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Abstract. In this paper we study the injectivity of the induced morphism on
the Brauer groups π∗ : Br′(Y )→ Br′(X) given by the K3 cover π : X → Y of
the Enriques surface Y .
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Resumen. En este art́ıculo estudiamos la inyectividad del morfismo inducido
sobre los grupos de Brauer π∗ : Br(Y ) → Br(X) dado por el K3 cubrimiento
π : X → Y de la superficie de Enriques Y .
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1. Introduction

Let Y be an Enriques surface and π : X → Y its K3 cover with the fixed point
free involution τ compatible with π. Since the Brauer group Br(Y ) is Z/2Z, it
is natural to ask about the triviality of the morphism π∗ : Br(Y ) → Br(X).
This question was first mentioned by Harari and Skorobogatov in [3] and later
answered by Beauville in [2] where he proved that the morphism is trivial if and
only if the period map ℘(Y, ϕ) belongs to one of the hypersurfaces Hλ for some
λ ∈ Λ− with λ2 ≡ 2 mod 4 and where Hλ is the hypersurface of Ω (this is the
domain given by the equations ω ·ω = 0, ω ·ω > 0, ω ·λ 6= 0 for all λ ∈ Λ− with
λ2 = −2) defined by the equation λ · ω = 0. We give some group cohomology
conditions for the morphism π∗ to be injective. Besides, we also establish the
type of the Néron Severi group of the K3 cover X of Picard number 11 such
that the morphism π∗ : Br(Y )→ Br(X) is injective.
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186 HERMES MART́ıNEZ

2. Basic Facts about Enriques Surfaces

We briefly recall some fundamental facts about Enriques and K3 surfaces.

Definition 1. A K3 surface is a compact complex surface X with trivial canon-
ical bundle, i.e. ωX ∼= OX , and H1(X,OX) = 0.

Definition 2. An Enriques surface is a compact complex surface X with ω2
X
∼=

OX , ωX 6= OX and H1(X,OX) = 0.

The second cohomoloy of a K3 surface H2(X,Z) endowed with the cup-
product is an even unimodular lattice of rank 22 and signature (3, 19), i.e.,

H2(X,Z) ∼= E⊕2
8 ⊕ U⊕3

where E8, U are the root and hyperbolic lattices respectively.

Let Y be a smooth Enriques surface, π : X → Y its K3 cover and τ : X → X
the corresponding fixed point free involution such that X/τ ∼= Y . Thus we
obtain the following lemma

Lemma 3. 0→ 〈ωY 〉 → Pic(Y )→ Pic(X)τ → 0 is an exact sequence.

Proof. Let L be a sheaf with π∗(L) = OX . Then L⊗(OY ⊕ωY ) = π∗
(
π∗(L)

)
=

π∗(OX) = OY ⊕ ωY . Therefore L is either OY or ωY . On the other hand, if
λτ : M → τ∗(M) is an isomorphism for some line bundle M ∈ Pic(X),
then, since M is simple (because it is a line bundle), τ∗λτ ◦ λτ = c. id for
some c ∈ C. Thus, we can replace λτ by 1√

c
λτ to obtain a linearization on M

(see Definition 7 below). Hence, there exists a line bundle L on Y such that
π∗L =M. �X

Lemma 4.

i) If X is a K3 surface, then H1(X,Z) = H2(X,Z)tors = 0 (see [1, Prop.
3.3]).

ii) If Y is an Enriques surface, then H1(Y,Z) = H2(Y Z)tors = Z/2Z.

Lemma 5. If Y is an Enriques surface, then Br′(Y ) = H3(Y,Z) = Z/2Z.

Proof. By Serre duality and Lemma 4(i), it follows that 0 = b1(Y ) = b3(Y )
and H3(Y,Z)tors = H2(Y,Z)tors = Z/2Z (see [1, page 15]). Since pg(Y ) = 0,
the exponential sequence induces the following exact sequence

0→ H2(Y,O∗Y )→ H3(Y,Z)→ H3(Y,OX).

Then, from the vanishing of H3(Y,OX), we conclude the isomorphism
Br′(Y ) = H3(Y,Z) and from the vanishing b3(Y ) = 0, we deduce thatH3(Y,Z) =
Z/2Z. �X
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THE BRAUER GROUP OF K3 COVERS 187

3. The Kernel of π∗ : Br′(Y ) → Br′(X)

We will study the kernel of the map π∗ : Br′(Y ) → Br′(X) induced by the
universal cover, π : X → Y , of the Enriques surface Y . In a particular case we
will be able to describe the non trivial element of Br′(Y ) as a Brauer–Severi
variety over Y . For the basic facts about group cohomology we refer to [11]. In
order to describe ker(π∗), we use the Hochschild–Serre spectral sequence (see
[5, Theorem 14.9])

Ep,q2 := Hp
(
Z/2Z, Hq(X,O∗X)

)
⇒ Hp+q(Y,O∗Y ). (1)

and the following theorem (cf. [11, Theorem 6.2.2]). First, we recall that for a
cyclic group G of order m with a generator τ , the norm in ZG is the element
N = 1 + τ + · · ·+ τm−1.

