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Abstract. The k-generalized Fibonacci sequence
(
F

(k)
n

)
n≥2−k

is the linear

recurrent sequence of order k, whose first k terms are 0, . . . , 0, 1 and each
term afterwards is the sum of the preceding k terms. Two or more terms of a
k-generalized Fibonacci sequence are said to be in the same power of two-class
if the largest odd factors of the terms are identical. In this paper, we show
that for each k ≥ 2, there are only two kinds of power of two-classes in a
k-generalized Fibonacci sequence: one, whose terms are all the powers of two
in the sequence and the other, with a single term.
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Resumen. La sucesión k–generalizada de Fibonacci
(
F

(k)
n

)
n≥2−k

es la sucesión

lineal recurrente de orden k, cuyos primeros k términos son 0, . . . , 0, 1 y cada
término posterior es la suma de los k términos precedentes. Se dice que dos o
más términos de una sucesión k–generalizada de Fibonacci están en la misma
clase de potencia de dos si los mayores factores impares de los términos son
idénticos. En este trabajo, se muestra que para cada k ≥ 2, sólo hay dos tipos
de clases de potencias de dos en una secuencia k–generalizada de Fibonacci:
una, cuyos términos son todas las potencias de dos en la sucesión y la otra,
con un único término.

Palabras y frases clave. Números de Fibonacci k-generalizados, cotas inferiores
para formas lineales en logaritmos de números algebraicos.
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1. Introduction

Let k ≥ 2 be an integer. One generalization of the Fibonacci sequence, which is

sometimes called the k-generalized Fibonacci sequence
(
F

(k)
n

)
n≥−(k−2)

, is given

by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, for all n ≥ 2,

with the initial conditions F
(k)
2−k = F

(k)
3−k = · · · = F

(k)
0 = 0 and F

(k)
1 = 1. We

refer to F
(k)
n as the nth k-generalized Fibonacci number or k-Fibonacci number.

Note that for k = 2, we have F
(2)
n = Fn, the familiar nth Fibonacci number.

For k = 3 such numbers are called Tribonacci numbers. They are followed by
the Tetranacci numbers for k = 4, and so on. An interesting fact about the
k–generalized Fibonacci sequence is that the k values after the k initial values
are powers of two. Indeed,

F
(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1. (1)

This is, F
(k)
n = 2n−2, for all 2 ≤ n ≤ k + 1. Furthermore, Bravo and Luca

showed in [1] that F
(k)
n < 2n−2 for all n ≥ k + 2. They also showed that

except for the trivial cases, there are no powers of two in any k–generalized
Fibonacci sequence for any k ≥ 3, and that the only nontrivial power of two in
the Fibonacci sequence is F6 = 8.

For k ≥ 2, we say that distinct k–Fibonacci numbers F
(k)
m and F

(k)
n are in

the same power of two-class if there exist positive integers x and y such that

2xF
(k)
m = 2yF

(k)
n . That is to say that the largest odd factors are identical. The

sequence
(
F

(k)
n

)
n≥1

is partitioned into disjoint classes by means of the above

equivalence relation. A power of two-class containing more than one term of
the sequence is called non–trivial. This definition is an analogy to the one of
square-class in Fibonacci and Lucas numbers given by Ribenboim [9].

In this paper, we characterize the power of two–class of k–generalized Fi-
bonacci numbers for each k. This leads to analyzing the Diophantine equation

F (k)
m = 2sF (k)

n , with n, m ≥ 1, k ≥ 2 and s ≥ 1. (2)

Equations analogous to (2) have been studied for the case of Fibonacci
numbers:

Fm = 2x2Fn, Fm = 3x2Fn, Fm = 6x2Fn.

For more details, see [7].

Before getting to the details, we give a brief description of our method. We
first use lower bounds for linear forms in logarithms of algebraic numbers to
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bound n, m and s polynomially in terms of k. When k is small, we use the
theory of continued fractions by means of a variation of a result of Dujella
and Pethö to lower such bounds to cases that allow us to treat our problem
computationally. When k is large, we use the fact that the dominant root of
the k-generalized Fibonacci sequence is exponentially close to 2, to substitute
this root by 2 in our calculations with linear form in logarithms obtaining in
this way a simpler linear form in logarithms which allows us to bound k and
then complete the calculations.

