly the invariant sets under the action of a semigroup (see
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Section 2). A deeper understanding of the structure of pM(G) was presented
in [8, 12], where was shown that each component pMX(G) of pM(G) is formed
by equivalence classes of partially defined functions σ : G×G→ K, having X
as domain, i.e. the so-called partial factor sets of G, it is remarkable to notice
that the elements of pMX(G) are determined by its values in a subset of X,
which is the union of the so called effective orbits, see [12, Theorem 3.9]. In [4,
Theorem 2.13], the authors proved that each component, and then the partial
Schur multiplier pM(G), is a union of 2-cohomology groups with values in some,
in general non-trivial, partial G-modules, that is with values on a monoid M
with a unital partial action defined on it.

The total component pMG×G(G) of pM(G) is the one formed by equiva-
lence classes of totally defined partial factor sets, this includes the usual Schur
multiplier as a subgroup and, some necessary and sufficient conditions for a
classical two-cocycle to be a totally defined partial factor set have been given
in [7, Section 10] and [15, Section 7]. Moreover, according to [8, Corollary 5.8
(iv)] any component of pM(G) is an epimorphic image of pMG×G(G), so the
total component provide information about the structure of pM(G).

In some recent works this component have been calculated for different fam-
ilies of groups. For instance, in the case of finite cyclic group [8, Corollary 6.4]
see also [2, Proposition 6.3], an elementary abelian 2-group [12, Theorem 3.11],
the symmetric group [14, Lemma 3.10] and other relevant families of groups
[1]. Moreover, some results on the structure of the torsion part of pMG×G(G)
are presented in [15].

The purpose of this work is to characterize pMG×G(G) when G is the ele-
mentary abelian 3-group.

The article is structured as follows. After the introduction, in Section 2 we
provide all the necessary preliminaries, fix some notations and recall character-
izations of the partial Schur multiplier, partial factor sets, and coboundaries.
In Section 3 we focus in elementary 3-abelian groups and after determining
the cardinality of the set consisting of effective orbits, we use Proposition 3.1
and Proposition 3.3 to obtain a determine the (total) coboundaries, finally
combining our results a description of pMG×G(G) is obtained in Theorem 3.4.

2. The notions

Partial projective representations of a group G over a field K were introduced
and studied in [6, 7]. As in the classical case, the set pm(G) of the partial
factor sets of G appeared naturally, as well as the corresponding partial Schur
multiplier pM(G). We recall these concepts for the reader’s convenience.

Definition 2.1. Let G be a group, K an algebraically closed field, and K∗ its
multiplicative group.
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• A (unital) partial homomorphism of a group G with values in Mn(K) is a
map φ : G→Mn(K) preserving the unity and such that φ(g)φ(h)φ(h−1) =
φ(gh)φ(h−1) and φ(g−1)φ(g)φ(h) = φ(g−1)φ(gh), for all g, h ∈ G.

• Denote by PMn(K) the monoid of projective linear matrices over K and
let ξ : Mn(K) → PMn(K) be the natural projection. A partial projective
representation of G on Mn(K) is a function Γ: G→Mn(K) such that the
composition ξΓ: G→ PMn(K), is a partial homomorphism.

Given a partial projective representation Γ: G → Mn(K) then by [6, The-
orem 3] there is a unique partially defined function σ : G × G → K∗, such
that

domσ = {(x, y) ∈ G×G | Γ(x)Γ(y) 6= 0},
Γ(x−1)Γ(x)Γ(y) = Γ(x−1)Γ(xy)σ(x, y)

and
Γ(x)Γ(y)Γ(y−1) = Γ(xy)Γ(y−1)σ(x, y),

for every (x, y) ∈ domσ.

Definition 2.2. The function σ associated with a partial projective represen-
tation Γ as above is called a factor set of Γ or a partial factor set of G.

By [6, Corollary 5], factor sets of partial projective representations of G
form a commutative inverse monoid pm(G), with respect to point-wise multi-
plication. Thus pm(G) is isomorphic to a semilattice of abelian groups.

2.1. The semigroup T and the partial Schur multiplier

We use semigroup actions to obtain a better description of partial factor sets.
Consider the following transformations on G×G:

u : (x, y) 7→ (xy, y−1), v : (x, y) 7→ (y−1, x−1), t : (x, y) 7→ (x, 1).

