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1. Introduction

Bridgeland proved in [3] a classification of surfaces under derived categories.
In this paper we study partial results in the classification of surfaces under
twisted derived categories. First of all we check that an equivalence of cate-
gories Φ : Db(X,α) → Db(Y, β) preserves the Kodaira dimension, which fol-
lows from an isomorphism between the canonical rings R(X) and R(Y ) induced
by the equivalence (Proposition 22). This was proved by Orlov in [15] for the
untwisted case. We show that the Brauer group of a surface X of Kodaira
dimension k(X) = −∞ is zero (Proposition 36), which implies that there is
nothing new in the classification of surfaces of this kind. For surfaces of general
type, that means of Kodaira dimension 2, we have that an equivalence between
twisted derived categories as above implies an isomorphism between the sur-
faces (Proposition 35) just as in the untwisted case. Now if we are in the case
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206 HERMES MART́ıNEZ

of surfaces of Kodaira dimension 1, we have that from an equivalence as above
with β = 0 we get that X can be described as a moduli space defined over
Y (Proposition 46). We remark that we do not treat the case of surfaces of
Kodaira dimension 0 in this paper. Finally we show that for an elliptic surface
X with a section and Kodaira dimension 1 there are no nonisomorphic sur-
faces Y derived equivalent to X that belongs to the Shafarevich group Sh(X)
(Proposition 52).

2. Basic Facts

Let X be a smooth projective variety. We define the cohomological Brauer
group of X to be the torsion part of the cohomology group H2

(
X,O∗X

)
in the

analytic topology (or, in H2
et

(
X,O∗X) for the étale topology). We denote it by

Br′(X).

Definition 1. A twisted variety (X,α) consists of a variety X together with
a Brauer class α ∈ Br′(X).

If (X,α) is a twisted variety, α ∈ Br′(X) can be represented as a C̆ech
2-cocycle on an open analytic cover {Ui}i∈I of X by sections

αijk ∈ Γ
(
Ui ∩ Uj ∩ Uk,O∗X

)
.

We say that F is an α-twisted quasi-coherent (coherent) sheaf if this consists
of a pair

(
Fi, {ϕij}i,j∈I

)
where Fi is a quasi-coherent (coherent) sheaf on Ui

and
ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj

is an isomorphism satisfying the following conditions (i.e. the α-twisted cocycle
conditions):

i) ϕii = id,

ii) ϕij = ϕ−1
ji ,

iii) ϕjk ◦ ϕij ◦ ϕki = αijk. id.

If for every i ∈ I, Fi is only a sheaf of OX -modules on Ui, we say that
F is an α-twisted sheaf and we denote by Mod(X,α) the abelian category of
α-twisted sheaves.

Remark 2. If X is a smooth projective variety (defined over an arbitrary field)
and α ∈ H2

et

(
X,O∗X

)
, the abelian category Coh(X,α) contains a locally free

α-twisted coherent sheaf.

Theorem 3. ([13, App. C]) Let A,B be abelian categories, and let F : A → B
be an additive, left exact functor. Assume that A has enough injectives, so that
the derived functor

RF : D+(A)→ D+(B)
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TWISTED DERIVED CATEGORIES OF SURFACES 207

exists. Let X• be a complex in D+(A). Then there exists a spectral sequence
Ei,jk such that

Ei,j2 = RiF
(
Hj(X•)

)
⇒ Hi+j

(
RF (X•)

)
.

We recall some spectral sequences defined in the derived category Db(X)
on a smooth variety X (cf. [11, Ch. II and III]):

Ep,q2 = Extp
(
F•,Hq(E•)

)
⇒ Extp+q(F•, E•), (1)

Ep,q2 = Extp
(
H−q(F•), E•

)
⇒ Extp+q(F•, E•), (2)

Ep,q2 = T or−p
(
Hq(F•), E•

)
⇒ T or−(p+q)(F•, E•), (3)

for any E•,F• in Db(X).

We see now some applications of this spectral sequences in twisted derived
categories. Let (X,α) be a smooth variety and P ∈ Db(X,α). We use the
spectral sequence (2) to show that the support of the object P remains the
same under taking its dual. Take a locally free α−1-twisted sheaf L on X and
consider the spectral sequence

Extp
(
H−q(P ⊗ L),OX

)
⇒ Extp+q(P ⊗ L,OX) = Hp+q

(
P∨ ⊗ L∨

)
.

Hence

supp
(
P∨ ⊗ L∨

)
=⋃

supp
(
Hi
(
P∨ ⊗ L∨

))
⊆
⋃

supp
(
Hi(P ⊗ L)

)
= supp(P ⊗ L).

Since L is a locally free α−1-twisted sheaf,

supp
(
P∨
)

= supp
(
P∨ ⊗ L∨

)
⊆ supp(P ⊗ L) = supp(P)

and from
(
P∨
)∨ ∼= P, we get the other inclusion. Thus

supp(P) = supp
(
P∨
)
.

Let A be a k-linear category. A Serre functor is a k-linear equivalence
S : A → A such that for any two objects A,B ∈ A there exists an isomorphism

ηA,B : Hom(A,B)
∼−−→ Hom

(
B,S(A)

)∨
of k-vector spaces which is functional in A and B.

Example 4. Let X be a smooth projective variety. The functor

S : Db(X)→ Db(X)

E 7→ E ⊗ ωX
[

dim(X)
]
,

where ωX is the dualizing sheaf of X, is a Serre functor.
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Example 5. If (X,α) is a twisted smooth projective variety, the functor

S(X,α) : Db(X,α)→ Db(X,α)

E 7→ E ⊗ ωX
[

dim(X)
]
,

is a Serre functor.

Definition 6. A collection of objects Ω in the category Db(X,α) is a spanning
class of (or spans) Db(X,α) if for all G ∈ Db(X,α) the following equivalent
conditions hold:

i) If Hom(F,G[i]) = 0 for all F ∈ Ω and all i ∈ Z then G ∼= 0,

ii) If Hom(G[i], F ) = 0 for all F ∈ Ω and all i ∈ Z then G ∼= 0.

The equivalence in the last definition follows immediately by using the Serre
functor S(X,α). The proof of the following proposition is identical to that of the
untwisted case (cf. [11, Prop. 3.16]).

Proposition 7. Let (X,α) be a twisted smooth projective variety. The objects
of the form k(x) with x ∈ X a closed point span the derived category Db(X,α).