2. Some Results on k−Fibonacci Numbers

The characteristic polynomial of the k-generalized Fibonacci sequence is

Ψk(x) = xk − xk−1 − · · · − x− 1.

The above polynomial has just one root α(k) outside the unit circle. It is
real and positive so it satisfies α(k) > 1. The other roots are strictly inside the
unit circle. In particular, Ψk(x) is irreducible in Q[x]. Lemma 2.3 in [6] shows
that

2
(
1− 2−k

)
< α(k) < 2, for all k ≥ 2. (3)

This inequality was rediscovered by Wolfram [10].

We put α := α(k). This is called the dominant root of Ψk(x) for reasons that
we present below. Dresden and Du [3], gave the following Binet-like formula

for F
(k)
n

F (k)
n =

k∑
i=1

α(i) − 1

2 + (k + 1)(α(i) − 2)
α(i)n−1

, (4)

where α = α(1), . . . , α(k) are the roots of Ψk(x). Dresden and Du also showed
that the contribution of the roots which are inside the unit circle to the right–
hand side of (4) is very small. More precisely, he proved that∣∣∣∣∣F (k)

n − α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣∣ < 1

2
, for all n ≥ 1. (5)

Moreover, Bravo and Luca (see [1]) extended a well known property of the
Fibonacci numbers, by proving that

αn−2 ≤ F (k)
n ≤ αn−1, (6)

for all n ≥ 1 and k ≥ 2. Further, the sequences(
F (k)
n

)
n≥1

,
(
F (k)
n

)
k≥2

and
(
α(k)

)
k≥2

(7)

are non decreasing. Particularly, α ≥ 2
(
1− 2−3

)
= 1.75 for all k ≥ 3.
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We consider the function

fk(z) :=
z − 1

2 + (k + 1)(z − 2)
, for k ≥ 2.

If z ∈
(
2(1 − 2−k), 2

)
, a straightforward verification shows that ∂zfk(z) < 0.

Indeed,

∂zfk(z) =
1− k(

2 + (k + 2)(z − 2)
)2 < 0, for all k ≥ 2.

Thus, from (3), we conclude that

1

2
= fk(2) ≤ fk(α) ≤ fk

(
2
(
1− 2−k

))
=

2k−1 − 1

2k − k − 1
≤ 3

4
,

for all k ≥ 3. Even more, since f2

(
(1 +

√
5)/2

)
= 0.72360 . . . < 3/4, we deduce

that fk(α) ≤ 3/4 holds for all k ≥ 2. On the other hand, if z = α(i) with
i = 2, . . . , k, then

∣∣fk(α(i)
)∣∣ < 1 for all k ≥ 2. Indeed, as

∣∣α(i)
∣∣ < 1, then∣∣α(i) − 1

∣∣ < 2 and
∣∣2 + (k + 1)(α(i) − 2)

∣∣ > k − 1. Further, f2

(
(1 −

√
5)/2

)
=

0.2763 . . .

Finally, in order to replace α by 2, we use an argument that is due to Bravo
and Luca (see [1]). If 1 ≤ r < 2k/2, then

αr = 2r + δ and fk(α) = fk(2) + η

with |δ| < 2r+1/2k/2 and |η| < 2k/2k. Thus,

∣∣fk(α)αr − 2r−1
∣∣ < 2r

2k/2
+

2r+1k

2k
+

2r+2k

23k/2
.

Furthermore, if k > 10 then 4k/2k < 1/2k/2 and 8k/23k/2 < 1/2k/2. Hence,

∣∣fk(α)αr − 2r−1
∣∣ < 2r+1

2k/2
. (8)

3. Preliminary Considerations

We completely solve (2), which in turn solves the main problem of this paper:
characterize the power of two–classes of k–generalized Fibonacci numbers. We
suppose that (m,n, s, k) is a solution of (2) with k ≥ 2, m > n and s positive
integers.

We first consider the Diophantine equation (2) with Fibonacci numbers.
Carmichael’s Primitive Divisor Theorem (see [2]) states that for m ≥ 13, the
mth Fibonacci number Fm has at least one odd prime factor that is not a factor
of any previous Fibonacci number. So, (2) is impossible whenever m > 12.
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When 1 ≤ n < m ≤ 12, a simple check of the first twelve terms of the Fibonacci
sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 shows that (2) has only the
following solutions.

