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Resumen. Se optimiza la desigualdad inversa de Jensen para funciones con-
vexas en términos de diferencias divididas v́ıa un refinamiento. Se proveen apli-
caciones de la desigualdad de Hölder para medias y para medidas f -divergentes
en teoŕıa de la información.
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1. Introduction

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ– algebra A of
parts of Ω and a countably additive and positive measure µ on A with values
in R ∪ {∞}.

For a µ−measurable function w : Ω → R, with w (x) ≥ 0 for µ – a.e.
(almost every) x ∈ Ω, consider the Lebesgue space Lw (Ω, µ) := {f : Ω→ R, f
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18 S. S. DRAGOMIR

is µ−measurable and
∫

Ω
w (x) |f (x)| dµ (x) < ∞}. For simplicity of notation

we write everywhere in the sequel
∫

Ω
wdµ instead of

∫
Ω
w (x) dµ (x).

An useful result that is used to provide simpler upper bounds for the dif-
ference in Jensen’s inequality is the Gruss’ inequality.

We recall now some facts related to this famous result.

If f, g : Ω → R are µ−measurable functions and f, g, fg ∈ Lw (Ω, µ) , then
we may consider the Čebyšev functional

Tw (f, g) :=

∫
Ω

wfgdµ−
∫

Ω

wfdµ

∫
Ω

wgdµ. (1)

The following result is known in the literature as the Grüss inequality

|Tw (f, g)| ≤ 1

4
(Γ− γ) (∆− δ) , (2)

provided

−∞ < γ ≤ f (x) ≤ Γ <∞, −∞ < δ ≤ g (x) ≤ ∆ <∞ (3)

for µ – a.e. a. x ∈ Ω.

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

quantity.

Note that if Ω = {1, . . . , n} and µ is the discrete measure on Ω, then we
obtain the discrete Grüss inequality∣∣∣∣∣

n∑
i=1

wixiyi −
n∑
i=1

wixi ·
n∑
i=1

wiyi

∣∣∣∣∣ ≤ 1

4
(Γ− γ) (∆− δ) , (4)

provided γ ≤ xi ≤ Γ, δ ≤ yi ≤ ∆ for each i ∈ {1, . . . , n} and wi ≥ 0 with
Wn :=

∑n
i=1 wi = 1.

With the above assumptions, if f ∈ Lw (Ω, µ) then we may define

Dw (f) := Dw,1 (f) :=

∫
Ω

w

∣∣∣∣f − ∫
Ω

wfdµ

∣∣∣∣ dµ. (5)

In 2002, Cerone & Dragomir [5] have obtained the following refinement of the
Grüss inequality (2):

Theorem 1.1. Let w, f, g : Ω → R be µ−measurable functions with w ≥ 0
µ− a.e. (almost everywhere) on Ω and

∫
Ω
wdµ = 1. If f, g, fg ∈ Lw (Ω, µ) and

there exists the constants δ,∆ such that

−∞ < δ ≤ g (x) ≤ ∆ <∞ for µ− a.e. x ∈ Ω, (6)
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A REFINEMENT AND A DIVIDED DIFFERENCE REVERSE 19

then we have the inequality

|Tw (f, g)| ≤ 1

2
(∆− δ)Dw (f) . (7)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller

quantity.

Remark 1.2. The inequality (7) was obtained for the particular case Ω = [a, b]
and the uniform weight w (t) = 1, t ∈ [a, b] by X. L. Cheng and J. Sun in [7].
However, in that paper the authors did not prove the sharpness of the constant
1
2 .

For f ∈ Lp,w (Ω,A, µ) :=
{
f : Ω→ R,

∫
Ω
w |f |p dµ <∞

}
, p ≥ 1 we may

also define

Dw,p (f) :=

[∫
Ω

w

∣∣∣∣f − ∫
Ω

wfdµ

∣∣∣∣p dµ]
1
p

=

∥∥∥∥f − ∫
Ω

wfdµ

∥∥∥∥
Ω,p

(8)

where ‖·‖Ω,p is the usual p-norm on Lp,w (Ω,A, µ), namely,

‖h‖Ω,p :=

(∫
Ω

w |h|p dµ
) 1
p

, p ≥ 1.

Using Hölder’s inequality we get

Dw,1 (f) ≤ Dw,p (f) for p ≥ 1, f ∈ Lp,w (Ω,A, µ) ; (9)

and, in particular for p = 2

Dw,1 (f) ≤ Dw,2 (f) :=

[∫
Ω

wf2dµ−
(∫

Ω

wfdµ

)2
] 1

2

, (10)

if f ∈ L2,w (Ω,A, µ).

For f ∈ L∞ (Ω,A, µ) :=

{
f : Ω→ R, ‖f‖Ω,∞ := ess sup

x∈Ω
|f (x)| <∞

}
we

also have

Dw,p (f) ≤ Dw,∞ (f) :=

∥∥∥∥f − ∫
Ω

wfdµ

∥∥∥∥
Ω,∞

. (11)

The following corollary may be useful in practice.