Proof. We need to show that for a given E• ∈ Db(X,α) there exists a point
x ∈ X and an integer n such that Hom

(
E•, k(x)[n]

)
6= 0. By the untwisted

version of the proposition we have that Hom
(
E• ⊗ L, k(x)[n]

)
6= 0 where L is

a α−1-locally free sheaf and this implies that Hom
(
E•, k(x)[n]

)
6= 0. �X

The following lemma follows as in ([11, Lemma 3.31]). We only need to ten-
sor any element of Db(S, α) by a α−1-locally free sheaf to reduce the statement
to the untwisted case.

Lemma 8. Let π : S → T be a morphism of schemes, and for each point t ∈ T ,
let it : St → S denote the inclusion of the fibre π−1(t) in S. Let E be an object
of Db(S, α) such that for all t ∈ T , Li∗t (E) is a sheaf on St. Then E is a twisted
sheaf on S, flat over T .

The last lemma has a useful application. Suppose ΦP : Db(X,α)→ Db(Y, β)
is a FM equivalence (see Definition 13) such that for all x ∈ X there exists
f(x) ∈ Y with ΦP

(
k(x)

)
= k

(
f(x)

)
. Hence

P|{x}×Y ∼= k
(
f(x)

)
(4)

for all x ∈ X and then by the previous lemma, P is a twisted sheaf (which is
X-flat). By taking local sections of P we define a morphism X → Y and by
the isomorphism (4), we get that this induces f on closed points. We call this
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TWISTED DERIVED CATEGORIES OF SURFACES 209

morphism again f . By following the same argument given in [11, Cor. 5.23], we
obtain

ΦP(−) =
(
L⊗ (−)

)
◦ f∗ (5)

where L is a line bundle and that f is an isomorphism because ΦP is an
equivalence.

3. Ample (Antiample) Canonical Bundle

Throughout this section we consider all the varieties to be smooth and projec-
tive.

Definition 9. An object P ∈ Db(X,α) is called a point of codimension d if

i) S(X,α)(P ) ∼= P [d], (where S(X,α) is the Serre functor),

ii) Hom(P, P [i]) = 0 for i < 0,

iii) The object P is simple, i.e. k := Hom(P, P ).

We follow the untwisted proofs of the next two lemmas in order to get a
twisted version of them (cf. [11, Lemma 4.5 and Prop. 4.6], and the original
proof in [2]).

Lemma 10. Let F• ∈ Db(X,α) be a simple complex concentrated in dimension
0 such that Hom

(
F•,F•[i]

)
= 0 for i < 0. Then F• ∼= k(x)[m] for some closed

point x ∈ X and integer m.

Lemma 11. Let X be a smooth projective variety of dimension n. If ωX is
ample or antiample, then the point like objects in Db(X,α) are the objects P
isomorphic to k(x)[m], where x ∈ X is a closed point and m ∈ Z.

Proof. It can be easily seen that the objects of the form k(x)[m] are point like
objects in Db(X,α). Now, we show that all point like objects are of this form.
Take P ∈ Db(X,α) a point like object. By i) in Definition 9

Hi
(
P ⊗ ωX [n− d]

) ∼= Hi(P ).

Thus
Hi+n−d(P ⊗ ωX) ∼= Hi(P ),

i.e.
Hi+n−d(P )⊗ ωX ∼= Hi(P ). (6)

If n > d, then we take the maximum integer i among the indices of the
non-vanishing cohomologies Hi. This yields to a contradiction by using (6). On
the other hand, if n < d, we take i to be minimal, and (6) also yields to a
contradiction. Thus, n = d and hence

Hi(P )⊗ ωX ∼= Hi(P ) (7)
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Now, we show that this isomorphism implies that Hi(P ) is supported in
dimension 0. Recall that the Hilbert polynomial

PF (k) = χ
(
F ⊗ ωkX

)
has degree

deg(PF ) = dim(suppF)

when ωX
(
or ω∨X

)
is ample and F is any coherent sheaf. Let E ∈ Coh

(
X,α−1

)
be a locally free α−1-twisted sheaf and denote by F i := Hi(P)⊗ E . Hence

F i ⊗ ωX ∼= F i (8)

and F i is a coherent sheaf on X. If n = dim(supp
(
F i)
)
> 0, we deduce from the

isomorphism (8) that for all k, PFi(k) is a fixed number, i.e. the polynomial PFi
is a constant polynomial, a contradiction. Then F i is supported in dimension
0, and since E is locally free, Hi(P ) has also support of dimension 0. Thus, P
is a complex concentrated in dimension 0 and by Lemma 10, P ∼= k(x)[m] for
some closed point x and integer m. �X

Definition 12. Let D be a triangulated category with a Serre functor S. An
object L ∈ D is invertible if for any point like object P ∈ D there exists nP ∈ Z
such that

Hom(L,P [i]) =

{
k(P ), if i = nP ;

0, otherwise.

Definition 13. Let (X,α) and (Y, β) be two twisted varieties. A functor F :
Db(X,α)→ Db(Y, β) is of Fourier–Mukai type (or a Fourier–Mukai functor) if
there exists P ∈ Db

(
X ×Y, α−1�β

)
and an isomorphism of functors F ∼= ΦP ,

where we denote by p : X×Y → Y and q : X×Y → X the natural projections,
ΦP : Db(X,α)→ Db(Y, β) is the exact functor defined by

ΦP := Rp∗

(
P

L
⊗ q∗(−)

)
.

If the Fourier–Mukai functor is an equivalence we will call it a Fourier–Mukai
transform.

From now, we will often write a functor and its derived functor in the same
way.

In the category of twisted coherent sheaves Canonaco and Stellari proved
in [6] that every equivalence can be seen as a Fourier–Mukai transform. In fact,
they showed the following more general statement

Theorem 14. Let (X,α) and (Y, β) be twisted varieties and let F : Db(X,α)→
Db(Y, β) be an exact functor such that, for any F ,G ∈ Coh(X,α),

HomDb(Y,β)

(
F (F), F (G)[j]

)
= 0 if j < 0.
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TWISTED DERIVED CATEGORIES OF SURFACES 211

Then there exist P ∈ Db
(
X × Y, α−1 � β

)
and an isomorphism of functors

F ∼= ΦP . Moreover, P is uniquely determined up to isomorphism.