It is readily seen that these transformations satisfy the equalities

u2 = v2 = (uv)3 = 1, t2 = t, ut = t, tuvt = tvuv, tvt = 0. (1)

where 0 stands for the map (x, y) 7→ (1, 1).

In [7, Section 6] the authors introduced the abstract monoid T generated
by symbols u, v and t with relations (1).

There is a disjoint union T = S ∪ tS ∪ vtS ∪ uvtS ∪ 0, where

S = 〈u, v | u2 = v2 = (uv)3 = 1〉

is a group isomorphic to the symmetric group S3. Then we have a left action
of T on G×G defined by the following maps:

t(x, y) = (x, 1), u(x, y) = (xy, y−1) and v(x, y) = (y−1, x−1),
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for any x, y ∈ G. The T -invariant subsets X of G × G, that is, the elements
of C(G) = {X ⊆ G × G | T X ⊆ X} form a meet semilattice which helps
us to characterize partial factor sets. Indeed, by [6, Theorem 5] we have that
pm(G) =

⋃
X∈C(G) pmX(G), where pmX(G) consists of the factor sets with

fixed domain X ∈ C(G).

On the semigroup pm(G) a congruence ∼ is defined by:

σ ∼ τ ⇔ σ(x, y) = η(x)η(xy)−1η(y)τ(x, y), x, y ∈ G

for some function η : G → K∗. The semigroup pM(G) = pm(G)/ ∼ is called
the partial Schur multiplier of G.

Equivalent partial factor sets have the same domain and by [7, Theorem
5] the semigroup pM(G) is a semilattice of the abelian groups pMX(G) =
pmX(G)/ ∼. These groups are called components of pM(G), the component
pMG×G(G) is called total, and elements in pM(G) are denoted by cls(σ), for
σ ∈ pm(G).

Theorem 2.3 ([8, Theorem 5.6]). Let τ be a partial factor set of G with
domain X. Then there is a partial factor set σ, equivalent to τ , such that for
all (a, b) ∈ X

σ(a, b)σ(b−1, a−1) = 1K, (2)

σ(a, b) = σ(b−1a−1, a) = σ(b, b−1a−1), (3)

σ(a, 1) = 1K, (4)

for any (a, b) ∈ X. Conversely, let σ : G × G → K be a partially defined map
with domain X ∈ C(G) such that (2)-(4) are satisfied for all (a, b) ∈ X. Then
σ is a partial factor set of G.

Since S3 is isomorphic to a subgroup of T , there is an action of S3 in G×G
induced by the action of T . Thus, the S3-orbit of (x, y) ∈ G×G is:

S3(x, y) = {(x, y), (xy, y−1), (y, y−1x−1), (y−1, x−1), (y−1x−1, x), (x−1, xy)}.

Consequently, the Orbit-Stabilizer Theorem implies that each S3-orbit contains
1, 2, 3 or 6 elements. In [12], the orbits with 2 or 6 elements were called effective.
Then, the non-effective orbits are of the form {(1, y), (y, y−1), (y−1, 1)}, y ∈ G,
and the value of any partial factor set on non-effective orbits is 1K according
to (2) and (4).

Remark 2.4. We conclude that any σ in pmX(G) is completely determined
by its values in X ∩ U , where U = {(x, y) ∈ G×G | x, y, xy 6= 1}.

Now to determine pMX(G) we recall the next.

Corollary 2.5 ([8, Corollary 5.8]). Let X ∈ C(G). Then:
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(1) The kernel NX = {σ ∈ pmX(G) | σ ∼ 1} of the natural epimorphism of
pmX(G)→ pMX(G) consists of those σ : G×G→ K for which there is
ρ : G×G→ K∗ satisfying the following conditions:

ρ(1) = 1K, ρ(a)ρ(a−1) = 1K, ∀ a ∈ G with (a, 1) ∈ X (5)

and

σ(a, b) =

{
ρ(a)ρ(b)ρ(ab)−1, if(a, b) ∈ X,
0, if(a, b) 6∈ X.

(6)

(2) Let s = s(G,X) be the cardinality of the set of effective S3-orbits of X
and {(ai, bi)}1≤i≤s a full set of representatives of these orbits. Then the
map

φ : (K∗)s 3 x 7→ σx ∈ pmX(G),

in which x = (xi)1≤i≤s and σx(ai, bi) = xi, is an isomorphism of multi-
plicative groups.

