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Transitivity of the Induced Map Cn(f)
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Abstract. A map f : X → X, where X is a continuum, is said to be transitive
if for each pair U and V of nonempty open subsets ofX, there exists k ∈ N such
that fk(U)∩V 6= ∅. In this paper, we show relationships between transitivity
of f and its induced maps Cn(f) and Fn(f), for some n ∈ N. Also, we present
conditions on X such that given a map f : X → X, the induced function
Cn(f) : Cn(X) → Cn(X) is not transitive, for any n ∈ N.
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Resumen. Una función continua f : X → X, definida en un continuo X, se
dice transitiva si para cada U y V abiertos diferentes del vaćıo de X, existe
n ∈ N, tal que fn(U) ∩ V 6= ∅. En este art́ıculo mostramos relaciones entre
la transitividad de f y las funciones inducidas Cn(f) y Fn(f), para alguna
n ∈ N. Además, presentamos condiciones sobre X para que dada una función
f : X → X, la función inducida Cn(f) : Cn(X) → Cn(X) no sea transitiva,
para ninguna n ∈ N.

Palabras y frases clave. Transitividad, función inducida, continuos, hiperespa-
cios de continuos, producto simétrico, continuos tipo λ, dendritas.

1. Introduction

A map f : X → X, where X is a continuum, is said to be transitive if for each
pair U and V of nonempty open subsets of X, there exists k ∈ N such that
fk(U) ∩ V 6= ∅. In [8], Robert Devaney says that a map f : X → X, where X
is a metric space, is chaotic on X provided that: i) f has sensitive dependence

235



236 JAVIER CAMARGO, CRISTIAN GARĆıA & ÁRTICO RAMı́REZ

on initial conditions, ii) the periodic points of f are dense in X, and iii) f is
transitive. In [3], it is shown that if the periodic points of f are dense and f is
transitive, then f has sensitive dependence on initial conditions; i. e., condition
i) is not necessary in Devaney’s definition. Also, it is known that if f is defined
on [0, 1], then f is chaotic if and only if f is transitive [4]. Therefore, transitivity
is an important property in chaotic dynamical systems.

A continuum is a compact, connected and nonempty metric space. Let X be
a continuum and let n ∈ N. The n−fold hyperspace of X, denoted by Cn(X), is
defined as the set Cn(X) = {A ⊂ X : A is closed, nonempty and has at most
n components}. The n−fold symmetric product, denoted by Fn(X), is defined
as Fn(X) = {A ⊂ X : A is nonempty and has at most n points}. Given a map
f : X → X and n ∈ N, it is possible to define the induced maps Cn(f) :
Cn(X) → Cn(X) and Fn(f) : Fn(X) → Fn(X). In Section 3 of this paper,
after the introduction and preliminaries, we study all possible relationships
between the following three statements:

(1) f is transitive.

(2) Cn(f) is transitive, for some n ∈ N.

(3) Fn(f) is transitive, for some n ∈ N.

In Section 4, we prove that if either X contains a free arc, X is a continuum
of type λ or X is a dendrite, then the induced map Cn(f) : Cn(X) → Cn(X)
is not transitive, for any n ∈ N. The transitivity of C1(f) was studied by G.
Acosta, A. Illanes and H. Mendez in [1].

2. Preliminaries

A continuum is a compact, connected and nonempty metric space. An arc is
any space homeomorphic to the closed interval [0, 1]. Also, if h : [0, 1] → α
is a homeomorphism, then p = h(0) and q = h(1) are called the end points
of the arc α; one says that α is an arc from p to q. Given an arc α with end
points p and q in a continuum X, we say that α is a free arc if α r {p, q} is
an open subset of X. A map is assumed to be a continuous function. If X is
a continuum, then given A ⊂ X, the closure and the interior are denoted by
A and Int(A), respectively. A dendrite is a locally connected continuum which
contains no homeomorphic copy of S1 = {z ∈ C : ||z|| = 1}. A continuum
X is said to be irreducible provided that there exist p, q ∈ X such that no
proper subcontinuum of X contains {p, q}; we say that X is irreducible between
p and q. A map between continua f : X → Y is said to be monotone provided
that f−1(y) is connected for each y ∈ Y . A continuum X which is irreducible
between p and q is said to be of type λ if there is a monotone map m : X → [0, 1]
such that m(p) = 0, m(q) = 1 and Int