Theorem 6. If A is a G-module with G a cyclic group generated by τ , then

Hn(G,A) =


AG, if n = 0;{
a ∈ A : Na = 0

}
/(τ − 1)A, if n is odd;

AG/NA, otherwise.

The last theorem can be used to compute En,02 for all n. First, since the
action of 〈τ〉 = Z/2Z on C∗ = H0(X,O∗X) is trivial, one has

En,02 = Hn(Z/2Z,C∗) = 0 (2)

for all even integers n 6= 0. On the other hand, if n is an odd integer and
a ∈ C∗ with N(a) = 1, it follows from the definition of the norm map that
1 = aτ(a) = a2. Thus

En,02 = Hn(Z/2Z,C∗) = Z/2Z. (3)

Since E2,0
2 = 0, also E2,0

∞ = 0 and the following exact sequence follows:

0→ E1,1
∞ → H2(Y,O∗Y )→ H2(X,O∗X)τ . (4)

Let us recall now a few facts about linearization for finite group actions.
Let Z be a smooth projective variety with an action by a finite group G. Let
σ : G× Z → Z be the action on Z, µ : G×G→ G be the multiplication map
of G and p2 : G× Z → Z, p23 : G×G× Z → G× Z be the projections.

Definition 7. A G-linearization of a coherent sheaf F is an isomorphism λ :
σ∗F →̃ p∗2F of OG×Z-modules that satisfies the cocycle condition (µ×idZ)∗λ =
p∗23λ ◦ (σ × idG)∗λ.

Revista Colombiana de Matemáticas
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In the particular case that G is a finite group, the last definition can
be reformulated as follows: A G-linearization of F is given by isomorphisms
λg : F →̃ g∗F for all g ∈ G satisfying λ1 = idF and λgh = h∗λg ◦ λh. If
(F, λ) and (F ′, λ′) are two G-linearised sheaves, then Hom(F, F ′) becomes a G-
representation defined by the right action g.f = (λ′g)

−1◦g∗f◦λg for f : F → F ′.

Let Y be an Enriques surface and π : X → Y its universal cover map.
We proceed to define the relative norm homomorphis NX/Y . Let Ui be an

open covering of Y such that Ûi := π−1(Ui) consists of two copies of Ui. Take

f = (f0, f1) ∈ O∗(Ûi) and define the sheaf relative norm map by f0f1. Thus,
the relative norm homorphism induced in the Picard groups can be defined
as follows: take a 1-cocycle

{
ϕ̂i = (ϕi0, ϕ

i
1)
}
i

over X that represents a line

bundle L, and define our desired morphism by NX/Y
({

(ϕi0, ϕ
i
1)
}
i

)
=
{
ϕi0 ·ϕi1

}
i
.

This is also the cocycle defining the line bundle det(π∗(L)). Hence, we obtain
NX/Y (−) = det(π∗(−)) and one can show the following lemma whose proof
can be found in [2].

Lemma 8. The kernel of π∗ : Br′(Y )→ Br′(X) is(
kerNX/Y

)
/
(
(1− τ) Pic(X)

)
.

Definition 9. Let X be a surface and P a P1-bundle on X. We say that P
comes from a vector bundle if there exists a vector bundle E on X such that
P ∼= P(E).

Lemma 10. Let Y be an Enriques surface and π : X → Y its universal cover
map. Let L be a line bundle satisfying τ∗L⊗L = OX , NX/Y (L) = 0, and such

that [L] is nontrivial in E1,1
2 = H1

(
Z/2Z,Pic(X)

)
. Then P(O⊕L) descends to

a projective bundle that does not come from a vector bundle.

Proof. Let L ∈ Pic(X) be a line bundle with NX/Y (L) = 0 representing a
nontrivial element in

E1,1
2 = H1

(
Z/2Z,Pic(X)

)
=
{L ∈ Pic(X) : τ∗L⊗ L = OX}
{τ∗M ⊗M∨ : M ∈ Pic(X)}

.

We proceed to give a G-linearization on P(OX ⊕ L):

λτ : P
(
τ∗(OX ⊕ L)

)
−→ P(OX ⊕ L).