Corollary 1.3. With the assumptions of Theorem 1.1, we have

|Tw (f, g)| ≤ 1

2
(∆− δ)Dw (f) (12)

≤ 1

2
(∆− δ)Dw,p (f) if f ∈ Lp (Ω,A, µ) , 1 < p <∞;

≤ 1

2
(∆− δ)Dw,∞ (f) if f ∈ L∞ (Ω,A, µ) .
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20 S. S. DRAGOMIR

Remark 1.4. The inequalities in (12) are in order of increasing coarseness. If
we assume that −∞ < γ ≤ f (x) ≤ Γ < ∞ for µ – a.e. x ∈ Ω, then by the
Grüss inequality for g = f we have for p = 2

[∫
Ω

wf2dµ−
(∫

Ω

wfdµ

)2
] 1

2

≤ 1

2
(Γ− γ) . (13)

By (12), we deduce the following sequence of inequalities

|Tw (f, g)| ≤ 1

2
(∆− δ)

∫
Ω

w

∣∣∣∣f − ∫
Ω

wfdµ

∣∣∣∣ dµ (14)

≤ 1

2
(∆− δ)

[∫
Ω

wf2dµ−
(∫

Ω

wfdµ

)2
] 1

2

≤ 1

4
(∆− δ) (Γ− γ)

for f, g : Ω→ R, µ – measurable functions and so that −∞ < γ ≤ f (x) < Γ <
∞, −∞ < δ ≤ g (x) ≤ ∆ < ∞ for µ – a.e. x ∈ Ω. Thus, the inequality (14) is
a refinement of Grüss’ inequality (2).

In order to provide a reverse of the celebrated Jensen’s integral inequality
for convex functions, S.S. Dragomir obtained in 2002 [14] the following result:

Theorem 1.5. Let Φ : [m,M ] ⊂ R→ R be a differentiable convex function on
(m,M) and f : Ω → [m,M ] so that Φ ◦ f , f , Φ′ ◦ f, (Φ′ ◦ f) f ∈ Lw (Ω, µ),
where w ≥ 0 µ-a.e. on Ω with

∫
Ω
wdµ = 1. Then we have the inequality:

0 ≤
∫

Ω

w (Φ ◦ f) dµ− Φ

(∫
Ω

wfdµ

)
(15)

≤
∫

Ω

w (Φ′ ◦ f) fdµ−
∫

Ω

w (Φ′ ◦ f) dµ

∫
Ω

wfdµ

≤ 1

2
[Φ′ (M)− Φ′ (m)]

∫
Ω

w

∣∣∣∣f − ∫
Ω

wfdµ

∣∣∣∣ dµ.
For a generalization of the first inequality when differentiability is not assumed
and the derivative Φ′ is replaced with a selection ϕ from the subdifferential ∂Φ,
see the paper [28] by C.P. Niculescu.
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A REFINEMENT AND A DIVIDED DIFFERENCE REVERSE 21

Remark 1.6. If µ (Ω) < ∞ and Φ ◦ f , f , Φ′ ◦ f, (Φ′ ◦ f) · f ∈ L (Ω, µ), then
we have the inequality:

0 ≤ 1

µ (Ω)

∫
Ω

(Φ ◦ f) dµ− Φ

(
1

µ (Ω)

∫
Ω

fdµ

)
(16)

≤ 1

µ (Ω)

∫
Ω

(Φ′ ◦ f) fdµ− 1

µ (Ω)

∫
Ω

(Φ′ ◦ f) dµ · 1

µ (Ω)

∫
Ω

fdµ

≤ 1

2
[Φ′ (M)− Φ′ (m)]

1

µ (Ω)

∫
Ω

∣∣∣∣f − 1

µ (Ω)

∫
Ω

fdµ

∣∣∣∣ dµ.
Remark 1.7. On making use of (15) and (14), one can state the following
string of reverse inequalities for the Jensen’s difference

0 ≤
∫

Ω

w (Φ ◦ f) dµ− Φ

(∫
Ω

wfdµ

)
(17)

≤
∫

Ω

w (Φ′ ◦ f) fdµ−
∫

Ω

w (Φ′ ◦ f) dµ

∫
Ω

wfdµ

≤ 1

2
[Φ′ (M)− Φ′ (m)]

∫
Ω

w

∣∣∣∣f − ∫
Ω

wfdµ

∣∣∣∣ dµ
≤ 1

2
[Φ′ (M)− Φ′ (m)]

[∫
Ω

wf2dµ−
(∫

Ω

wfdµ

)2
] 1

2

≤ 1

4
[Φ′ (M)− Φ′ (m)] (M −m) .

We notice that the inequality between the first, second and last term from (17)
was proved in the general case of positive linear functionals in 2001 by S.S.
Dragomir in [13].

The discrete case is as follows.

Let ā = (a1, . . . , an), b̄ = (b1, . . . , bn), p̄ = (p1, . . . , pn) be n−tuples of real
numbers with pi ≥ 0 (i ∈ {1, . . . , n}) and

∑n
i=1 pi = 1. If b ≤ bi ≤ B, i ∈

{1, . . . , n}, then one has the inequality∣∣∣∣∣
n∑
i=1

piaibi −
n∑
i=1

piai ·
n∑
i=1

pibi

∣∣∣∣∣ ≤ 1

2
(B − b)

n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣ (18)

≤ 1

2
(B − b)

 n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣
p

1
p

≤ 1

2
(B − b) max

i=1,n

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣ ,
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22 S. S. DRAGOMIR

where 1 < p <∞. The constant 1
2 is sharp in the first inequality.