(m,n, s, k) ∈
{

(6, 1, 3, 2), (6, 2, 3, 2), (6, 3, 2, 2), (3, 1, 1, 2), (3, 2, 1, 2)
}
.

We assume k ≥ 3 and consider the following cases which determine all solutions
of (2) for n ≤ k + 1:

(i) n = 1 and m ≤ k + 1. The solutions of (2) are given by

(m,n, s, k) = (t+ 2, 1, t, k), with 1 ≤ t ≤ k − 1.

(ii) 2 ≤ n < m ≤ k + 1. From (1), the possible solutions of (2) are

(m,n, s, k) = (v + t, v, t, k), with 2 ≤ v ≤ k and 1 ≤ t ≤ k − 1.

(iii) 2 ≤ n ≤ k + 1 < m. (2) has no solutions. Indeed, we have that F
(k)
m =

2n+s−2. However, it is known from [1] that when m > k + 1, F
(k)
m is not

a power of 2.

In the remaining of this article, we prove the following theorem.

Theorem 3.1. The Diophantine equation (2) has no positive integer solutions
(m,n, s, k) with k ≥ 3, m > n ≥ k + 2 and s ≥ 1.

To conclude this section, we present an inequality relating to m, n and s.
By equations (2), (3) and (6), we have that

αn+s−2 < 2sαn−2 ≤ 2sF (k)
n = F (k)

m ≤ αm−1

and
αm−2 ≤ F (k)

m = 2sF (k)
n ≤ 2sαn−1.

Thus,
s ≤ m− n ≤ 1.3s+ 1, (9)

where we used the fact that log 2/ logα < log 2/ log 1.75 < 1.3. Estimate (9) is
essential for our purpose.

4. A Inequality for m and s in Terms of k

From now on, k ≥ 3, m > n ≥ k + 2 and s ≥ 1 are integers satisfying (2), so
n ≥ 5 and m ≥ 6. In order to find upper bounds for m and s, we use a result of
E. M. Matveev on lower bound for nonzero linear forms in logarithms algebraic
numbers.
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Let γ be an algebraic number of degree d over Q with minimal primitive
polynomial over the integers

f(X) := a0

d∏
i=1

(
X − γ(i)

)
∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of γ is given
by

h(γ) :=
1

d

(
log a0 +

d∑
i=1

log max
{∣∣γ(i)

∣∣, 1}).
One of the most cited results today when it comes to the effective resolution

of exponential Diophantine equations is the following theorem of Matveev [8].

Theorem 4.1. Let K be a number field of degree D over Q, γ1, . . . , γt be
positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb11 · · · γ
bt
t − 1 and B ≥ max

{
|b1|, . . . , |bt|

}
.

Let Ai ≥ max
{
Dh(γi), | log γi|, 0.16

}
be real numbers, for i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
− 1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)
.

By using formula (4) and estimate (5), we can write

F (k)
m = fk(α)αm−1 + ek(m), where |ek(m)| < 1/2. (10)

Hence, equation (2) can be rewritten as

fk(α)αm−1 − 2sfk(α)αn−1 = 2sek(n)− ek(m). (11)

Dividing both sides of (11) by 2sfk(α)αn−1 and taking absolute values, we get∣∣2−sαm−n − 1
∣∣ < 2s + 1

2s+1fk(α)αn−1
<

1.5

1.75n−1
, (12)

where we have used the facts: fk(α) > 1/2, α > 1.75 for all k ≥ 3 and s ≥ 1.

We apply Theorem 4.1 with the parameters t := 2, γ1 := 2, γ2 := α,
b1 := −s, b2 := m− n. Hence, Λ1 := 2−sαm−n − 1 and from (12) we have that

|Λ1| <
1.5

1.75n−1
. (13)

The algebraic number field K := Q(α) contains γ1 and γ2 and has degree k
over Q; i.e., D = k. To see that Λ1 6= 0, we note that otherwise we would get
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the relation αm−n = 2s. Conjugating this relation by an automorphism σ of
the Galois group of Ψk(x) over Q with σ(α) = α(i) for some i > 1, we get that(
α(i)

)m−n
= 2s. Then 2s =

∣∣α(i)
∣∣m−n < 1, which is impossible. Thus, Λ1 6= 0.