(
m−1(t)

)
= ∅ for each t ∈ [0, 1] (see [11]

for a complete investigation about continua of type λ).
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Given a continuum X and a positive integer n, the n−fold hyperspace of
X, denoted by Cn(X), is defined as the set Cn(X) = {A ⊂ X : A is closed,
nonempty and has at most n components} topologized by the Hausdorff met-
ric [10, Definition 2.1]. It is well known that Cn(X) is an arcwise connected
continuum [13, Corollary 1.8.12]. The n− fold symmetric product, denoted by
Fn(X), is defined for Fn(X) = {A ∈ Cn(X) : A has at most n points} [6].
Fn(X) is endowed with the relative topology as a subspace of Cn(X).

Let X be a continuum and let D1, . . . , Dk be nonempty subsets of X. We
define 〈D1, . . . , Dk〉 =

{
A ∈ Cn(X) : A ⊂ ∪ki=1Di and A∩Di 6= ∅ for each i ∈

{1, . . . , k}
}

. Let B =
{
〈U1, . . . , Uk〉 : Ui is open and k ∈ N

}
; B is a base for the

topology generated by the Hausdorff metric on Cn(X) [13, Theorem 1.8.16].

Let f : X → Y be a map between continua and let n ∈ N. Then the function
Cn(f) : Cn(X) → Cn(Y ) given by Cn(f)(A) = f(A) for each A ∈ Cn(X), is
called the induced map between the n−fold hyperspaces Cn(X) and Cn(Y ).
The map Fn(f) : Fn(X)→ Fn(Y ) given by Fn(f) = Cn(f)|Fn(X) is called the
induced map between the n−fold symmetric products Fn(X) and Fn(Y ). In [10,
p. 188], it is shown that Cn(f) is a map. Regarding induced maps, the reader
may see [7, 10, 9, 13].

Given a map f : X → X and n ∈ N, fn means the composition f ◦f ◦· · ·◦f ,
n times. If n = 0, f0 is the identity map. Let x ∈ X. The orbit of x, denoted by
O(x, f), is the set of points O(x, f) =

{
fn(x) : n ∈ N∪{0}

}
. The ω−limit of x,

denoted by ω(x, f), is given as the set of accumulation points of the sequence
O(x, f). It is easy to see that ω(x, f) = ω(fk(x), f) for each k ∈ N.

Definition 2.1. Let X be a continuum and let f : X → X be a map. We say
that f is transitive provided that for each pair of nonempty open subsets U
and V of X, there exists n ∈ N, such that fn(U) ∩ V 6= ∅.

Definition 2.2. Let X be a continuum and let f : X → X be a map. We say
that f is exact provided that for each nonempty open subset U of X, there
exists n ∈ N, such that fn(U) = X.

The next claim follows easily from Definitions 2.1 and 2.2.

Claim 2.3. Let f : X → X be a map. If f is exact then f is transitive.

Theorem 2.4. [5, Proposition 39, p.155] Let X be a continuum and let f :
X → X be a map. Then f is transitive if and only if there exists x ∈ X such
that ω(x, f) = X.

3. On Cn(f), Fn(f) and f

Given a continuum X and a map f : X → X, we study the relationships
between the following three statements:

(1) f is transitive.
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(2) Cn(f) is transitive, for some n ∈ N.

(3) Fn(f) is transitive, for some n ∈ N.

Lemma 3.1. Let X be a continuum, let n ∈ N and let f : X → X be an exact
map. If B ∈ Cn(X) is such that Int(B) 6= ∅, then ω

(
B,Cn(f)

)
= {X}.