By this theorem, we focus only on Fourier–Mukai transforms. If we take
any exact functor

ΦP : Db(X,α)→ Db(Y, β),

then by an application of the Grothendieck–Verdier duality (cf. [5, Theorem
2.4.1]) as was given by Mukai (a good exposition by Orlov is found in [15])
we can prove that the functor ΦP has a left and a right adjoint functor with
kernels

PL := P∨ ⊗ p∗ωY
[

dim(Y )
]

and
PR := P∨ ⊗ q∗ωX

[
dim(X)

]
respectively. In particular, if ΦP is an equivalence, these adjoints must be quasi-
inverses to ΦP . However, from the uniqueness of the kernel of a twisted Fourier–
Mukai transform we conclude that PL is isomorphic to PR and then

P∨ ∼= P∨ ⊗
(
p∗ωY ⊗ q∗ω∨X [dim(X)− dim(Y )]

)
.

This isomorphism implies: dim(X) = dim(Y ).

Remark 15. If ΦP : Db(X,α)→ Db(Y, β) is an equivalence, the isomorphism
PL ∼= PR and projection formula imply that for any point x ∈ X,

ΦP
(
k(x)

)
= ωY ⊗ ΦP

(
k(x)

)
.

Let X,Y and Z be three smooth varieties. Define the projections πXZ , πXY
and πY Z from X × Y × Z to X × Z, X × Y and Y × Z respectively. Let
P ∈ Db

(
X × Y, q∗(α)−1.p∗(β)

)
and Q ∈ Db

(
Y × Z, u∗(β)−1.t∗(γ)

)
where q, p

and u, t are the natural projections:

X × Y Y

X

p

q

,

Y × Z Z

Y

t

u

.

We define the object

R := πXZ∗(π
∗
XY P ⊗ π∗Y ZQ),

and let us show that this element is in Db
(
X ×Z, s∗(α)−1.r∗(γ)

)
where r and

s denote the projections from −X × Z to Z and X respectively. Let πX , πY
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and πZ denote the projections from X × Y × Z to X,Y and Z respectively.
The object π∗XY (P)⊗ π∗Y Z(Q) is in

Db
(
X × Y × Z,π∗XY

(
q∗(α)−1.p∗(β)

)
.π∗Y Z

(
u∗(β)−1.t∗(γ)

))
∼= Db

(
X × Y × Z, π∗X(α)−1.π∗Y (β).π∗Y (β)−1.π∗Z(γ)

)
∼= Db

(
X × Y × Z, π∗X(α)−1.π∗Z(γ)

)
∼= Db

(
X × Y × Z, π∗XZ

(
s∗(α)−1

)
.π∗XZ

(
r∗(γ)

))
∼= Db

(
X × Y × Z, π∗XZ

(
s∗(α)−1.r∗(γ)

))
.

Hence

R = πXZ∗
(
π∗XY (P)⊗ π∗Y Z(Q)

)
∈ Db

(
X × Z, s∗(α)−1.r∗(γ)

)
.

We note that the following twisted version of a result of Mukai holds by
just following his proof.

Proposition 16 (Mukai, [14]). The composition of two Fourier–Mukai trans-
forms

Db(X,α)
ΦP−−−→ Db(Y, β)

ΦQ−−−→ Db(Z, γ)

is isomorphic to the Fourier–Mukai transform

ΦR : Db(X,α)→ Db(Z, γ).

We follow only a part of the proof given in [11, Prop. 4.11] of the untwisted
version of the next proposition originally proved by Bondal and Orlov in [2].

Proposition 17. Let X be a smooth projective variety with ample (or anti-
ample) canonical bundle. If there exists an exact equivalence F : Db(X,α)

∼−−→
Db(Y, β) with Y a smooth projective variety, then there exists an isomorphism
f : X

∼−−→ Y with f∗(β) = α.

Proof. First, note that from the definition of point like objects there exists a
bijection between the set of point like objects in Db(X,α) and the point like
objects in Db(Y, β). Since we have{

points like objects in Db(X,α)
}

=
{
k(x)[m] : x ∈ X closed and m ∈ Z

}
and{

k(y)[m] : y ∈ Y closed and m ∈ Z
}
↪→
{

point like objects in Db(Y, β)
}

we conclude that F
(
k(x)[n]

)
is a point like object but we still do not know

whether it is of the form k(y)[m] for some closed point y ∈ Y and m ∈ Z.
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Claim. Every point like object in Db(Y, β) is of the form k(y)[m] for some
closed point y ∈ Y and m ∈ Z.

Proof of the claim. Suppose not and let P be a point like object not iso-
morphic to any k(y)[m]. We know that for every y ∈ Y there exists xy ∈ X
and my ∈ Z such that

F
(
k(xy)[my]

)
= k(y).

From the bijection between point like objects in Db(X,α) and in Db(Y, β), we
find xP ∈ X,mP ∈ Z such that xP 6= xy for all y ∈ Y and

F
(
k(xP )[mP ]

)
= P.

Then,

Hom
(
k(y)[n], P

)
= Hom

(
F
(
k(xy)[my]

)
[n], F

(
k(xP )[mP ]

))
= Hom

(
k(xy)[my + n], k(xP )[mP ]

)
= Hom

(
k(xy), k(xP )[mP −my − n]

)
= 0

for all y. Hence, since by Proposition 7 the set{
k(y)[n] : y ∈ Y closed, n ∈ Z

}
span the category Db(Y, β), we conclude P = 0. This completes the proof of
the claim. �X

Thus, for every x ∈ X there exists yx ∈ Y and mx ∈ Z such that F
(
k(x)

)
=

k(yx)[mx]. Besides, for every x ∈ X there exists Vx a neighborhood of x such
that for every z ∈ Vx, F

(
k(z)

)
= k(yz)[mx] ([11, Cor. 6.14]) and we can

conclude that mx = mz for all z ∈ X. Therefore we can assume that F
(
k(x)

)
=

k(yx) for all x in X and so F defines a bijection f : X → Y by x 7→ yx. Since
F ∼= ΦP , we have P|{x}×Y ∼= k(yx) and from this we can assume that f is
a morphism (cf. commentary after Lemma 8). Since F is an equivalence, we
conclude that f is injective. The surjectivity of the map was shown above.
By using F−1 we also show that f−1 is a morphism. On the other hand, P
is a sheaf supported on the graph of f and the second projection gives an
isomorphism supp(P) ∼= Y . Then if we consider P as a sheaf over its support,
we can consider it as a twisted sheaf over Y . Besides, we also know that it is
a twisted sheaf of constant fibre dimension 1, i.e. an untwisted line bundle L
over Y . Then F ∼= L⊗ f∗(−) (up to shift) Therefore, f is an isomorphism with
f∗(β) = α. �X
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Let (X,α) be a twisted variety and let F be an α-twisted sheaf. We proceed
to define the exterior algebra