Since h(γ1) = log 2, and by the properties of the roots of Ψk(x), h(γ2) =
(logα)/k < (log 2)/k. We can take A1 := 0.7k and A2 := 0.7. Finally, from (9),
we can take B := 1.3s+ 1.

Theorem 4.1 gives the following lower bound for |Λ1|

exp
(
− 1.4× 305 × 24.5k2(1 + log k)

(
1 + log(1.3s+ 1)

)
(0.7k)(0.7)

)
,

which is smaller than 1.5/1.75n−1 by inequality (13). Taking logarithms in both
sides and performing the respective calculations, we get that

n < 1 +
log 1.5

log 1.75
+

1.4× 305 × 24.5 × 0.72 × 6

log 1.75
k3 log k log(2s)

< 4.1× 109k3 log k log(2s),

(14)

where we used that 1 + log k < 2 log k and 1 + log(1.3s+ 1) < 3 log(2s), for all
k ≥ 3 and s ≥ 1.

Going back to equation (2), we rewrite it as

2sF (k)
n − fk(α)αm−1 = ek(m). (15)

Dividing both sides of (15) by fk(α)αm−1 and taking into account identity (10)
and the fact that fk(α) > 1/2, we get∣∣∣2sF (k)

n fk(α)−1α−(m−1) − 1
∣∣∣ < 1

2fk(α)αm−1
<

1

1.75m−1
. (16)

We apply again Theorem 4.1 with the parameters t := 4, γ1 := 2, γ2 :=

F
(k)
n , γ3 := fk(α), γ4 := α, b1 := s, b2 := 1, b3 := −1, b4 := −(m − 1). So,

Λ2 := 2sF
(k)
n fk(α)−1α−(m−1) − 1, and from (16)

|Λ2| <
1

1.75m−1
. (17)

As in the previous application of Theorem 4.1, we have K := Q(α), D := k,
A1 := 0.7k and A4 := 0.7. Moreover, we can take B := m− 1, since s ≤ m− n
by inequality (9).

We are left to determine A2 and A3. From inequality (6), we obtain that

h(γ2) = log(F
(k)
n ) < n log 2, so we can take A2 := 0.7nk. Now, knowing that

Q(α) = Q
(
fk(α)

)
and

∣∣fk(α(i)
)∣∣ < 1, for i = 1, . . . , k and all k ≥ 3, we conclude
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that h(γ3) = (log a0)/k, where a0 is the leading coefficient of minimal primitive
polynomial over the integers of γ3. Putting

gk(x) =

k∏
i=1

(
x− fk

(
α(i)

))
∈ Q[x]

and N = NK/Q
(
2 + (k + 1)(α − 2)

)
∈ Z, we conclude that N gk(x) ∈ Z[x]

vanishes at fk(α). Thus, a0 divides |N |. But

|N | =

∣∣∣∣∣
k∏

i=1

(
2 + (k + 1)

(
α(i) − 2

))∣∣∣∣∣ = (k + 1)k

∣∣∣∣∣
k∏

i=1

(
2− 2

k + 1
− α(i)

)∣∣∣∣∣
= (k + 1)k

∣∣∣∣∣Ψk

(
2− 2

k + 1

)∣∣∣∣∣
=

2k+1kk − (k + 1)k+1

k − 1
< 2kkk.

Therefore, h(γ3) < log(2k) < 2 log k for all k ≥ 3. Hence, we can take A3 :=
2k log k.

Let us see that Λ2 6= 0. Indeed, if Λ2 = 0, then 2sF
(k)
n = fk(α)αm−1,

and from here, applying NK/Q and taking value absolutes, we obtain that∣∣NK/Q
(
fk(α)

)∣∣ is integer. However

∣∣NK/Q
(
fk(α)

)∣∣ = fk(α)

k∏
i=2

∣∣∣fk(α(i)
)∣∣∣ < 1.

Therefore, Λ2 6= 0.