(3) For every domain Y ∈ C(G) such that Y ⊇ X, there is an epimorphism
ψYX : pMY (G) → pMX(G). In particular, pMX(G) is an epimorphic im-
age of the total component pMG×G(G).

The partial factor sets σ in NX are called coboundaries in pmX(G). In this
case we write σ = ∂ρ, where ρ is a function satisfying (5) and (6). Thus to
calculate the total component, it is useful to consider the epimorphism

ψ : (K∗)s 3 x 7→ cls(σx) ∈ pMG×G(G),

where s = s(G,G×G).

3. Elementary abelian 3-group

From now on in this work it is assumed that G is the elementary abelian 3-group

G = 〈x1, x2, . . . , xn | x3
i = [xi, xj ] = 1, 1 ≤ i, j ≤ n〉.

We are interested in determining the component pMG×G(G) of pM(G) over an
algebraically closed field K.

Using Remark 2.4 we see that the elements of pMG×G(G) are determined
by its values in the set

A = (G \ 1)× (G \ 1) \∆,

where ∆ = {(x, x2) |x ∈ G \ {1}}. The action of S3 on A is given by:

g : (x, y)→ (xy, y2) h : (x, y)→ (y2, x2),
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and the orbit of the element (x, y) ∈ A is

S3(x, y) = {(x, y), (x2y2, x), (y, x2y2), (y2, x2), (x2, xy), (xy, y2)}.

Observe that |A| = (3n − 1)(3n − 2). On the other hand, for a ∈ G \ {1},
|S3(a, a)| = 2, and if b ∈ G \ {1, a, a2}, we have |S3(a, b)| = 6. Thus, there are:

Mn =
3n − 1

2
+

(3n − 1)(3n − 2)− (3n − 1)

6
=

3n(3n − 1)

6
,

different effective S3-orbits S3(x, y). There exists an epimorphism:

ψ : (K∗)Mn 3 µ −→ cls(σµ) ∈ pMG×G(G), (7)

where µ = (µ1, · · · , µMn
), σ = σµ ∈ pm̃G×G(G) and its value in the ith orbit is

determined by µi. Hence we need to find ker ψ = {µ ∈ (K∗)Mn | cls(σµ) = 1}.

Proposition 3.1. Let σ = σµ be a coboundary, then σ is completely determined
by the values ωx, where ω1 = 1K and for x ∈ G \ {1}, ωx is a fixed cubic root
of σ(x, x) such that ωxωx2 = 1.

Proof. Let ρ : G → K∗, such that σ(a, b) = ρ(a)ρ(b)ρ(ab)−1 for all a, b ∈ G.
As σ = σµ, we obtain ρ(1) = ρ(a)ρ(a2) = 1K for all a ∈ G. In particular, if

a ∈ G \ {1}, σ(a, a) = ρ(a)3. Hence, ρ(a) =
1K
ρ(a2)

= ωa, where ωa ∈ K∗ verifies

ω3
a = σ(a, a). Now, suppose (x, y) ∈ A and x 6= y, then:

σ(x, y) = ρ(x)ρ(y)ρ(xy)−1 = ρ(x)ρ(y)ρ(x2y2) = ωxωyωx2y2 .

�X

Remark 3.2. Calculating the number Ln of the independent σ(x, x) values,
we have

Ln =
3n − 1

2
.

From the proof of Proposition 3.1 we conclude that any coboundary σ sat-
isfying (2)-(4) verifies:

σ(x, y) = ωxωyωx2y2 , (8)

where the ωx ∈ K∗ are such that:

ω1 = 1K (9)

and
ωxωx2 = 1K. (10)

Taking into account those conditions, we can get the converse assertion to
Proposition 3.1. Set ILn

= {1, . . . , Ln} and GLn
= {ui ∈ G \ 1 | i ∈ Ln, ui /∈

{uj , u2
j} if i 6= j}. Then |GLn | = Ln and x ∈ GLn if, and only if, x2 /∈ GLn .
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Proposition 3.3. Let φ : I → K∗ be a map. For i ∈ ILn and ui ∈ GLn define
σ(ui, ui) = φ(i), pick ωui

∈ K∗ such that ω3
ui

= φ(i) and extend σ on G×G by
(8), (9) and (10). Then σ is a coboundary.