SinceNX/Y (L) = 0 we can find aG-linearised isomorphism i : L⊗τ∗L →̃ OX
where we consider OX endowed with the canonical G-linearization. We define
λτ as the composition of morphisms

P(OX ⊕ L)→ P
(
τ∗L ⊕ (L ⊗ τ∗L)

)
→ P(τ∗L ⊕OX)→ P(OX ⊕ τ∗L)
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THE BRAUER GROUP OF K3 COVERS 189

[a : b] 7→ [aτ∗b : bτ∗b] 7→
[
aτ∗b : i(bτ∗b)

]
7→
[
i(bτ∗b) : aτ∗b

]
where a and b are sections of OX and L respectively. Note that P(OX⊕τ∗L) =
P(τ∗OX ⊕ τ∗L) because we consider the canonical linearization on OX , i.e.
τ∗OX = OX . Since i is a G-linearised isomorphism, it commutes with τ and
from this we can check that λ2

τ = id as follows:

λ2
τ

(
[a : b]

)
= λτ

([
i(bτ∗b) : aτ∗b

])
=
[
i
(
(aτ∗b)τ∗(aτ∗b)

)
: i(bτ∗b)τ∗(aτ∗b)

]
=
[
aτ∗a.i(bτ∗b) : i(bτ∗b)τ∗(aτ∗b)

]
=
[
aτ∗a : τ∗(aτ∗b)

]
=
[
aτ∗a : bτ∗a

]
= [a : b].

Hence, the projective bundle P(OX ⊕L) descends to a projective bundle P
over Y . Now, we show that P does not come from a vector bundle on Y . Suppose
P = P(E) for some vector bundle E over Y and so P

(
π∗(E)

)
= P(OX ⊕ L).

Thus, it follows that π∗(E) = M ⊗ (OX ⊕L), for some M ∈ Pic(X). By taking
determinants on both sides of this isomorphism we get det

(
π∗(E)

)
= M⊗2⊗L.

In particular, this implies that M is not invariant. Indeed, if M is an in-
variant line bundle, L = det

(
π∗(E)

)
⊗ (M∨)⊗2 is an invariant bundle. Hence

L ∼= OX because τ∗L ⊗ L = OX , a contradiction. Since M⊗2 ⊗ L is invariant
and τ∗L ⊗ L = OX , one has

M⊗2 ⊗ L = τ∗(M⊗2 ⊗ L) = τ∗M⊗2 ⊗ L∨

and so, τ∗M⊗2 = M⊗2 ⊗ L⊗2. Hence, from the torsion freeness of Pic(X) we
obtain τ∗M = M⊗L, i.e., L = τ∗M⊗M∨, but this contradicts the assumption
that L defines a non trivial element in E1,1

2 . �X

Lemma 11. Let π : X → Y be the universal cover of an Enriques surface Y
with ρ(X) = 10. Then π∗ : Br′(Y )→ Br′(X) is a nontrivial homomorphism.

Proof. We show that ρ(X) = 10 implies Pic(X)τ = Pic(X), i.e., all the line
bundles on X are invariant. Since ρ(X) = 10, Pic(X)τ ⊆ Pic(X) is a sublattice
of finite index. Thus, if L is a line bundle, there exists a positive integer r with
L⊗r ∈ Pic(X)τ , i.e.,

τ∗L⊗r = L⊗r.
Hence

(τ∗L ⊗ L∨)⊗r = OX .
Since Pic(X) is torsion free, we obtain

τ∗L ⊗ L∨ = OX ,
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190 HERMES MART́ıNEZ

i.e., L is an invariant line bundle. Thus, the group H1
(
Z/2Z,Pic(X)

)
vanishes

and the lemma holds. �X

Example 12. In this example we show the existence of a K3 surface X with
ρ(X) = 10 that covers an Enriques surface. First, we find a K3 surface with
Picard number 10. Let us define Λ := E8 ⊕E8 ⊕U ⊕U ⊕U and an involution
ρ of L by

ρ : Λ→ Λ, (e1, e2, h1, h2, h3) 7→ (e2, e1,−h1, h3, h2).

Note that this involution is the universal action (cf. [1, Ch. VIII, Lemma 19.1]),
i.e. whenever π : X → Y is the universal covering of an Enriques surface
Y with τ : X → X the covering involution, then there exists an isometry
φ : H2(X,Z)→ Λ such that φ ◦ τ∗ = ρ ◦ φ. The ρ-invariant sublattice of Λ is

Λ+ = {x ∈ Λ : ρ(x) = x} = {(e, e, 0, h, h) : e ∈ E8, h ∈ U},

which is isometric to E8(2)⊕ U(2), where the isometry is given as follows

ρ+ : Λ+ → E8(2)⊕ U(2), (e, e, 0, h, h) 7→ (e, h).