The conclusion of Theorem 4.1 and the inequality (17) yield, after taking
logarithms, the following upper bound for m− 1

m− 1 <
1.4× 307 × 44.5 × 0.73 × 2

log 1.75
k5n log k(1 + log k)

(
1 + log(m− 1)

)
<

1.4× 307 × 44.5 × 0.73 × 2× 4

log 1.75
k5n(log k)2 log(m− 1),

where we used that 1 + log(m− 1) < 2 log(m− 1) holds for all m ≥ 6. The last
inequality leads to

m− 1 < 7.7× 1013 k5n(log k)2 log(m− 1). (18)

Using inequality (14) to replace n in Inequality (18), we obtain

m− 1

log(m− 1)
< 7.7× 1013 k5

(
4.1× 109k3 log k log(2s)

)
(log k)2

< 3.2× 1023 k8(log k)3 log(2s).

(19)
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We next present an analytical argument that allows us to extract from (19)
an upper bound for m depending on k and s. This argument will also be used
later.

Let h ≥ 1 be an integer. Whenever A ≥ 2(h+ 1) log(h+ 1),

x

(log x)h
< A yields x < (h+ 1)hA(logA)h. (20)

Indeed, we note that the function x 7→ x/(log x)h is increasing for all x > eh.
The case h = 1 was proved by Bravo and Luca [1], so we assume that h ≥ 2.
Arguing by contradiction, say that x ≥ (h+1)hA(logA)h, then x > eh because
A > e. Hence,

A >
x

(log x)h
≥ (h+ 1)hA(logA)h(

log
(
(h+ 1)hA(logA)h

))h .
After performing the respective simplifications, we get that A/ logA < h + 1
and applying the argument with h = 1, we obtain that A < 2(h+ 1) log(h+ 1),
which is false.

Applying the argument (20) in inequality (19) with h := 1, x := m− 1 and
A := 3.2× 1023 k8(log k)3 log(2s), we obtain

m− 1 < 2
(
3.2 × 1023 k8(log k)3 log(2s)

)
log

(
3.2 × 1023 k8(log k)3 log(2s)

)
< 5.9 × 1025 k8(log k)3 log(2s) log `.

(21)

Here, we used the fact that log
(
3.2× 1023 k8(log k)3 log(2s)

)
< 92 log `, where

` := max{k, 2s}.
We record what we have just proved in inequalities (14) and (21).

Lemma 4.2. If (m,n, s, k) is a solution of (2) with k ≥ 3 and m > n ≥ k+ 2,
then both inequalities

n < 4.1× 109k3 log k log(2s),

m < 6× 1025 k8(log k)3 log(2s) log `
(22)

hold with ` := max{k, 2s}.

In order to find an upper bound for m on k only, we look at `. If ` = k,
then from (22), we conclude that

n < m < 6× 1025 k8(log k)5. (23)

If ` = 2s, then from (22), we get

n < m < 6× 1025 k8(log k)3
(

log(2s)
)2
. (24)
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We return to the inequality (15) and divide both sides by 2sF
(k)
n . From

identity (10), we have∣∣∣2−s(F (k)
n )−1fk(α)αm−1 − 1

∣∣∣ < 1(
2F

(k)
n

)
2s

<
1

2s
. (25)

One more time, we apply Theorem 4.1 taking the parameters t := 4, γ1 := 2,

γ2 := F
(k)
n , γ3 := fk(α), γ4 := α, b1 := −s, b2 := −1, b3 := 1, b4 := m − 1. In

this instance, Λ3 := 2−s
(
F

(k)
n

)−1

fk(α)αm−1 − 1 and from (25)

|Λ3| <
1

2s
. (26)

Also, as before, we have K := Q(α), D := k, A1 := 0.7k, A2 := 0.7nk, A3 :=
2k log k, A4 := 0.7, B := m, and Λ3 6= 0.

Combining the conclusion of Theorem 4.1 with inequality (26), we get, after
taking logarithms, the following upper bound for s

s <
1.4× 307 × 44.5 × 0.73 × 2

log 2
k5(1 + log k)(1 + logm)n log k

<
1.4× 307 × 44.5 × 0.73 × 2× 4

log 2
k5(log k)2n logm

< 6.3× 1013k5(log k)2n logm.

(27)

Thus, given that k ≤ 2s, by (22), we obtain that n < 4.1× 109k3 log k log(2s),
logm < 99 log(2s), and by substituting these in the previous bound (27) on s,
we conclude that

2s(
log(2s)

)2 < 6× 1025k8(log k)3.