Proof. Since f is exact, there exists k ∈ N such that fk
(

Int(B)
)

= X. Thus,

fm(B) = X for each m ≥ k. Therefore, ω
(
B,Cn(f)

)
= {X}. �X

Notice that if f : S1 → S1 is defined by f(z) = ze2πiθ, where θ ∈ RrQ, then
f is transitive and the induced map Fn(f) is not transitive, for any n ∈ Nr{1}
[9, Example 3.8]. Therefore, (1) does not imply (3).

Claim 3.2. Let X be a continuum and let n ∈ N. The family
B0 =

{
〈U1, . . . , Us〉 ∩ Fn(X) : Ui is open of X and s ≤ n

}
, is a base for the

topology on Fn(X).

Proof. Let 〈V1, . . . , Vk〉 be an open subset of Cn(X) such that 〈V1, . . . , Vk〉 ∩
Fn(X) 6= ∅. Let {x1, . . . , xs} ∈ 〈V1, . . . , Vk〉 ∩ Fn(X). Note that s ≤ n. Let
Ui =

⋂{
Vj : xi ∈ Vj , j ∈ {1, . . . , k}

}
, for each i ∈ {1, . . . , s}. It is not difficult

to see that {x1, . . . , xs} ∈ 〈U1, . . . , Us〉∩Fn(X) ⊂ 〈V1, . . . , Vk〉∩Fn(X) and the
proof is complete. �X

Proposition 3.3. Let X be a continuum, let n ∈ N and let f : X → X be a
map. If f is exact, then Fn(f) is transitive.

Proof. Let 〈U1, . . . , Ul〉 ∩ Fn(X) and 〈V1, . . . , Vs〉 ∩ Fn(X) be open subsets of
Fn(X) such that l, s ≤ n (Claim 3.2). Suppose that l ≤ s ≤ n. Since f is
exact, there exists k ∈ N such that fk(Ui) = X for each i ∈ {1, . . . , l}. Hence,
fk(Ui) ∩ Vj 6= ∅ for each i ∈ {1, . . . , l} and j ∈ {1, . . . , s}. Let xi ∈ Ui such
that fk(xi) ∈ Vi, and let xj ∈ Ul such that fk(xj) ∈ Vj , for each i ∈ {1, . . . , l}
and j ∈ {l + 1, . . . , s}. It is clear that {x1, . . . , xs} ∈ 〈U1, . . . , Ul〉 ∩ Fn(X) and
Fn(f)k

(
{x1, . . . , xs}

)
∈ 〈V1, . . . , Vs〉∩Fn(X). Therefore, Fn(f)k

(
〈U1, . . . , Ul〉∩

Fn(X)
)
∩
(
〈V1, . . . , Vs〉 ∩ Fn(X)

)
6= ∅. Similarly, we conclude the result if we

assume that s ≤ l ≤ n. �X

The following shows that neither (1) nor (3) implies (2).

Proposition 3.4. There exists a transitive map f : X → X such that Fn(f)
is transitive, for each n ∈ N, and Cn(f) is not transitive, for any n ∈ N.

Proof. Let f : S1 → S1 be defined by f(z) = z2, for each z ∈ S1. It is not
difficult to see that f is exact. Hence, Fn(f) is transitive, for each n ∈ N, by
Proposition 3.3.
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Let n ∈ N and let B ∈ Cn(X). We prove that ω
(
B,Cn(f)

)
6= Cn(X).

Suppose first that B ∈ Fn(X). Then ω
(
B,Cn(f)

)
= ω

(
B,Fn(f)

)
⊂ Fn(X).

Thus, ω
(
B,Cn(f)

)
6= Cn(X). Now, we assume that B ∈ Cn(X) r Fn(X).

Hence, Int(B) 6= ∅. Therefore, by Lemma 3.1, ω
(
B,Cn(f)

)
= {X}. The proof

now follows from Theorem 2.4. �X

Proposition 3.5. Let X be a continuum, let n ∈ N and let f : X → X be a
map. If B ∈ Cn(X)

(
or B ∈ Fn(X)

)
is such that ω

(
B,Cn(f)

)
= Cn(X)

(
or

ω
(
B,Fn(f)

)
= Fn(X), respectively

)
and p ∈ B, then ω(p, f) = X.