∧
F . By definition F = (Fi, ϕij)i,j∈I where Fi is

a coherent sheaf on an element Ui of an open covering {Ui}i∈I of X and

ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj
are morphisms that satisfies the α-twisted cocycle conditions. We define the
exterior algebras as usual for any coherent sheaf Fi and we need only to check
that the resulting transition maps satisfies the cocycle conditions. But this
follows inmediately and it shows that for any r ∈ N,

∧r F is a αr-twisted
sheaf. In particular, if F is a locally free α-twisted sheaf of rank r, the maximal
exterior power of F ,

∧r F , is a line bundle called the determinant bundle of F
and we denote it by det(F). Now, we follow the proofs of the untwisted version
of the following three lemmas and the corresponding corollary to get a twisted
version of them (cf. [11]).

Lemma 18. Let Z be a normal variety and F ∈ Coh(Z,α). If L1 and L2 are
two line bundles with F ⊗ L1

∼= F ⊗ L2, then Lr1
∼= Lr2 where r is the generic

rank of F .

Proof. By definition F = (Fi, ϕij)i,j∈I , where Fi is coherent sheaf on an open
set Ui of an open covering {Ui}i∈I of X. Let f = {fi}i∈I be the isomorphism
f : F ⊗ L1

∼= F ⊗ L2 given in the statement, i.e.

fi : Fi ⊗ L1
∼= Fi ⊗ L2

is an isomorphism for every i ∈ I such that the following diagram commutes

(Fj ⊗ L1)|Ui∩Uj (Fj ⊗ L2)|Ui∩Uj

(Fi ⊗ L1)|Ui∩Uj (Fi ⊗ L2)|Ui∩Uj

fj |Ui∩Uj

fi|Ui∩Uj

ϕ1
ij ϕ2

ij

where ϕkij are defined by ϕij ⊗ id, k = 1, 2. First, let us suppose that F is a
locally free α-twisted sheaf of rank r. The last diagram induces the commutative
diagram

(
det(Fj)⊗ Lr1

)
|Ui∩Uj

(
det(Fj)⊗ Lr2

)
|Ui∩Uj

(
det(Fi)⊗ Lr1

)
|Ui∩Uj

(
det(Fi)⊗ Lr2

)
|Ui∩Uj

f̃j

f̃i

ϕ̃1
ij ϕ̃2

ij

.
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Hence det(F)⊗ Lr1 ∼= det(F)⊗ Lr2 and so Lr1
∼= Lr2.

In general, let F be an α-twisted coherent sheaf. Dividing by the torsion
part, we can assume that F is torsion free. Since Z is normal, F is a locally
free α-twisted sheaf on an open set U with codim(Z−U) ≥ 2. Therefore by the
argument given above we have that Lr1|U ∼= Lr2|U . Then it defines a trivializing
section s ∈ H0

(
U,Lr1 ⊗ L−r2

)
which can be extended to another trivializing

section s̃ ∈ H0
(
Z,Lr1 ⊗ L−r2

)
and it defines an isomorphism Lr1

∼= Lr2. �X

The following lemma is as in [11, Lemma 6.4]. We reduce the proof to the
untwisted case by tensoring with a locally free q∗(α) · p∗(β)−1-twisted sheaf.

Lemma 19. If ΦP : Db(X,α)→ Db(Y, β) is an equivalence, then the projection
q : supp(P)� X is surjective.

Remark 20. Since the support of a complex does not change when we take
tensor product with a line bundle, one has

supp(P) = supp
(
P∨
)

= supp(PR) = supp(PL).

Thus, we also deduce from the equivalence that p : supp(P ) � Y is surjec-
tive. Hence, there exist two irreducible components Z1 ⊂ supp

(
Hi(P)

)
and

Z2 ⊂ supp
(
Hj(P)

)
that project onto X and Y respectively. Note that the

components could be different.

Lemma 21. Let ΦP : Db(X,α) → Db(Y, β) be an equivalence and let Z ⊆
supp(P) be a closed irreducible subvariety with normalization ν : Z̃ → Z. Then
there exists an integer r > 0 such that

π∗Xω
r
X
∼= π∗Y ω

r
Y

where πX := q ◦ ν and πY := p ◦ ν.

Proof. We apply Lemma 18 as in the untwisted case ([11, Lemma 6.9]) �X

The following result is the twisted version of a result of Orlov (cf. [15]). We
follow the proof given in ([11, Prop. 6.1]).

Theorem 22. Let X and Y be two projective varieties with α ∈ Br′(X) and
β ∈ Br′(Y ). Any equivalence of categories F : Db(X,α)

∼−−→ Db(Y, β) implies
an isomorphism of the canonical rings R(X) ∼= R(Y ).

Proof. Let d be the diagonal morphism d : X ↪→ X ×X. Then d∗OX can be
regarded as a α � α−1-twisted sheaf. Denote O∆ := d∗OX , which viewed as a
Fourier–Mukai kernel induces the identity id : Db(X,α)→ Db(X,α).

The equivalence F is given by a Fourier–Mukai transform

ΦP : Db(X,α)→ Db(Y, β)
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with P ∈ Db(X × Y, α−1 � β). Then the Fourier–Mukai transform

ΦQ : Db
(
X,α−1

)
→ Db

(
Y, β−1

)
with

Q := P∨ ⊗ q∗ωX [n] ∼= P∨ ⊗ p∗ωY [n] ∈ Db
(
Y ×X,β−1 � α

)
is also an equivalence. Indeed, since the composition

Db(X,α)
ΦP−−−→ Db(Y, β)

ΦQ−−−→ Db(X,α)

is isomorphic to the identity, and the kernel of this composition is given by
R = π13∗

(
π∗12P ⊗ π∗23Q

)
, one has R ∼= O∆ ∈ Db

(
X × X,α−1 � α

)
. Consider

the automorphism τ12 : X ×X → X ×X that interchanges the two factors,

O∆
∼= τ∗12O∆

∼= τ∗12R ∼= π13∗τ
∗
13

(
π∗12P ⊗ π∗23Q

) ∼= π13∗
(
π∗12Q⊗ π∗23P

)
.