Taking h := 2, x := 2s and A := 6×1025k8(log k)3, we have from (20) an upper
bound on 2s depending only on k

2s <3.4× 1028k8(log k)5, (28)

where we used the fact that inequality log
(
6× 1025k8(log k)3

)
< 66 log k holds

for all k ≥ 3.

Hence, log(2s) < 72 log k for all k ≥ 3, and returning to inequality (24), we
get

n < m < 3.2× 1029 k8(log k)5. (29)

Combining inequalities (23), (28) and (29), we get the following result.
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Lemma 4.3. If (m,n, s, k) is a solution of (2) with k ≥ 3 and m > n ≥ k+ 2,
then both inequalities

n < m < 3.2× 1029 k8(log k)5 and s < 1.7× 1028k8(log k)5 (30)

hold.

5. The Case of Small k

We next treat the case k ∈ [3, 360] showing that in such range the equation (2)
has no nontrivial solutions.

We make use several times of the following result, which is a slight variation
of a result due to Dujella and Pethö which itself is a generalization of a result
of Baker and Davenport (see [1] and [4]). For a real number x, we put ‖x‖ =
min

{
|x− n| : n ∈ Z

}
for the distance from x to the nearest integer.

Lemma 5.1. Let M be a positive integer, let p/q be a convergent of the con-
tinued fraction of the irrational γ such that q > 6M , and let A,B, µ be some
real numbers with A > 0 and B > 1. Let ε := ‖µq‖ −M‖γq‖. If ε > 0, then
there is no solution to the inequality

0 < mγ − n+ µ < AB−l,

in positive integers m,n and l with

m ≤M and l ≥ log(Aq/ε)

logB
.

Before continuing, we find a absolute bound for n by arguments of Dio-
phantine approximation. Returning to inequality (12), we take

Γ1 := (m− n) log(α)− s log 2,

and conclude that

|Λ1| =
∣∣eΓ1 − 1

∣∣ < 1.5

1.75n−1
<

1

3
, (31)

because n ≥ 4. Thus, e|Γ1| < 3/2 and from (13), given that Λ1 6= 0,

0 < |Γ1| ≤ e|Γ1|
∣∣eΓ1 − 1

∣∣ < 4

1.75n
.

Dividing the above inequality by s logα, we obtain∣∣∣∣ log 2

logα
− m− n

s

∣∣∣∣ < 4

1.75ns logα
<

7.2

1.75ns
. (32)
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Now, for 3 ≤ k ≤ 360, we put γk := log 2/ logα, compute its continued fraction[
a

(k)
0 , a

(k)
1 , a

(k)
2 , . . .

]
and its convergents p

(k)
1 /q

(k)
1 , p

(k)
2 /q

(k)
2 , . . . In each case we

find an integer tk such that q
(k)
tk

> 1.7× 1028k8(log k)5 > s and take

aM := max
3≤k≤360

{a(k)
i : 0 ≤ i ≤ tk}.

Then, from the known properties of continued fractions, we have that∣∣∣∣γk − m− n
s

∣∣∣∣ > 1

(aM + 2)s2
. (33)

Hence, combining the inequalities (32) and (33) and taking into account that
aM + 2 < 3.3× 10108 (confirmed by Mathematica) and s < 3.4× 1052 by (30),
we obtain

1.75n < 8.1× 10161,

so n ≤ 667.

As noted above, s < 3.4 × 1052. In order to reduce this bound, we apply
Lemma 5.1. Put

Γ3 := m logα− s log 2 + (log fk(α)− logα− logF (k)
n ).

Returning to Λ3 given by the expression (25), we have that eΓ3 − 1 = Λ3 and
Γ3 6= 0 since Λ3 6= 0, so we distinguish the following cases. If Γ3 > 0, then
eΓ3 − 1 > 0 and

0 < Γ3 < eΓ3 − 1 <
1

2s
.

Replacing Γ3 and dividing both sides by log 2, we get

0 < m

(
logα

log 2

)
− s+

log fk(α)− logα− logF
(k)
n

log 2
<

1.5

2s
. (34)

We put

γ :=
logα

log 2
, µ :=

log fk(α)− logα− logF
(k)
n

log 2
,

and
A := 1.5, B := 2.