If more information about the vector ā = (a1, . . . , an) is available, namely,
if there exists the constants a and A such that a ≤ ai ≤ A, i ∈ {1, . . . , n},
then

∣∣∣∣∣
n∑
i=1

piaibi −
n∑
i=1

piai ·
n∑
i=1

pibi

∣∣∣∣∣ ≤ 1

2
(B − b)

n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣ (19)

≤ 1

2
(B − b)

 n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣
2


1
2

≤ 1

4
(B − b) (A− a) ,

with the constants 1
2 and 1

4 best possible.

Corollary 1.8. Let Φ : [m,M ] → R be a differentiable convex function on
(m,M). If xi ∈ [m,M ] and wi ≥ 0 (i = 1, . . . , n) with Wn :=

∑n
i=1 wi = 1,

then one has the reverse of Jensen’s weighted discrete inequality:

0 ≤
n∑
i=1

wiΦ (xi)− Φ

(
n∑
i=1

wixi

)
(20)

≤
n∑
i=1

wiΦ
′ (xi)xi −

n∑
i=1

wiΦ
′ (xi)

n∑
i=1

wixi

≤ 1

2
[Φ′ (M)− Φ′ (m)]

n∑
i=1

wi

∣∣∣∣∣∣xi −
n∑
j=1

wjxj

∣∣∣∣∣∣ .

Remark 1.9. We notice that the inequality between the first and second term
in (20) was proved in 1994 by Dragomir & Ionescu, see [16].
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A REFINEMENT AND A DIVIDED DIFFERENCE REVERSE 23

Remark 1.10. On utilizing (20) and (19) we can state the string of inequalities

0 ≤
n∑
i=1

wiΦ (xi)− Φ

(
n∑
i=1

wixi

)
(21)

≤
n∑
i=1

wiΦ
′ (xi)xi −

n∑
i=1

wiΦ
′ (xi)

n∑
i=1

wixi

≤ 1

2
[Φ′ (M)− Φ′ (m)]

n∑
i=1

wi

∣∣∣∣∣∣xi −
n∑
j=1

wjxj

∣∣∣∣∣∣
≤ 1

2
[Φ′ (M)− Φ′ (m)]

 n∑
i=1

wix
2
i −

(
n∑
i=1

wixi

)2
1/2

≤ 1

4
[Φ′ (M)− Φ′ (m)] (M −m) .

We notice that the inequality between the first, second and last term in (21)
was proved in 1999 by S.S. Dragomir in [12].

Motivated by the above results, a refinement and a new sharp reverse of
Jensen’s integral inequality for convex functions in terms of divided differences
is obtained. Applications for means, the Hölder inequality and for f -divergence
measures in information theory are also provided.

2. A refinement and a new reverse

For a real function g : [m,M ] → R and two distinct points α, β ∈ [m,M ] we
recall that the divided difference of g in these points is defined by

[α, β; g] :=
g (β)− g (α)

β − α
.

In what follows, we assume that w : Ω→ R, with w (x) ≥ 0 for µ – a.e. x ∈ Ω,
is a µ-measurable function with

∫
Ω
wdµ = 1.

Theorem 2.1. Let Φ : I → R be a continuous convex function on the interval
of real numbers I and m,M ∈ R, m < M with [m,M ] ⊂ I̊, I̊ the interior of I.
If f : Ω→ R, is µ−measurable, satisfying the bounds

−∞ < m ≤ f (x) ≤M <∞ for µ− a.e. x ∈ Ω (22)

and such that f,Φ ◦ f ∈ Lw (Ω, µ), then by denoting

fΩ,w :=

∫
Ω

wfdµ ∈ [m,M ]
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24 S. S. DRAGOMIR

and assuming that fΩ,w 6= m,M , we have∣∣∣∣∫
Ω

∣∣Φ (f)− Φ
(
fΩ,w

)∣∣ sgn [f − fΩ,w

]
wdµ

∣∣∣∣ (23)

≤
∫

Ω

(Φ ◦ f)wdµ− Φ
(
fΩ,w

)
≤ 1

2

([
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

])
Dw (f)

≤ 1

2

([
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

])
Dw,2 (f)

≤ 1

4

([
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

])
(M −m) .

The constant 1
2 in the second inequality from (23) is best possible.

Proof. We recall that if Φ : I → R is a continuous convex function on the
interval of real numbers I and α ∈ I then the divided difference function
Φα : I \ {α} → R,

Φα (t) := [α, t; Φ] :=
Φ (t)− Φ (α)

t− α
is monotonic nondecreasing on I \ {α}.

For f as considered in the statement of the theorem we can assume that
that it is not constant µ –almost every where, since for that case the inequality
(23) is trivially satisfied.

For fΩ,w ∈ (m,M), we consider now the function defined µ -almost every-
where on Ω by

ΦfΩ,w
(x) :=

Φ (f (x))− Φ
(
fΩ,w

)
f (x)− fΩ,w

.