Thus the composition of

Db
(
X,α−1

) ΦQ−−−→ Db
(
Y, β−1

) ΦP−−−→ Db
(
X,α−1

)
is isomorphic to the identity.

In the same way we can prove that

Db
(
Y, β−1

) ΦP−−−→ Db
(
X,α−1

) ΦQ−−−→ Db
(
X,β−1

)
is isomorphic to the identity.

Moreover P �Q ∈ Db
(
(X ×X)× (Y × Y ), α−1 � α� β � β−1

)
defines the

Fourier–Mukai equivalence

ΦP�Q : Db
(
X ×X,α−1 � α

)
−→ Db

(
Y × Y, β−1 � β

)
.

Now, we show that this equivalence implies an isomorphism between the
canonical rings. Since d∗

(
ωmX
)

can be considered as an element in Db
(
X ×

X,α−1 � α
)
, by defining S := ΦP�Q

(
d∗ω

m
X

)
we have that

ΦS : Db(Y, β)→ Db(Y, β)

is an equivalence that can be obtained as the composition

Db(Y, β)
ΦQ−−−→ Db(X,α)

Φd∗ωmX−−−−−−→ Db(X,α)
ΦP−−−→ Db(Y, β).

That is,

ΦS ∼= ΦP ◦ Φd∗ωmX ◦ ΦQ.
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Note that Φd∗ωmX = Sm(X,α)[−mn] where S(X,α) denotes the Serre functor

defined on the category Db(X,α). From the fact that equivalences commutes
with Serre functor, we conclude that

ΦS ∼= Sm(Y,β)[−mn].

Then, the uniqueness of the kernel of a Fourier–Mukai transform yields

S ∼= d∗ω
m
Y ,

i.e. ΦQ�P
(
d∗ω

m
X

) ∼= d∗
(
ωmY
)
. Thus

H0
(
X,ωmX

)
= HomDb(X×X,α�α−1)

(
d∗OX , d∗ωmX

)
∼= HomDb(Y×Y,β�β−1)

(
d∗OY , d∗ωmY

)
= H0

(
Y, ωmY

)
.

Since the algebra structure is given by composition of Ext’s just by using

ExtiDb(X×X,α−1�α)

(
d∗OX , d∗

(
ωkX
)) ∼= ExtiDb(X×X,α−1�α)

(
d∗ω

m
X , d∗

(
ωm+k
X

))
then R(X) ∼= R(Y ). �X

The following result in the untwisted case is due to Kawamata (cf. [12], [11,
Prop. 6.18]) but copying his proof yields a proof in the twisted case.

Theorem 23 (Kawamata). Let X and Y be smooth projective varieties and let
ΦP : Db(X,α) −→ Db(Y, β) be an equivalence such that the canonical bundle
ωX is big or anti-big (i.e. ω∨X is big). Then there exists a birational morphism
f : X 99K Y with f∗(β) = α.

Remark 24. If X and Y are two smooth projective varieties with a birational
correspondence

Z Y

X

πY

πX

where Z is a normal smooth variety. If π∗Xω
r
X
∼= π∗Y ω

r
Y , then π∗XωX

∼= π∗Y ωY .

Remark 25. Let X and Y be two K-equivalent surfaces, i.e. there exists a
birational correspondence

Z Y

X

πY

πX

such that π∗XωX
∼= π∗Y ωY . Then X ∼= Y .
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4. Classification of Surfaces Under Twisted Derived Categories

In this section we show that a theorem of Kawamata remains true when we
consider twisted derived categories.

Definition 26. If L is a line bundle on a projective scheme X, we define the
numerical Kodaira dimension ν(X,L) to be the maximal integer m such that
there exists a proper morphism φ : W → X with W of dimension m and(
[φ∗(L)]m.W

)
6= 0. In particular, if L = ωX , we denote ν(X) := ν(X,ωX).

Lemma 27. ([11, Lemma 6.26]) Let π : Z → X be a projective morphism of
proper schemes and L ∈ Pic(X).

i) If L is a nef line bundle on X then π∗(L) is nef.

ii) If π is surjective, then L is nef if and only if π∗(L) is nef.

Lemma 28. ([11, Lemma 6.28]) Let π : Z → X be a projective morphism of
projective schemes and L ∈ Pic(X).

i) Then ν(X,L) ≥ ν(Z, π∗L).

ii) If π : Z → X is surjective, then ν(X,L) = ν(Z, π∗L).

Proposition 29. ([11, Prop. 6.17]) Let X and Y be smooth projective varieties
and let ΦP : Db(X,α)→ Db(Y, β) be an equivalence. Then ν(X) = ν(Y ).

Proof. Since ΦP is an equivalence, there exists a component Z of supp(P)

such that p : Z → Y is surjective. If ν : Z̃ → Z is the normalization, then by
Lemma 21, there exists an integer r such that π∗Xω

r
X
∼= π∗Y ω

r
Y where πX = q ◦ν

and πY = p ◦ ν. Hence

ν
(
Z̃, π∗Xω

r
X

)
= ν

(
Z̃, π∗Y ω

r
Y

)
and then

ν(X,ωX) ≥ ν
(
Z̃, π∗XωX

)
= ν

(
Z̃, π∗Xω

r
X

)
= ν

(
Z̃, π∗Y ω

r
Y

)
= ν(Y, ωY ).

The other inequality holds by considering ΦPR instead of ΦP . �X

Definition 30. A rational surface is a surface that is birationally equivalent
to P2.

Definition 31. A ruled surface is a smooth projective surface X, together
with a surjective morphism π : X → C to a nonsingular curve C, such that the
fibre Xy is isomorphic to P1 for every point y ∈ C.

Theorem 32 (Castelnuovo). A surface is rational if and only if the irregularity
and second geometric genus are trivial, i.e. h1

(
X,OX

)
= h0

(
X,ω2

X

)
= 0.
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Definition 33. A smooth surface X is an elliptic surface if there exists a curve
C and a morphism π : X → C whose general fibre is an elliptic curve.

The proof of the following result is identical to the proof of its untwisted
version given in [11, Prop. 12.15], which was originally proved by Kawamata in
[12].

Theorem 34 (Kawamata). Let X be a smooth projective surface containing
a (−1)−curve and Y a smooth projective variety and let ΦP : Db(X,α) →
Db(Y, β) be an equivalence. Then one of the following holds:

i) X ∼= Y ;

ii) X is a relatively minimal elliptic rational surface.