Proof. For a function ρ : G → K∗ and ui ∈ GLn , write ρ(1) = ω1 = 1K and

ρ(ui) =
1K
ρ(u2

i )
= ωui , in particular ρ(u2

i ) = ω2
ui

. Then:

σ(ui, ui) = φ(i) = ω3
ui

= ωuiωuiωui = ρ(ui)ρ(ui)ρ(ui) =
ρ(ui)ρ(ui)

ρ(u2
i )

,

σ(u2
i , u

2
i ) =

1K
σ(ui, ui)

=
1K
φ(i)

=
ρ(ui)

2

ρ(ui)ρ(ui)
=
ρ(u2

i )ρ(u2
i )

ρ(ui)
, and foru 6= v

σ(u, v) =
ωuωv
ωuv

=
ρ(u)ρ(v)

ρ(uv)
.

Now we can describe the component pMG×G(G). Denote by Or the set of all
S3-orbits of A. Let Or1 be the subset of all S3-orbits which contain pairs of
the form (u, u) and Or2 = Or \ Or1. We know that

pmG×G(G) ∼=
∏
A∈Or

K∗A = (K∗)Mn ,

(here K∗A = K∗). So pmG×G(G) ∼= P1 ⊕ P2, where

P1 =
∏

A∈Or1

K∗A = (K∗)Ln , P2 =
∏

B∈Or2

K∗B = (K∗)Mn−Ln .

The kernel of the epimorphism ψ given by (7) is the subgroup Q ⊂ (K∗)Mn ,
consisting of tuples

µ =
((
µ(u,u)

)
S3(u,u)∈Or1

, (µB)B∈Or2

)
,

where µ(u,u) (S3(u, u) ∈ Or1) belongs to K∗, while σµ(u, v) for (u, v) ∈ B ∈
Or2 are calculated by Proposition 3.1. From this we conclude pMG×G(G) ∼=
(K∗)Mn−Ln , hence

pMG×G(G) ∼= (K∗)(3n−1−1)( 3n−1
2 ).

Thus we have obtained the following. �X

Theorem 3.4. Let G be the elementary abelian 3-group with n generators and
K an algebraically closed field. Then the total component pMG×G(G) of the

partial Schur multiplier of G is isomorphic to (K∗)(3n−1−1)( 3n−1
2 ).
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82 HECTOR PINEDO

Acknowledgements

The author thanks the referee(s) for their many useful suggestions.

References

[1] H. G. G de Lima and H. Pinedo, On the total component of the partial
schur multipier, J. Aust. Math. Soc. 100 (2016), no. 3, 374–402.

[2] M. Dokuchaev, H. G. G. de Lima, and H. Pinedo, Partial representations
and their domains, preprint.

[3] M. Dokuchaev, R. Exel, and P. Piccione, Partial representations and par-
tial group algebras, J. Algebra 226 (2000), 502–532.

[4] M. Dokuchaev and N. Khrypchenko, Partial cohomology of groups, J. Al-
gebra 427 (2015), 251–268.

[5] M. Dokuchaev and C. Polcino Milies, Isomorphisms of partial group rings,
Glasg. Math 409 (2009), 89–105.

[6] M. Dokuchaev and B. Novikov, Partial projective representations and par-
tial actions, J. Pure Appl. Algebra 214 (2010), 251–268.

[7] , Partial projective representations and partial actions ii, J. Pure
Appl. Algebra 214 (2012), 438–455.

[8] M. Dokuchaev, B. Novikov, and H. Pinedo, The partial Schur multiplier
of a group, J. Algebra 392 (2013), 199–225.

[9] M. Dokuchaev and J. J. Simon, Invariants of partial group algebras of
finite p-groups, Contemp. Math 427 (2009), 1–17.

[10] , Isomorphisms of partial group rings,, Comm. Algebra 44 (2016),
680–696.

[11] M. Dokuchaev and N. Zhukavets, On finite degree partial representations
of groups, J. Algebra 274 (2004), 309–334.

[12] B. Novikov and H. Pinedo, On components of the partial schur multiplier,
Comm. Algebra 42 (2014), 2484–2495.

[13] H. Pinedo, On elementary domains of partial projective representations of
groups, Algebra Discrete Math. 15 (2013), no. 1, 63–82.

[14] , A calculation of the partial Schur multiplier of S3, Int. Journal of
Math., Game Theory and Algebra 22 (2014), no. 4, 405–417.
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