We will show that ΦfΩ,w
and h := f − fΩ,w are synchronous µ-a.e. on Ω.

Let x, y ∈ Ω with f (x) , f (y) 6= fΩ,w. Assume that f (x) ≥ f (y), then

ΦfΩ,w
(x) =

Φ (f (x))− Φ
(
fΩ,w

)
f (x)− fΩ,w

(24)

≥
Φ (f (y))− Φ

(
fΩ,w

)
f (y)− fΩ,w

= ΦfΩ,w
(y)

and
h (x) ≥ h (y) (25)

which shows that [
ΦfΩ,w

(x)− ΦfΩ,w
(y)
]

[h (x)− h (y)] ≥ 0. (26)
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A REFINEMENT AND A DIVIDED DIFFERENCE REVERSE 25

If f (x) < f (y), then the inequalities (24) and (25) reverse but the inequality
(26) still holds true.

This show that for µ−a.e. x, y ∈ Ω we have (26) and the claim is proven as
stated.

Utilising the continuity property of the modulus we have

∣∣∣[∣∣∣ΦfΩ,w
(x)
∣∣∣− ∣∣∣ΦfΩ,w

(y)
∣∣∣] [h (x)− h (y)]

∣∣∣
≤
∣∣∣[ΦfΩ,w

(x)− ΦfΩ,w
(y)
]

[h (x)− h (y)]
∣∣∣

=
[
ΦfΩ,w

(x)− ΦfΩ,w
(y)
]

[h (x)− h (y)]

for µ-a.e. x, y ∈ Ω.

Multiplying with w (x) , w (y) ≥ 0 and integrating over µ (x) and µ (y) we
have

∣∣∣∣∫
Ω

∫
Ω

[∣∣∣ΦfΩ,w
(x)
∣∣∣− ∣∣∣ΦfΩ,w

(y)
∣∣∣] (27)

× [h (x)− h (y)]w (x)w (y) dµ (x) dµ (y)|

≤
∫

Ω

∫
Ω

[
ΦfΩ,w

(x)− ΦfΩ,w
(y)
]

× [h (x)− h (y)]w (x)w (y) dµ (x) dµ (y) .

A simple calculation shows that

1

2

∫
Ω

∫
Ω

[∣∣∣ΦfΩ,w
(x)
∣∣∣− ∣∣∣ΦfΩ,w

(y)
∣∣∣] (28)

× [h (x)− h (y)]w (x)w (y) dµ (x) dµ (y)

=

∫
Ω

∣∣∣ΦfΩ,w
(x)
∣∣∣h (x)w (x) dµ (x)

−
∫

Ω

∣∣∣ΦfΩ,w
(x)
∣∣∣w (x) dµ (x)

∫
Ω

w (x)h (x) dµ (x)

=

∫
Ω

∣∣∣∣∣Φ (f (x))− Φ
(
fΩ,w

)
f (x)− fΩ,w

∣∣∣∣∣ [f (x)− fΩ,w

]
w (x) dµ (x)

=

∫
Ω

∣∣Φ (f (x))− Φ
(
fΩ,w

)∣∣ sgn [f (x)− fΩ,w

]
w (x) dµ (x)
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26 S. S. DRAGOMIR

and

1

2

∫
Ω

∫
Ω

[
ΦfΩ,w

(x)− ΦfΩ,w
(y)
]

(29)

× [h (x)− h (y)]w (x)w (y) dµ (x) dµ (y)

=

∫
Ω

ΦfΩ,w
(x)h (x)w (x) dµ (x)

−
∫

Ω

ΦfΩ,w
(x)w (x) dµ (x)

∫
Ω

h (x)w (x) dµ (x)

=

∫
Ω

Φ (f (x))− Φ
(
fΩ,w

)
f (x)− fΩ,w

[
f (x)− fΩ,w

]
w (x) dµ (x)

=

∫
Ω

[
Φ (f (x))− Φ

(
fΩ,w

)]
w (x) dµ (x)

=

∫
Ω

w (Φ ◦ f) dµ− Φ
(
fΩ,w

)
.

On making use of the identities (28) and (29) we obtain from (27) the first
inequality in (23).

Now, since f satisfies the condition (22) then we have that[
m, fΩ,w; Φ

]
=

Φ
(
fΩ,w

)
− Φ (m)

fΩ,w −m
≤ ΦfΩ,w

(x) (30)

≤
Φ (M)− Φ

(
fΩ,w

)
M − fΩ,w

=
[
fΩ,w,M ; Φ

]
for µ−a.e. x ∈ Ω.

Applying now the Grüss’ type inequality (7) and taking into account the
second part of the equality in (28) we have that∫

Ω

w (Φ ◦ f) dµ− Φ
(
fΩ,w

)
≤ 1

2

([
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

]) ∫
Ω

w
∣∣f − fΩ,w

∣∣ dµ
which proves the second inequality in (23).

The other two bounds are obvious from the comments in the introduction.