4.1. Surfaces with kod = −∞, 2

We also have the following twisted version of a proposition due to Bridgeland
and Maciocia. The proof is identical to ([11, Prop. 12.16]).

Proposition 35. Let X be a surface of general type and Y a smooth projective
variety. If Db(X,α) ∼= Db(Y, β), then X ∼= Y .

Proof. Since X is of general type, Y is also of general type by Theorem 22.
Moreover, by Theorem 23, X and Y are birational. If X is not minimal, by
Theorem 34, X ∼= Y . Thus we can assume that X and Y are minimal surfaces.
Since the minimal model of a surface of general type is unique, the birational
morphism between X and Y yields an isomorphism X ∼= Y . �X

Let X be a rational surface. Thus, Hi
(
X,OX

)
= 0 for any i > 0. From the

exponential short exact sequence we obtain the isomorphism

Br′(X) ∼= H3(X,Z).

Since the cohomological Brauer group is a birational invariant,

Br′(X) ∼= Br′(P2) = H3(P2,Z) = 0.

Now, let π : X → C be a ruled surface. Consider the Leray spectral sequence
associated to π:

Ep,q2 = Hp(C,Rqπ∗O∗X)⇒ Hp+q(X,O∗X).

Since Hq
(
P1,OP1

)
= 0 for q > 1, we obtain

Rqπ∗OX = 0, for q ≥ 1. (9)
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The exponential sequence 0 → Z → OX → O∗X → 0 yields a long exact
sequence

· · · → Rqπ∗OX → Rqπ∗O∗X → Rq+1π∗Z→ Rq+1π∗OX → · · ·

so that by Equation (9),

Rqπ∗O∗X ∼= Rq+1π∗Z, for any q ≥ 1. (10)

Clearly Rqπ∗O∗X = 0 for q ≥ 2 and R0π∗O∗X = O∗C . On the other hand, the
sheaf R2π∗Z is a local system of coefficients with stalk Z and the complex struc-
ture of the morphism π gives a canonical generator for each stalk on this local
system. Thus R2π∗Z is trivial, i.e. R2π∗Z = Z. Hence by the isomorphism (10)

R1π∗O∗X = Z. (11)

The Leray spectral sequence yields a long exact sequence

H0
(
C,R1π∗O∗X

)
→ H2

(
C,O∗C

)
→ H2

(
X,O∗X

)
→ H1

(
C,R1π∗O∗X

)
. (12)

By (11),H1
(
C,R1π∗O∗X

)
= H1(C,Z) = Z2g(C). SinceX is smooth,H2

(
X,O∗X

)
is a torsion group. Thus the last map in the sequence (12) is trivial and since
H2
(
C,O∗C

)
= 0, we obtain Br′(X) = H2

(
X,O∗X

)
= 0 (if X is not smooth we

also obtain that Br′(X) = H2
(
X,O∗X

)
tors

= 0). Therefore, we have shown the
following proposition:

Proposition 36. If X is a smooth projective surface of kod(X) = −∞, then
Br′(X) = 0.

Proposition 37. Let X be a smooth projective surface containing a (−1)−curve
and Y a smooth projective variety. If Br′(X) 6= 0 and Φ : Db(X,α)→ Db(Y, β)
is an equivalence. Then X ∼= Y .

Proof. By Theorem 34, either X ∼= Y or X is a rational surface that is el-
liptically fibred. Thus, if X is rational, Proposition 36 implies Br′(X) = 0, a
contradiction. �X

4.2. Surfaces with kod = 1

Definition 38. A vector bundle F on a curve C is decomposable if it is iso-
morphic to a direct sum F1 ⊕ F2 of two non-zero vector bundles. Otherwise,
we say that F is indecomposable.

Lemma 39. ([16, Cor 14.8]) Let F be an indecomposable vector bundle of rank
r and degree d on an elliptic curve E. The following conditions are equivalent.

i) F is stable;
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ii) F is simple;

iii) d and r are relatively prime.

Theorem 40. ([9, Prop. I. 3.24]) Let X be a minimal projective surface of
Kodaira dimension 1. Then there is a unique curve C and a unique morphism
π : X → C making X an elliptic surface.

Definition 41. Let π : X → C be an elliptic surface and c ∈ C. The fibre
π−1(c) is called a multiple fibre if there is a divisor D on X with π−1(c) = mD
for some integer m > 1.

Let π : X → C be a relatively minimal elliptic surface with kod(X) = 1.
The cohomology class of the fibre Fx := π−1(x) is denoted by f ∈ H2(X,Z).
Note that Fx is a smooth elliptic curve for generic x ∈ C. The canonical bundle
formula (cf. [1, V.12]) states that

ωX ∼= π∗L ⊗O
(∑

(mi − 1)Fi

)
(13)

where L ∈ Pic(C) and Fi are the multiple fibres. Hence c1(X) = λf (in
H2
(
X,Q

)
) for some λ 6= 0 (because kod(X) = 1). We also define the moduli

space MH(v) similarly as for K3 surfaces to be the moduli space of semi-stable
(with respect to H) sheaves E with v(E) = v.

Remark 42. Suppose v = (0, rf, d) and E a stable sheaf of rank r and degree d
on a smooth fibre. By the Hirzebruch-Riemann-Roch formula and f.c1(X) = 0
one has χ(E) = d. On the other hand, if [E] ∈MH(v) corresponds to a stable
sheaf E, supp(E) is connected, so that supp(E) ⊆ Fx for some fibre Fx because
v(E) = (0, rf, d) (if supp(E) has an horizontal component it would intersect
non-trivially the fibre class f).

Definition 43. Let π : X → C be an elliptic surface with kod(X) = 1 and let
λX/C denote the smallest positive number such that there exists a divisor σ on
X with σ.f = λX/C . We also denote it sometimes by only λX (recall that from
Theorem 40 there is only one C and morphism making X an elliptic fibration).

Theorem 44. ([5, Theorem 3.2.1]) The functor F = ΦP : Db(X,α)→ Db(Y )
is fully faithful, if and only if, for each x ∈ X,

HomDb(Y )

(
F
(
k(x)

)
, F
(
k(x)

))
= C,

and for each pair of points x1, x2 ∈ X, and each integer i,

ExtiDb(Y )

(
F
(
k(x1)

)
, F
(
k(x2)

))
= 0

unless x1 = x2 and 0 ≤ i ≤ dimX. Assuming the above conditions satisfied, F
is an equivalence if and only if, for every point x ∈ X,

F
(
k(x)

) L
⊗ ωY ∼= F

(
k(x)

)
.
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Căldăraru proved in [5] a version of the following proposition in the case of
K3 surfaces. In that case the proof followed immediately from the last theorem
because of the triviality of the canonical bundle for K3 surfaces. This is not the
case for properly elliptic surfaces.