Proof. Let U be an open subset ofX. Since ω
(
B,Cn(f)

)
= Cn(X), there exists

k ∈ N such that fk(B) ∈ 〈U〉. Thus, fk(B) ⊂ U and fk(p) ∈ U . Therefore,
ω(p, f) = X. �X

Theorem 3.6. Let X be a continuum and let f : X → X be a map. If either
Cn(f) or Fn(f) is transitive, for some n ∈ N, then f is transitive.

Proof. It follows from Proposition 3.5 and Theorem 2.4. Another proof can
be found in [2, Theorem 4]. �X

Theorem 3.7 completes all possible relationships between (1), (2) and (3).

Theorem 3.7. Let X be a continuum, let n ∈ N and let f : X → X be a map.
If Cn(f) is transitive then Fn(f) is transitive.

Proof. Suppose that Cn(f) is transitive. Then, by Theorem 2.4, there exists
B ∈ Cn(X) such that ω

(
B,Cn(f)

)
= Cn(X).

We prove that B ∈ Cn(X)rCn−1(X). Let U1, . . . , Un be pairwise disjoint,
open subsets of X. Since ω

(
B,Cn(f)

)
= Cn(X), there is a positive integer k

such that fk(B) ∈ 〈U1, . . . , Un〉. Thus, fk(B) has exactly n components and
B ∈ Cn(X) r Cn−1(X).

Let B1, . . . , Bn be the components of B. Let xi ∈ Bi for each i ∈ {1, . . . , n}.
Let A = {x1, . . . , xn} ∈ Fn(X). We prove that ω

(
A,Fn(f)

)
= Fn(X). Let

V1, . . . , Vs be pairwise disjoint open subsets of X, s ≤ n. Since ω
(
B,Cn(f)

)
=

Cn(X), fk(B) ∈ 〈V1, . . . , Vs〉, for some k ∈ N. Observe that each component
of fk(B) intersects fk(A). Thus, fk(A) ∈ 〈V1, . . . , Vs〉. Since fk(A) ∈ Fn(X),
fk(A) ∈ 〈V1, . . . , Vs〉 ∩ Fn(X) and ω

(
A,Fn(f)

)
= Fn(X). Therefore, by Theo-

rem 2.4, Fn(f) is transitive. �X

We finish this section with a question.

Question 3.8. Let X be a continuum and let f : X → X be a map. If m 6= n
and Cn(f) is transitive, then does it follow that Cm(f) is transitive?
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4. Transitivity of Cn(f)

In [1, Teorema 7.18], it is shown a map f : [0, 1]N → [0, 1]N such that the
induced map C1(f) is transitive. It is not known, another map f : X → X,
where X is a continuum, such that C1(f) is transitive. In particular, we do
not know if there exists a map f defined on a finite-dimensional continuum
such that C1(f) is transitive [1, Question 7.20]. In this section, with similar
arguments to those given in [1], we present some particular cases when the
induced map Cn(f) cannot be transitive, for any n ∈ N.

The proof of the following lemma is the same as the one given in [1, Theo-
rem 4.3] and will be omitted.

Lemma 4.1. Let X be a continuum, let n ∈ N and let f : X → X be a map.
If B ∈ Cn(X) is such that ω

(
B,Cn(f)

)
= Cn(X), then Int

(
fk(B)

)
= ∅, for

each k ∈ N.

Theorem 4.2. Let X be a continuum and let f : X → X be a map. If X
contains a free arc, then the induced map Cn(f) : Cn(X) → Cn(X) is not
transitive, for any n ∈ N.