It is obvious that from (23) we get the following reverse of the first Hermite-
Hadamard inequality for the convex function Φ : [a, b]→ R

1

b− a

∫ b

a

Φ (t) dt− Φ

(
a+ b

2

)
(31)

≤ 1

2

([
a+ b

2
, b; Φ

]
−
[
a,
a+ b

2
; Φ

])
Dw (e)
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where e (t) = t, t ∈ [a, b].

Since a simple calculation shows that

1

2

([
a+ b

2
, b; Φ

]
−
[
a,
a+ b

2
; Φ

])
=

2

b− a

[
Φ (a) + Φ (b)

2
− Φ

(
a+ b

2

)]
and

Dw (e) =
1

b− a

∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣ dt =
1

4
(b− a) ,

and we get from (31) that

0 ≤ 1

b− a

∫ b

a

Φ (t) dt− Φ

(
a+ b

2

)
(32)

≤ 1

2

[
Φ (a) + Φ (b)

2
− Φ

(
a+ b

2

)]
.

To prove the sharpness of the constant 1
2 in the second inequality from (23) we

need now only to show that the equality case in (32) is realized.

If we take, for instance Φ (t) =
∣∣t− a+b

2

∣∣, t ∈ [a, b], then we observe that Φ

is convex and we get in both sides of (32) the same quantity 1
4 (b− a). �X

Corollary 2.2. With the assumptions in Theorem 2.1 and if the lateral deriva-
tives Φ′+ (m) and Φ′− (M) are finite, then we have the inequalities

0 ≤
∫

Ω

(Φ ◦ f)wdµ− Φ
(
fΩ,w

)
(33)

≤ 1

2

([
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

])
Dw (f)

≤ 1

2

(
Φ′− (M)− Φ′+ (m)

)
Dw (f)

≤ 1

2

(
Φ′− (M)− Φ′+ (m)

)
Dw,2 (f)

≤ 1

4

(
Φ′− (M)− Φ′+ (m)

)
(M −m) .

The constant 1
2 in the second and third inequality from (33) is best possible.

Proof. We need to prove only the third inequality.

By the convexity of Φ we have the gradient inequalities

Φ (M)− Φ
(
fΩ,w

)
M − fΩ,w

≤ Φ′− (M)
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and

Φ
(
fΩ,w

)
− Φ (m)

fΩ,w −m
≥ Φ′+ (m) .

These imply that[
fΩ,w,M ; Φ

]
−
[
m, fΩ,w; Φ

]
≤ Φ′− (M)− Φ′+ (m)

and the proof is concluded.

We observe that from (33) we get the following reverse of the Hermite-
Hadamard inequality for the convex function Φ : [a, b]→ R having finite lateral
derivative Φ′+ (a) and Φ′− (b)

1

b− a

∫ b

a

Φ (t) dt− Φ

(
a+ b

2

)
(34)

≤ 1

2

[
Φ (a) + Φ (b)

2
− Φ

(
a+ b

2

)]
≤ 1

8

[
Φ′− (b)− Φ′+ (a)

]
(b− a) .

We observe that the convex function Φ (t) =
∣∣t− a+b

2

∣∣ has finite lateral deriva-
tives

Φ′− (b) = 1 and Φ′+ (a) = −1

and replacing this function in (34) we get in all terms the same quantity
1
4 (b− a).

This proves that the constant 1
2 in the second and third inequality from

(33) is best possible. �X

Remark 2.3. Let Φ : I → R be a continuous convex function on the interval
of real numbers I and m,M ∈ R, m < M with [m,M ] ⊂ I̊, I̊ the interior of
I. Let ā = (a1, . . . , an), p̄ = (p1, . . . , pn) be n−tuples of real numbers with
pi ≥ 0 (i ∈ {1, . . . , n}) and

∑n
i=1 pi = 1. If m ≤ ai ≤ M, i ∈ {1, . . . , n}, with∑n

i=1 piai 6= m,M , then∣∣∣∣∣∣
n∑
i=1

pi

∣∣∣∣∣Φ (ai)− Φ

(
n∑
i=1

piai

)∣∣∣∣∣ sgn
ai − n∑

j=1

pjaj

∣∣∣∣∣∣ (35)

≤
n∑
i=1

piΦ (ai)− Φ

(
n∑
i=1

piai

)

≤ 1

2

([
n∑
i=1

piai,M ; Φ

]
−

[
m,

n∑
i=1

piai; Φ

])
n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣ .
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If the lateral derivatives Φ′+ (m) and Φ′− (M) are finite, then we also have the
inequalities

0 ≤
n∑
i=1

piΦ (ai)− Φ

(
n∑
i=1

piai

)
(36)

≤ 1

2

([
n∑
i=1

piai,M ; Φ

]
−

[
m,

n∑
i=1

piai; Φ

])
n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣
≤ 1

2

(
Φ′− (M)− Φ′+ (m)

) n∑
i=1

pi

∣∣∣∣∣∣ai −
n∑
j=1

pjaj

∣∣∣∣∣∣ .
Remark 2.4. Define the weighted arithmetic mean of the positive n-tuple
x = (x1, . . . , xn) with the nonnegative weights w = (w1, . . . , wn) by

An (w, x) :=
1

Wn

n∑
i=1

wixi

where Wn :=
∑n
i=1 wi > 0 and the weighted geometric mean of the same

n-tuple, by

Gn (w, x) :=

(
n∏
i=1

xwii

)1/Wn

.