The fact that α is a unit in OK ensures that γ is an irrational number. Even
more, γk is transcendental by the Gelfond-Schneider theorem. Inequality (34)
can be rewritten as

0 < mγ − s+ µ < AB−s. (35)
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Now, we take M := b3.2 × 1029k8(log k)5c which is an upper bound on m
by (30), and apply Lemma 5.1 for each k ∈ [3, 360] and n ∈ [k + 2, 667] to in-
equality (35). A computer search with Mathematica showed that the maximum
value of blog(Aq/ε)/ logBc is 982, which is an upper bound on s, according to
Lemma 5.1.

Continuing with the case Γ3 < 0, from (25), we have that
∣∣eΓ3 − 1

∣∣ < 1/2

and therefore e|Γ3| < 2. Moreover,

0 < |Γ3| < e|Γ3| − 1 < e|Γ3|
∣∣eΓ3 − 1

∣∣ < 2

2s
.

As in the case Γ3 > 0, after replacing |Γ3| and divide by logα we obtain

0 < sγ −m+ µ < AB−s, (36)

where now

γ :=
log 2

logα
, µ :=

logF
(k)
n + logα− log fk(α)

logα
,

and
A := 3.6, B := 2.

Lastly, we take M := b1.7× 1028k8(log k)5c, which is an upper bound on s
by (30), and apply again Lemma 5.1 for each k ∈ [3, 360] and n ∈ [k + 2, 667]
to inequality (36). With the help of Mathematica, we found that the maximum
value of blog(Aq/ε)/ logBc is 984, which is an upper bound on s, according to
Lemma 5.1.

Thus, gathering all the information obtained above and considering the
inequality (9), our problem is reduced to search solutions for (2) in the following
range

k ∈ [3, 360], n ∈ [k + 2, 667], s ∈ [1, 984], m ∈ [n+ 1, n+ 1.3s+ 1]. (37)

A computer search with Mathematica revealed that there are no solutions
to the equation (2) in the ranges given in (37). With this, we completed the
analysis of the case when k is small.

6. The Case of Large k

In this section, we assume that k > 360 and show that the Equation (2) has
no nontrivial solutions. We have, from (30), that

n < m < 3.2× 1029k8(log k)5 < 2k/2.

Then, using inequality (8), with r = m− 1 and r = n− 1, and inequality (11),
we conclude that
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∣∣2m−2 − 2n−2+s
∣∣ <∣∣2m−2 − fk(α)αm−1
∣∣+
∣∣fk(α)αm−1 − 2sfk(α)αn−1

∣∣+ 2s
∣∣fk(α)αn−1 − 2n−2

∣∣
<

2m

2k/2
+

2s + 1

2
+

2n+s

2k/2
.

Now, dividing both sides by 2m−2, we get

|1− 2n+s−m| < 4

2k/2
+

1

2m−1−s +
1

2m−1
+

4

2m−n−s2k/2
. (38)

On the other hand, by (9), the left–hand side in (38) is greater than or
equal to 1/2 unless m = n + s in which case it is zero. However, the equality

m = n+ s is not possible, otherwise, since F
(k)
m+1 = 2F

(k)
m − F (k)

m−k (see [5]), we

would get that F
(k)
m = F

(k)
n+s < 2sF

(k)
n , which is a contradiction.

So, in summary, from (38) and the previous observation, we have that

4

2k/2
+

1

2m−1−s +
1

2m−1
+

4

2m−n−s2k/2
>

1

2
. (39)

Inequality (39) is a fact impossible, given that:

(i) k > 360 and m ≥ 6;

(ii) m− n− s ≥ 1 and m− 1− s ≥ n ≥ 4.

Thus, we have in fact showed that there are no solutions (m,n, s, k) to (2) with
k > 360 which completes the proof of Theorem 3.1.

7. Conclusions

We note that according to the observations from Section 3 and Theorem 3.1, it
follows that there are only two types of power of two–classes in k–generalized
Fibonacci numbers, namely, one corresponding to all powers of two and the
other with a single term. Or equivalently, there are no k–generalized Fibonacci
numbers having the same largest odd factor greater than one.
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