Proposition 45. Let X be a properly elliptic surface, i.e. kod(X) = 1 that is
relatively minimal, and let v = (0, rf, d) be a Mukai vector with gcd(r, d) = 1.
Let M be a connected component of the moduli space of stable sheaves with
Mukai vector v and let α = Obs(X, v) (see Definition 3.3.3 in [5]). Then we
have

Db(X) ∼= Db
(
M,α−1

)
.

Proof. The π∗Mα-universal sheaf E on X ×M defines a functor

ΦE : Db
(
M,α−1

)
→ Db(X).

Let [F ] ∈ M be a point corresponding to a stable sheaf F on X and Mukai
vector v = (0, rf, d). Then, by definition of the universal sheaf, ΦE

(
k([F ])

)
=

F . We check the conditions of Theorem 44. Let [F ] and [G] be two distinct
points in M corresponding to two nonisomorphic stable sheaves F and G on X
respectively. Since F is a stable sheaf,

Hom
(
ΦE
(
k([F ])

)
,ΦE

(
k([F ])

))
= Hom(F ,F) = C.

If i < 0 or i > 2, trivially Exti
(
ΦEk([F ]),ΦEk([G])

)
= 0. Since F and G are

stables,
Hom

(
ΦE
(
k([F ])

)
,ΦE

(
k([G])

))
= Hom(F ,G) = 0.

By Serre duality,
Ext2(F ,G) = Hom(G,F ⊗ ωX)∨. (14)

Let us show that F ∼= F ⊗ωX . If F is supported on a non-singular fibre, by
the canonical bundle formula (cf. (13)), the restriction of ωX to the non-singular
fibre is trivial. Hence F ∼= F⊗ωX . Since the dimension of Hom

(
E[F ], E[F ]⊗ωX

)
is upper semi-continuous on M (cf. [10, III. 7.7.8]), for all [F ] ∈ M there is
a non-zero morphism E[F ] → E[F ] ⊗ ωX (i.e. F → F ⊗ ωX is non-zero). Since
rk(F) = rk(F ⊗ ωX) and

c1(F).f = c1(F).f + c1(X).f = c1(F ⊗ ωX)

and both sheaves F and F ⊗ ωX are stable, we obtain an isomorphism

F ∼= F ⊗ ωX
for all F stable. Thus, by isomorphism (14)

Ext2
(
ΦE
(
k([F ])

)
,ΦE

(
k([G])

))
= Ext2(F ,G)

= Hom(G,F ⊗ ωX)∨

= Hom(G,F)∨

= 0
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for any two points [F ] 6= [G] in M (corresponding to two stable sheaves on X).
Since

χ(F ,G) = −
〈
v(F), v(G)

〉
= −〈v, v〉 = 0,

we obtain Ext1(F ,G) = 0. Thus, since we have verified all the conditions of
Theorem 44, ΦE is an equivalence of categories. �X

The following result is a generalization of a result of Bridgeland and Ma-
ciocia (cf. [4]). We follow the proof given in [11] with some little modifications.

Proposition 46. Let π : Y → C be a relatively minimal elliptic surface with
kod(Y ) = 1 and let Φ : Db(X,α)→ Db(Y ) be an equivalence. Then there exists
a Mukai vector v = (0, rf, d) such that gcd(r, d) = 1 and X ∼= M(v).

Proof. If either X or Y is not minimal, then they are isomorphic (see Theorem
34) and we pick v = (0, f, 1). Hence, we may assume that X and Y are minimal
surfaces. For any closed point x in X, E := Φ

(
k(x)

)
satisfies

E ⊗ ωY ∼= E,

because of Remark 15. Since Hom
(
k(x), k(x)

)
= Hom(E,E), E is simple and

thus supp(E) is connected. Since E ∼= E ⊗ ωY , supp(E) ⊂ Fy for some fibre
Fy ⊂ Y because kod(Y ) = 1 and the isomorphism (13). For general x, we may
assume that Fy is a smooth fibre. Thus, since supp(E) is connected, either
supp(E) = Fy or supp(E) consists of only a closed point in Fy.

Claim. We can assume that E is a shifted sheaf, i.e. Hi(E) = 0 for all but one
i ∈ Z.

Proof. Consider the spectral sequence

Ep,q2 =
⊕
i

Extp
(
Hi(E),Hi+q(E)

)
⇒ Extp+q(E,E).

Since Y is a surface, Ep,q2 are trivial for p /∈ [0, 2]. In particular⊕
i

Ext1
(
Hi(E),Hi(E)

)
⊂ Ext1(E,E). (15)

Since E is supported on a smooth elliptic curve Fx, all its cohomologies
are. This means that if Hi(E) 6= 0, Ext1

(
Hi(E),Hi(E)

)
6= 0(

because Ext1
Fx

(
Hi(E),Hi(E)

)
↪→ Ext1

Y

(
Hi(E),Hi(E)

))
. Moreover, since

Hi(E) is supported on a smooth elliptic curve, χ
(
Hi(E),Hi(E)

)
=

−
〈
v
(
Hi(E)

)
, v
(
Hi(E)

)〉
= 0 and Hi(E) = Hi(E)⊗ωX (cf. the proof of Propo-

sition 45). Thus, by Serre duality dim Ext1
Y

(
Hi(E),Hi(E)

)
is even (≥ 2) for

any Hi(E) 6= 0. Hence by (15), 2n ≤ dim Ext1
Y (E,E) = 2, where n is the

number of non-trivial cohomologies Hi. Thus, E is a shifted sheaf. �X
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224 HERMES MART́ıNEZ

By composing the original equivalence with a shift, we can assume that E
is a sheaf. If E is concentrated in one point y, from Φ(k(x)) = k(y) we get that
X and Y are birational. Hence they are isomorphic because they are minimal
surfaces (the minimal model for surfaces of Kodaira dimension 1 is unique).