It is well know that the following arithmetic mean-geometric mean inequality
holds

An (w, x) ≥ Gn (w, x) .

Applying the inequality (36) for the convex function Φ (t) = − ln t, t > 0 we
have the following reverse of the arithmetic mean-geometric mean inequality

1 ≤ An (w, x)

Gn (w, x)
(37)

≤


(
An(w,x)

m

)An(w,x)−m

(
M

An(w,x)

)M−An(w,x)


1
2An(w,|x−An(w,x)|)

≤ exp

[
1

2

M −m
mM

An (w, |x−An (w, x)|)
]
,

provided that 0 < m ≤ xi ≤M <∞ for i ∈ {1, . . . , n}.

3. Applications for the Hölder Inequality

It is well known that if f ∈ Lp (Ω, µ) , p > 1, where the Lebesgue space Lp (Ω, µ)
is defined by

Lp (Ω, µ) := {f : Ω→ R, f is µ-measurable and

∫
Ω

|f (x)|p dµ (x) <∞}
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and g ∈ Lq (Ω, µ) with 1
p + 1

q = 1 then fg ∈ L (Ω, µ) := L1 (Ω, µ) and the
Hölder inequality holds true

∫
Ω

|fg| dµ ≤
(∫

Ω

|f |p dµ
)1/p(∫

Ω

|g|p dµ
)1/q

.

Assume that p > 1. If h : Ω→ R is µ-measurable, satisfies the bounds

−∞ < m ≤ |h (x)| ≤M <∞ for µ-a.e. x ∈ Ω

and is such that h, |h|p ∈ Lw (Ω, µ), for a µ-measurable function w : Ω → R,
with w (x) ≥ 0 for µ -a.e. x ∈ Ω and

∫
Ω
wdµ > 0, then from (23) we have∣∣∣∣∫

Ω

∣∣∣|h|p − |h|pΩ,w∣∣∣ sgn [|h| − |h|Ω,w]wdµ∣∣∣∣ (38)

≤
∫

Ω
|h|p wdµ∫
Ω
wdµ

−
(∫

Ω
|h|wdµ∫
Ω
wdµ

)p
≤ 1

2

([
|h|Ω,w,M ; (·)p

]
−
[
m, |h|Ω,w; (·)p

])
D̃w (|h|)

≤ 1

2

([
|h|Ω,w,M ; (·)p

]
−
[
m, |h|Ω,w; (·)p

])
D̃w,2 (|h|)

≤ 1

4

([
|h|Ω,w,M ; (·)p

]
−
[
m, |h|Ω,w; (·)p

])
(M −m) ,

where |h|Ω,w :=
∫
Ω
|h|wdµ∫
Ω
wdµ

∈ [m,M ] and

D̃w (|h|) :=
1∫

Ω
wdµ

∫
Ω

w

∣∣∣∣|h| −
∫

Ω
|h|wdµ∫
Ω
wdµ

∣∣∣∣ dµ
while

D̃w,2 (|h|) =

[∫
Ω
w |h|2 dµ∫
Ω
wdµ

−
(∫

Ω
|h|wdµ∫
Ω
wdµ

)2
] 1

2

.

The following result related to the Hölder inequality holds:

Proposition 3.1. If f ∈ Lp (Ω, µ), g ∈ Lq (Ω, µ) with p > 1, 1
p + 1

q = 1 and
there exists the constants γ,Γ > 0 and such that

γ ≤ |f |
|g|q−1 ≤ Γ µ-a.e on Ω,
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then we have

∣∣∣∣∣
∫

Ω

∣∣∣∣∣ |f |p|g|q −
(∫

Ω
|fg| dµ∫

Ω
|g|q dµ

)p∣∣∣∣∣ sgn
[
|f |
|g|q−1 −

∫
Ω
|fg| dµ∫

Ω
|g|q dµ

]
|g|q dµ

∣∣∣∣∣ (39)

≤
∫

Ω
|f |p dµ∫

Ω
|g|q dµ

−
(∫

Ω
|fg| dµ∫

Ω
|g|q dµ

)p
≤ 1

2

([∫
Ω
|fg| dµ∫

Ω
|g|q dµ

,Γ; (·)p
]
−
[
γ,

∫
Ω
|fg| dµ∫

Ω
|g|q dµ

; (·)p
])

D̃|g|q

(
|f |
|g|q−1

)

≤ 1

2

([∫
Ω
|fg| dµ∫

Ω
|g|q dµ

,Γ; (·)p
]
−
[
γ,

∫
Ω
|fg| dµ∫

Ω
|g|q dµ

; (·)p
])

D̃|g|q,2

(
|f |
|g|q−1

)

≤ 1

4

([∫
Ω
|fg| dµ∫

Ω
|g|q dµ

,Γ; (·)p
]
−
[
γ,

∫
Ω
|fg| dµ∫

Ω
|g|q dµ

; (·)p
])

(Γ− γ) ,

where

D̃|g|q

(
|f |
|g|q−1

)
=

1∫
Ω
|g|q dµ

∫
Ω

|g|q
∣∣∣∣∣ |f ||g|q−1 −

∫
Ω
|fg| dµ∫

Ω
|g|q dµ

∣∣∣∣∣ dµ
and

D̃|g|q,2

(
|f |
|g|q−1

)
=

[
1∫

Ω
|g|q dµ

∫
Ω

|f |2

|g|q−2 dµ−
(∫

Ω
|fg| dµ∫

Ω
|g|q dµ

)2
] 1

2

.