Hence, E8(2)⊕U(2) ↪→ E⊕2
8 ⊕U⊕3 is a primitive embedding. Since this lattice

has Picard number 10 and signature (1,9), by [6, Cor. 2.9] we can find an
algebraic K3 surface X with NS(X) = E8(2)⊕U(2). Now, we show that X has
a fixed point free involution. The isometry ρ+ also yields an isomorphism(

Λ+
)∨
/Λ+ ∼= (Z/2Z)10.

It means that Λ+ is a 2-elementary lattice with l(AΛ+) = 10. This gives us
an involution

τ∗ : H2(X,Z)→ H2(X,Z)

which is the identity on Λ+ and acts like multiplication by (−1) on TX =

(Λ+)⊥ =
(

NS(X)
)⊥

where the orthogonal complement is taken in H2(X,Z).
Since τ∗ is the identity on Λ+ (=NS(X) through the isometry ρ+), it is effective
and so it maps a Kähler class to a Kähler class. By the global Torelli Theorem
for K3 surfaces, there exists a unique involution τ : X → X which induces τ∗

on H2(X,Z). Then it follows from [8, Thm. 4.2.2], that the set of fixed points
Xτ is empty. It means that the involution τ is fixed point free, hence X/τ is
an Enriques surface.

Now, we introduce the following spectral sequence

Ep,q2,Z := Hp
(
Z/2Z, Hq(X,Z)

)
⇒ Hp+q(Y,Z) (5)
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THE BRAUER GROUP OF K3 COVERS 191

associated to the covering map π : X → Y of an Enriques surface Y and we
compute some terms of this. Since X is a K3 surface, the vanishing H1(X,Z) =
H3(X,Z) = 0 implies

En,12,Z = En,32,Z = 0 (6)

for all integers n. Now, we compute the terms En,02,Z for all integers n. First, we

note that the action of Z/2Z is trivial on Z. Since the term E0,0
2,Z corresponds to

the invariant elements of Z under the action of Z/2Z we obtain that E0,0
2,Z = Z.

Now, let us compute the terms En,02,Z for odd n. Since the action is trivial, we
deduce that

0 = N(m) = τ∗(m) +m = 2m.

Then it follows that m = 0 and hence by Theorem 6 that En,02,Z = 0. On the

other hand, if n is an even number we can see that En,02,Z = Z/2Z. Summarizing,

En,02,Z =


Z, if n = 0;

0, if n is odd;

Z/2Z, if n is even, n 6= 0.

(7)

From (6) and (7) we deduce

E0,3
∞,Z = E2,1

∞,Z = E3,0
∞,Z = 0

and this implies
E1,2
∞,Z = Z/2Z. (8)

The homomorphism c1 : Pic(X) → H2(X,Z) induces a homomorphism
C : E1,1

2 → E1,2
2,Z which can be easily described using Theorem 6 as

C :

{
L ∈ Pic(X) : τ∗L⊗ L ∼= OX

}{
τ∗M ⊗M∨ : M ∈ Pic(X)

} →
{
` ∈ H2(X,Z) : τ∗`+ ` = 0

}{
τ∗m−m : m ∈ H2(X,Z)

} , (9)

sending [L] to [c1(L)].

Theorem 13 (Schwarzenberger, [10]). Let X be a projective surface. A topo-
logical complex vector bundle admits a holomorphic structure if and only if its
first Chern class belongs to the Neron–Severi group of the surface.

Lemma 14. Let Y be an Enriques surface. Then every topological vector bundle
on Y has a holomorphic structure.

Proof. Let E be a CX–bundle on Y . Since Y is an Enriques surface then
NS(Y ) ∼= H2(Y,Z). Hence c1(E) ∈ NS(Y ) and by Theorem 13, E has a holo-
morphic structure. �X
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192 HERMES MART́ıNEZ

Lemma 15. The homomorphism C is injective.