Thus, we can assume that E is a vector bundle on Fy. Since E is sim-
ple, by Lemma 39, E is stable (with respect to some polarization H) and
(rk(E),deg(E)) = 1. Set v = (0, rf, d) where r := rk(E), d := deg(E). Then
v is isotropic, i.e. 〈v, v〉 = 0. Hence the moduli space M = MH(v) of stable
sheaves with Mukai vector v is 2-dimensional

(
dim Ext(E,E) = 2+ 〈v, v〉 = 2

)
.

By Proposition 45, for γ = Obs(Y, v), the π∗Mγ-universal sheaf yields an
equivalence

ΦE : Db(M,γ−1)→ Db(Y ).

Thus, the composition

Ψ := Φ−1
E ◦ Φ : Db(X,α)→ Db(M,γ−1).

satisfies Ψ
(
k(x)

)
= k(e) where e ∈ M is the point that corresponds to E.

Hence, M is birational to X. Since X is minimal and kod(X) = 1, M ∼= X.
Moreover Ψ defines an isomorphism f : X → M such that Ψ ∼= L ⊗ f∗(−),
hence f∗γ−1 = α. �X

Corollary 47. Let X and Y be relatively minimal elliptic surfaces with
kod(X) = kod(Y ) = 1 and let Φ : Db(X,α) → Db(Y ) be an equivalence.
Then one of the following holds:

i) X ∼= Y and α = 1 in Br(X),

ii) There exists a Mukai vector v = (0, rf, d) such that gcd(r, d) = 1 and an
isomorphism f : X ∼= M(v) with f∗(γ−1) = α, where γ = Obs(Y, v).

Remark 48. In general, the moduli space M(v) obtained in the previous
Proposition is coarse.

Corollary 49. Let X and Y be relatively minimal elliptic surfaces with
kod(X) = kod(Y ) = 1 and let Φ : Db(X,α) → Db(Y ) be an equivalence. If
Y is elliptically fibred with a section, then α = 1 in Br(X).

Proof. By the last corollary there exists a Mukai vector v = (0, rf, d) such
that gcd(r, d) = 1 and an isomorphism f : X ∼= M(v) with f∗(γ−1) = α, where
γ = Obs(Y, v). Since λY = 1, there exists H such that gcd(d, r(f.H)) = 1 with
H ample. Thus M(v) is a fine moduli space, i.e. γ = 1 in Br′(Y ) and hence
α = 1 in Br′(X). �X

The previous corollary provides a very interesting application. First we
introduce the notion of the Tate–Shafarevich group. For an elliptic surface
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π : X → C with a section σ and integral fibres, we define the Tate–Shafarevich
group by

Sh(X) := H1(C,X#)

where X# is the sheaf of abelian groups on C such that

X#(U) = the group of sections of XU → U

and the natural group structure on X# is the one given by the section σ : C →
X. This group is in 1-1 correspondence with the set of elliptic fibrations Y → C
whose Jacobian is π : X → C (Note that we are in the analytic or étale setup).

Note 1. Let π : X → C be an elliptic surface with a section. For any α ∈
Sh(X), let πα : Xα → C denote the elliptic fibration corresponding to the
element α.

Let π : X → C be an elliptic fibration with a section and integral fibres
and let πα : Xα → C be an elliptic fibration in Sh(X). We proceed to define a
morphism Tα : Sh(X) → Br′(Xα). First, for a given α ∈ Sh(X) we can define
a homomorphism

Tα : H1
(
C,X#

)
→ H1

(
C,Pic(Xα/C)

)
(16)

by considering the long exact sequence obtained from the exact sequence

0 −→ X# −→ Pic(Xα/C)
degα−−−−→ Z −→ 0

where Pic(Xα/C) is the relative Picard sheaf of πα (note that the relative
Picard functor for an elliptic fibration with integral fibres is representable. If
the elliptic fibration allows non-integral fibres the functor is non-representable,
but it has a maximal representable quotient (cf. [7]) and degα is the map that
sends any L ∈ Pic(π−1

α (U))/π∗αPic(U) to its degree along a smooth fibre. From
the Leray spectral sequence associated to πα : Xα → C and O∗Xα , we get the
exact sequence

H2
(
C,O∗C

)
→ H2

(
Xα,O∗Xα

)
→ H1

(
C,Pic(Xα/C)

)
→ H3

(
C,O∗C

)
,

where all cohomologies are taken either in the analytic topology or in the étale
topology

(
note that R1πα,∗O∗Xα = Pic(Xα/C)

)
. Hence, since H3

(
C,O∗C

)
=

H2
(
C,O∗C

)
= 0,

H1
(
C,Pic(Xα/C)

) ∼= Br′(Xα). (17)

Since Sh(X) = H1
(
C,X#

)
, from (16) and (17) we get the morphism

Tα : Sh(X)→ Br′(Xα).
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In particular, for the elliptic fibration π : X → C we get the exact sequence

0 −→ Sh(X)
T0−−−→ H2

(
X,O∗X

)
−→ H1(C,Z).

Thus T0 is an isomorphism because Br′(X) = H2
(
X,O∗X

)
(X is smooth) is a

torsion group and H1(C,Z) is torsion free.

Theorem 50 (Donagi–Pantev, [8]). Let π : X → C be an elliptic fibration
with a section. Fix a positive integer m and let α, β ∈ Sh(X) be two elements
such that α is m-divisible and β is m-torsion. Then there is an equivalence

Φ : Db
(
Xα, Tα(β)

) ∼= Db
(
Xβ , Tβ(α)−1

)
.

Remark 51. Let X be a relatively elliptic surface with a section and α ∈
Sh(X). Due to Theorem 50, there exists an equivalence

Db(Xα) = Db
(
Xα, Tα(0)

) ∼= Db
(
X,T0(α)−1

)
.

Since T0 is an isomorphism, we denote the element α and T0(α) by the same
letter α when there is no confusion. For example, if α is of order 2 we get an
equivalence Db(Xα) ∼= Db

(
X,α−1

) ∼= Db(X,α).

Proposition 52. Let X be a relatively minimal elliptic surface with a section
and kod(X) = 1. If Y ∈ Sh(X) and Φ : Db(X) → Db(Y ) is an equivalence.
Then X ∼= Y as elliptic surfaces.

Proof. Since Y ∈ Sh(X), there exists α ∈ Sh(X) such that Xα
∼= Y . By

Theorem 50

Db
(
X,T0(α)−1

) ∼= Db(Xα) ∼= Db(Y ) ∼= Db(X)

and by Corollary 49, T0(α)−1 = 1 in Br′(X). Thus X and Y are isomorphic as
elliptic surfaces. �X
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