Proof. The inequalities (40) follow from (38) by choosing

h =
|f |
|g|q−1 and w = |g|q .

The details are omitted. �X
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Remark 3.2. We observe that for p = q = 2 we have from the first inequality
in (39) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality∣∣∣∣∣∣

∫
Ω

∣∣∣∣∣∣ |f |
2

|g|2
−

(∫
Ω
|fg| dµ∫

Ω
|g|2 dµ

)2
∣∣∣∣∣∣ sgn

[
|f |
|g|
−
∫

Ω
|fg| dµ∫

Ω
|g|2 dµ

]
|g|2 dµ

∣∣∣∣∣∣ (40)

≤
∫

Ω
|f |2 dµ∫

Ω
|g|2 dµ

−

(∫
Ω
|fg| dµ∫

Ω
|g|2 dµ

)2

≤ 1

2
(Γ− γ)

1∫
Ω
|g|2 dµ

∫
Ω

|g|2
∣∣∣∣∣ |f ||g| −

∫
Ω
|fg| dµ∫

Ω
|g|2 dµ

∣∣∣∣∣ dµ
≤ 1

2
(Γ− γ)

 1∫
Ω
|g|2 dµ

∫
Ω

|f |2 dµ−

(∫
Ω
|fg| dµ∫

Ω
|g|2 dµ

)2
 1

2

≤ 1

4
(Γ− γ)

2
,

provided that f, g ∈ L2 (Ω, µ), and there exists the constants γ,Γ > 0 such that

γ ≤ |f |
|g|
≤ Γ µ-a.e on Ω.

4. Applications for f-divergence

One of the important issues in many applications of probability theory is finding
an appropriate measure of distance (or difference or discrimination ) between
two probability distributions. A number of divergence measures for this purpose
have been proposed and extensively studied by Jeffreys [20], Kullback and
Leibler [25], Rényi [31], Havrda and Charvat [18], Kapur [23], Sharma and
Mittal [33], Burbea and Rao [4], Rao [30], Lin [26], Csiszár [9], Ali and Silvey
[1], Vajda [39], Shioya and Da-te [34] and others (see for example [27] and the
references therein).

These measures have been applied in a variety of fields such as: anthropol-
ogy [30], genetics [27], finance, economics, and political science [32], [36], [37],
biology [29], the analysis of contingency tables [17], approximation of proba-
bility distributions [8], [24], signal processing [21], [22] and pattern recognition
[2], [6]. A number of these measures of distance are specific cases of Csiszár f -
divergence and so further exploration of this concept will have a flow on effect
to other measures of distance and to areas in which they are applied.

Assume that a set Ω and the σ−finite measure µ are given. Consider
the set of all probability densities on µ to be P := {p|p : Ω → R, p (x) ≥
0,
∫

Ω
p (x) dµ (x) = 1}.
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Csiszár f−divergence is defined as follows [10]

If (p, q) :=

∫
Ω

p (x) f

[
q (x)

p (x)

]
dµ (x) , p, q ∈ P, (41)

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences
are derived.

The Kullback-Leibler divergence [25] is well known among the information
divergences. It is defined as:

DKL (p, q) :=

∫
Ω

p (x) ln

[
p (x)

q (x)

]
dµ (x) , p, q ∈ P, (42)

where ln is to base e.

In Information Theory and Statistics, various divergences are applied in
addition to the Kullback-Leibler divergence. These are the: variation distance
Dv, Hellinger distance DH [19], χ2−divergence Dχ2 , α−divergence Dα, Bhat-
tacharyya distance DB [3], Harmonic distance DHa, Jeffrey’s distance DJ [20],
triangular discrimination D∆ [38], etc.. . . They are defined as follows:

Dv (p, q) :=

∫
Ω

|p (x)− q (x)| dµ (x) , p, q ∈ P; (43)

DH (p, q) :=

∫
Ω

∣∣∣√p (x)−
√
q (x)

∣∣∣ dµ (x) , p, q ∈ P; (44)

Dχ2 (p, q) :=

∫
Ω

p (x)

[(
q (x)

p (x)

)2

− 1

]
dµ (x) , p, q ∈ P; (45)

Dα (p, q) :=
4

1− α2

[
1−

∫
Ω

[p (x)]
1−α

2 [q (x)]
1+α

2 dµ (x)

]
, p, q ∈ P; (46)

DB (p, q) :=

∫
Ω

√
p (x) q (x)dµ (x) , p, q ∈ P; (47)

DHa (p, q) :=

∫
Ω

2p (x) q (x)

p (x) + q (x)
dµ (x) , p, q ∈ P; (48)

DJ (p, q) :=

∫
Ω

[p (x)− q (x)] ln

[
p (x)

q (x)

]
dµ (x) , p, q ∈ P; (49)

D∆ (p, q) :=

∫
Ω

[p (x)− q (x)]
2

p (x) + q (x)
dµ (x) , p, q ∈ P. (50)

For other divergence measures, see the paper [23] by Kapur or the book on line
[35] by Taneja.
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Most of the above distances (42)− (50), are particular instances of Csiszár
f−divergence. There are also many others which are not in this class (see for
example [35]). For the basic properties of Csiszár f−divergence see [10], [11]
and [39].