Proof. Let n ∈ N. Suppose that Cn(f) is transitive. Then, by Theorem 2.4,
there exists B ∈ Cn(X) such that ω

(
B,Cn(f)

)
= Cn(X). Let α ⊂ X be a

free arc with end points p and q. Let U and V be nonempty, disjoint open
subsets of α r {p, q}. Let W1, . . . ,Wn−1 be nonempty, pairwise disjoint and
open subsets of X r α. Observe that U =

〈
α r {p, q}, U, V,W1, . . . ,Wn−1

〉
is

a nonempty open subset of Cn(X). Since ω
(
B,Cn(f)

)
= Cn(X), fk(B) ∈ U

for some k ∈ N. Notice that W1, . . . ,Wn−1 and α r {p, q} are n nonempty
pairwise disjoint open subsets of X. Thus, fk(B) has exactly n components.
Let B0 be the component of fk(B) such that B0 ⊂ αr{p, q}. Since B0∩U 6= ∅,
B0∩V 6= ∅ and U∩V = ∅, we have that Int(B0) 6= ∅. Hence, Int

(
fk(B)

)
6= ∅,

contradicting Lemma 4.1. Therefore, Cn(f) is not transitive. �X

The next lemma is a simple result that follows from the definition of con-
tinuum of type λ.

Lemma 4.3. Let X be a continuum of type λ, where X is irreducble between p
and q and let m : X → [0, 1] be a monotone map such that m(p) = 0,m(q) = 1
and Int

(
m−1(t)

)
= ∅ for each t ∈ [0, 1]. If K is a subcontinuum of X such

that m(K) = [a, b], where a < b, then Int(K) 6= ∅.

Proof. Since m is monotone, both m−1
(
[0, a]

)
and m−1

(
[b, 1]

)
are proper sub-

continua of X. Notice that, m−1
(
[0, a]

)
∩m−1

(
[b, 1]

)
= ∅, m−1(a)∩K 6= ∅ and

m−1(b)∩K 6= ∅. Thus, m−1
(
[0, a]

)
∪K ∪m−1

(
[b, 1]

)
is a continuum such that

{p, q} ⊂ m−1
(
[0, a]

)
∪ K ∪ m−1

(
[b, 1]

)
. Since X is irreducible between p and
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q, we have that X = m−1
(
[0, a]

)
∪K ∪m−1

(
[b, 1]

)
. Therefore, m−1(a, b) ⊂ K

and Int(K) 6= ∅. �X

Corollary 4.4. Let X be a continuum of type λ, where X is irreducble between
p and q, let m : X → [0, 1] be a monotone map such that m(p) = 0, m(q) = 1
and Int

(
m−1(t)

)
= ∅ for each t ∈ [0, 1], and let n ∈ N. If A ∈ Cn(X) is such

that m(A) has a nondegenerate component, then Int(A) 6= ∅.

Proof. Let A ∈ Cn(X) be such that m(A) has a nondegenerate component.
Then A has a component A0 such that m(A0) is nondegenerate. Now, the
corollary follows from Lemma 4.3. �X

Theorem 4.5. Let X be a continuum and let f : X → X be a map. If X is a
continuum of type λ, then Cn(f) is not transitive, for any n ∈ N.

Proof. Let n ∈ N. Suppose that Cn(f) is transitive. Then, by Theorem 2.4,
there exists B ∈ Cn(X) such that ω

(
B,Cn(f)

)
= Cn(X). We show that

Int
(
fk(B)

)
6= ∅, for some k ∈ N.

Let m : X → [0, 1] be a monotone map such that m(p) = 0,m(q) = 1 and
Int
(
m−1(t)

)
= ∅ for each t ∈ [0, 1], where X is irreducible between p and q. Let

0 = t0 < t1 < · · · < tn−1 < a < b < tn = 1. Let Ui = m−1
(
(ti−1, ti)

)
, for each

i ∈ {1, . . . , n}. Notice that U1, . . . , Un are nonempty, pairwise disjoint open
subsets of X. Let V = m−1

(
(tn−1, a)

)
and W = m−1

(
(b, tn)

)
be disjoint open

subsets of Un. Observe that U = 〈U1, . . . , Un, V,W 〉 is a nonempty open subset
of Cn(X). Since ω

(
B,Cn(f)

)
= Cn(X), fk(B) ∈ U for some k ∈ N. Thus,

fk(B) has exactly n components. Let B0 be the component of fk(B) such that
B0 ⊂ Un. Since B0 ∩ V 6= ∅, B0 ∩W 6= ∅ and V ∩W = ∅, we have that
[a, b] ⊂ m(B0) is nondegenerate. Therefore, by Corollary 4.4, Int

(
fk(B)

)
6= ∅,

which contradicts Lemma 4.1. Therefore, Cn(f) is not transitive. �X

In the remainder of this paper, we will focus on maps which are defined on
dendrites. A cut point of X is a point p such that X r {p} is not connected.
We write Cut(X) to represent the family of cut points of a dendrite X.

Proposition 4.6. Let X be a dendrite, let n ∈ N and let f : X → X be a
map. If p ∈ Cut(X) and B ∈ Cn(X) is such that ω

(
B,Cn(f)

)
= Cn(X), then

p ∈ fk(B), for some k ∈ N.

Proof. Let U and V be nonempty, disjoint and open subsets of X such that
X r {p} = U ∪ V . The sets U ∪ {p} and V ∪ {p} are subcontinua of X, by [12,
Theorem 4, p. 133]. Also, by [12, Theorem 5, p. 173], there exist subcontinua
M and N of X, such that {p} (M ( U ∪{p} and {p} ( N ( V ∪{p}. Hence,
M ∪N is a continuum, (M ∪N)∩U 6= ∅, (M ∪N)∩ V 6= ∅ and M ∪N 6= X.
It is not difficult to show that there are nonempty open subsets W1, . . . ,Wn−1

and W of X such that:
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(1) M ∪N ⊂W and X rW 6= ∅;

(2) ∪n−1
i=1 Wi ⊂ X rW ;

(3) Wi ∩Wj = ∅ for i 6= j.

Let U =
〈
W,U ∩W,V ∩W,W1, . . . ,Wn−1

〉
be an open subset of Cn(X). If

xi ∈ Wi, for each i ∈ {1, . . . , n− 1}, then M ∪N ∪ {x1, . . . , xn−1} ∈ U . Thus,
U 6= ∅.

Since ω
(
B,Cn(f)

)
= Cn(X), fk(B) ∈ U , for some k ∈ N. Thus, fk(B) has

exactly n components. Let B0 be the component of fk(B) such that B0 ⊂W .
Since B0 ∩ (U ∩W ) 6= ∅, B0 ∩ (V ∩W ) 6= ∅, we have that p ∈ B0. Therefore,
p ∈ fk(B) and our proof is complete. �X

If a, b ∈ X and X is a dendrite, then there exists a unique arc α joining
a and b in X. We will denote that α by ab. The idea of the following proof is
similar to [1, Theorem 6.2].

Theorem 4.7. Let X be a continuum and let f : X → X be a map. If X is a
dendrite, then the induced map Cn(f) : Cn(X)→ Cn(X) is not transitive, for
any n ∈ N.

Proof. Let n ∈ N. Suppose that Cn(f) is transitive. Then, by Theorem 2.4,
there exists B ∈ Cn(X) such that ω

(
B,Cn(f)

)
= Cn(X). The family Cut(X)

has uncountably infinitely many points, by [14, Theorem 10.8]. Let p ∈ Cut(X).
Then, there exists k ∈ N such that p ∈ fk(B), by Proposition 4.6. Thus,
since ω

(
fk(B), Cn(f)

)
= Cn(X), by Proposition 3.5, ω(p, f) = X. Therefore,

f l(p) 6= fs(p) for each l 6= s. Since p ∈ Cut(X) and f(p) 6= p, we have that
there exists a component W of X r {p} such that f(p) ∈ W . Observe that
L = W ∪ {p} is a proper subcontinuum of X, by [12, Theorem 4, p. 133].

Claim 4.8. There exists q1 ∈ pf(p), q1 6= p such that q1 ∈ Cut(X) and
q1 ∈ pf(q1) ∩ f(pq1).