Before we apply the results obtained in the previous section we observe that,
by employing the inequalities from (17) we can state the following theorem:

Theorem 4.1. Let f : (0,∞)→ R be a convex function with the property that
f (1) = 0. Assume that p, q ∈ P and there exists the constants 0 < r < 1 <
R <∞ such that

r ≤ q (x)

p (x)
≤ R for µ-a.e. x ∈ Ω. (51)

Then we have

0 ≤ If (p, q) ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
Dv (p, q) (52)

≤ 1

2

[
f ′− (R)− f ′+ (r)

] [
Dχ2 (p, q)

]1/2
≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

Proof. From (17) we have∫
Ω

p (x) f

(
q (x)

p (x)

)
dµ (x)− f

(∫
Ω

q (x) dµ (x)

)
(53)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]
×
∫

Ω

p (x)

∣∣∣∣q (x)

p (x)
−
∫

Ω

q (y) dµ (y)

∣∣∣∣ dµ (x)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]
×

[∫
Ω

p (x)

(
q (x)

p (x)

)2

dµ−
(∫

Ω

q (x) dµ

)2
] 1

2

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
,

and since ∫
Ω

p (x)

∣∣∣∣q (x)

p (x)
−
∫

Ω

q (y) dµ (y)

∣∣∣∣ dµ (x) = Dv (p, q)

and ∫
Ω

p (x)

(
q (x)

p (x)

)2

dµ−
(∫

Ω

q (x) dµ

)2

= Dχ2 (p, q) ,

then we get from (53) the desired result (52). �X
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Remark 4.2. The inequality

If (p, q) ≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
(54)

was obtained for the discrete divergence measures in 2000 by S.S. Dragomir,
see [15].

Theorem 4.3. With the assumptions in Theorem 4.1 we have∣∣I|f |(sgn(·)−1) (p, q)
∣∣ ≤ If (p, q) (55)

≤ 1

2
([1, R; f ]− [r, 1; f ])Dv (p, q)

≤ 1

2
([1, R; f ]− [r, 1; f ])

[
Dχ2 (p, q)

]1/2
≤ 1

4
([1, R; f ]− [r, 1; f ]) (R− r) ,

where I|f |(sgn(·)−1) (p, q) is the generalized f -divergence for the non-necessarily
convex function |f | (sgn (·)− 1) and is defined by

I|f |(sgn(·)−1) (p, q) :=

∫
Ω

∣∣∣∣f (q (x)

p (x)

)∣∣∣∣ sgn [q (x)

p (x)
− 1

]
p (x) dµ. (56)

Proof. From the inequality (23) we have∣∣∣∣∫
Ω

∣∣∣∣f (q (x)

p (x)

)∣∣∣∣ sgn [q (x)

p (x)
− 1

]
p (x) dµ.

∣∣∣∣ (57)

≤
∫

Ω

p (x) f

(
q (x)

p (x)

)
dµ (x)− f

(∫
Ω

q (x) dµ (x)

)
≤ 1

2
([1, R; f ]− [r, 1; f ])

×
∫

Ω

p (x)

∣∣∣∣q (x)

p (x)
−
∫

Ω

q (y) dµ (y)

∣∣∣∣ dµ (x)

≤ 1

2
([1, R; f ]− [r, 1; f ])

×

[∫
Ω

p (x)

(
q (x)

p (x)

)2

dµ−
(∫

Ω

q (x) dµ

)2
] 1

2

≤ 1

4
([1, R; f ]− [r, 1; f ]) (R− r) ,

from where we get the desired result (55). �X

The above results can be utilized to obtain various inequalities for the di-
vergence measures in Information Theory that are particular instances of f -
divergence.
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Consider the Kullback-Leibler divergence

DKL (p, q) :=

∫
Ω

p (x) ln

[
p (x)

q (x)

]
dµ (x) , p, q ∈ P,

which is an f -divergence for the convex function f : (0,∞)→ R, f (t) = − ln t.

If p, q ∈ P such that there exists the constants 0 < r < 1 < R <∞ with

r ≤ q (x)

p (x)
≤ R for µ-a.e. x ∈ Ω, (58)

then we get from (52) that

DKL (p, q) ≤ R− r
2rR

Dv (p, q) (59)

≤ R− r
2rR

[
Dχ2 (p, q)

]1/2 ≤ (R− r)2

4rR

and from (55) that

DKL (p, q) ≤ 1

2
Dv (p, q) ln

(
1

RR−1r1−r

)
(60)

≤ 1

2

[
Dχ2 (p, q)

]1/2
ln

(
1

RR−1r1−r

)
≤ 1

4
(R− r) ln

(
1

RR−1r1−r

)
.
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