Let r : X → pf(p) be the first point map defined in [14, Lemma 10.24]; i.
e., r(x) ∈ pf(p) is such that r(x) is a point of any arc in X from x to any point
of pf(p). Thus,

(
r ◦ f |pf(p)

)
: pf(p) → pf(p) is a map and C1 =

{
z ∈ pf(p) :(

r ◦ f |pf(p)

)
(z) = z

}
is a nonempty closed subset of X. Let q1 ∈ C1 be the

closest point to p in pf(p). Since p 6= f(p) = r
(
f(p)

)
, q1 6= p.

Since r
(
f(q1)

)
= q1, it is clear that q1 ∈ pf(q1)∩f(q1)f(p). Also, f(q1)f(p) ⊂

f(pq1). Thus, q1 ∈ pf(q1) ∩ f(pq1). We show that q1 ∈ Cut(X). Suppose that
q1 6= f(p). Hence, q1 ∈ pf(p) r

{
p, f(p)

}
and q1 ∈ Cut(X), by [14, Theo-

rem 10.7]. Similarly, assume that q1 = f(p). Since ω(p, f) = X, f
(
f(p)

)
6= f(p)

and f
(
f(p)

)
/∈ pf(p). Therefore, q1 ∈ pf

(
f(p)

)
r
{
p, f
(
f(p)

)}
and, by [14,

Theorem 10.7], q1 ∈ Cut(X).
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Claim 4.9. The arc pq1 ⊂ fm(B), for some m ∈ N.

Since p, q1 ∈ Cut(X), there are a, b ∈ X such that pq1 ⊂ ab r {a, b} [14,
Theorem 10.7]. Let U1, . . . , Un, V1 and V2 be nonempty, connected and open
subsets of X such that:

(1) U1, . . . , Un are pairwise disjoint subsets of X.

(2) ab ⊂ U1.

(3) V1 ∪ V2 ⊂ U1 r pq1, a ∈ V1, b ∈ V2 and V1 ∩ V2 = ∅.

Since X is a dendrite, it is not difficult to check that U1, . . . , Un, V1 and
V2 do indeed exist. Also, U = 〈V1, V2, U1, . . . , Un〉 is nonempty open subset of
Cn(X). Since ω

(
B,Cn(f)

)
= Cn(X), fm(B) ∈ U for some m ∈ N. Thus, since

U1, . . . , Un are nonempty, pairwise disjoint subsets of X, we have that there
exists a component B0 of fm(B) such that B0 ⊂ U1. Furthermore, B0∩Vi 6= ∅
for each i ∈ {1, 2}. Therefore, since X is hereditarily unicohenret and (3),
pq1 ⊂ B0 and pq1 ⊂ fm(B).

Observe that q1 ∈ f(pq1), by Claim 4.8. Hence,
{
q1, f(q1)

}
⊂ f(pq1) ⊂

fm+1(B), by Claim 4.9. Since f(pq1) is connected, q1 and f(q1) belong to the
same component of fm+1(B). Therefore, q1f(q1) ⊂ fm+1(B).

The proof of the following claim is similar to the proof of Claim 4.8; we
have to use the cut point q1 instead of p.

Claim 4.10. There exists q2 ∈ q1f(q1), q2 6= q1 such that q2 ∈ Cut(X) and
q2 ∈ q1f(q2) ∩ f(q1q2).

Notice that q2f(q2) ⊂ fm+2(B), q1f(q1) ⊂ L and q2f(q2) ⊂ L. Then we
can inductively construct a sequence (qi)

∞
i=1 ⊂ Cut(X) such that qif(qi) ⊂

L ∩ fm+i(B), for each i ∈ N. Let L = 〈L,X〉 ⊂ Cn(X). Since Cn(X) r L =
〈X r L〉 is open, L is a proper nonempty, closed subset of Cn(X). Further-
more, fm+i(B) ∈ L for each i ∈ N. Thus, ω

(
fm(B), Cn(f)

)
⊂ L. Since

ω
(
B,Cn(f)

)
= ω

(
fm(B), Cn(f)

)
, we contradict the fact that ω

(
B,Cn(f)

)
=

Cn(X). Therefore, Cn(f) is not transitive. �X
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