Proof. Let [L] be the class of a line bundle L such that τ∗L ⊗ L = OX .
Suppose that C(L) = 0. Thus, there exists a topological line bundle M such
that L = M∨ ⊗ τ∗M and so

−c1(M) + c1(τ∗M) = c1(M∨ ⊗ τ∗M) = c1(L) ∈ NS(X). (10)

On the other hand, since the topological rank 2 vector bundle τ∗M⊕M has
a linearization (i.e. the trivial linearization), there exists a topological vector
bundle E on Y such that π∗E = τ∗M⊕M . By Lemma 14, E has a holomorphic
structure and induces one on τ∗M ⊕M . Thus, by Theorem 13,

c1(τ∗M ⊕M) ∈ NS(X). (11)

Therefore, by (10) and (11), 2c1(τ∗M) = (c1(τ∗M) − c1(M)) + c1(τ∗M ⊗
M) ∈ NS(X). Since X is a K3 surface, c1 : Pic(X) ↪→ H2(X,Z) is injective
and so

H2(X,Z)

NS(X)
↪→ H2(X,OX).

Thus c1(τ∗M) ∈ NS(X) because 2c1(τ∗M) ∈ NS(X) and H2(X,OX) is
torsion free, and so we conclude [L] = 0 in E1,1

2 . �X

In Example 12 we have introduced the involution ρ on the K3 lattice Λ :=
(E8)⊕2⊕U⊕3 and also defined the invariant lattice Λ+. We define similarly the
ρ-anti-invariant sublattice of Λ by

Λ− := {` ∈ Λ : ρ(`) = −`}.

Given ` = (x, y, z1, z2, z3) ∈ Λ, we get ρ(`) = −` if and only if

` = (x,−x, z1, z2,−z2).

Let m = (m1,m1, n1, n2, n3) ∈ Λ, then

ρ(m)−m =
(
m2 −m1,−(m2 −m1),−2n1, n3 − n2,−(n3 − n2)

)
.

this yields that
` = (x,−x, z, y,−y) ∈ Λ−

can be written as ρ(m) −m for some m ∈ Λ if and only if z = −2n for some
n ∈ U .

Let Y be an Enriques surface and π : X → Y its universal covering
map. Consider the spectral sequence E1,2

2,Z associated to this (see (5)). Let

` ∈ H2(X,Z) such that τ∗` = −`. Thus, 2` = ` − τ∗`, i.e. [2`] = 0 in E1,2
2,Z =
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THE BRAUER GROUP OF K3 COVERS 193

H1
(
Z/2Z, H2(X,Z)

)
. Therefore, any element in E1,2

2,Z = H1
(
Z/2Z, H2(X,Z)

)
is 2-torsion.

By definition, E1,2
3,Z = ker

(
d1,2

2 : E1,2
2,Z → E3,1

2,Z

)
. Thus

E1,2
3,Z = E1,2

2,Z

because E3,1
2,Z = H3

(
Z/2Z, H1(X,Z)

)
= 0. Since

Z/2Z = E1,2
∞,Z = ker

(
d1,2

3 : E1,2
3,Z → E4,0

3,Z

)
,

we have only the following two options:

(i) E1,2
2,Z = Z/2Z× Z/2Z and d1,2

3 6= 0,

(ii) E1,2
2,Z = Z/2Z and d1,2

3 = 0.

Now, we show that (ii) can not occur.

Lemma 16. Let Y be an Enriques surface and π : X → Y its universal
covering map. Then the d1,2

3 of the spectral sequence Ep,q2,Z associated to the
morphism π : X → Y is not 0.

Proof. First, we compute the term E0,4
∞,Z. Since

E1,3
∞,Z = E3,1

∞,Z = 0,

E4,0
2,Z = Z/2Z and E2,2

2,Z is a torsion group, one finds

E0,4
∞,Z = Z.

Suppose that d1,2
3 = 0. Since X is a K3 surface,

E0,3
2,Z = H0

(
Z/2Z, H3(X,Z)

)
= 0 (12)

E2,1
2,Z = H2

(
Z/2Z, H1(X,Z)

)
= 0. (13)

By definition of the terms of the spectral sequence,

E4,0
3,Z =

E4,0
2,Z

im
(
d2,1

2 : E2,1
2,Z → E4,0

2,Z

)
and by (13), E4,0

3,Z = E4,0
2,Z. Since d1,2

3 = 0,
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194 HERMES MART́ıNEZ

E4,0
4,Z =

E4,0
3,Z

im
(
d1,2

3 : E1,2
3,Z → E4,0

3,Z

) = E4,0
3,Z,

and finally by (12)

E4,0
∞,Z = E4,0

5,Z =
E4,0

4,Z

im
(
d0,3

4 : E0,3
4,Z → E4,0

4,Z

) = E4,0
4,Z.

Hence we conclude E4,0
∞,Z = E4,0

2,Z = Z/2Z, a contradiction. �X

4. More about the Morphism Br′(Y ) → Br′(X)

We recall the following two results due to Beauville:

Proposition 17. ([2, Cor. 5.6 and its proof]) Let λ = (α, α′, β) ∈ H2(X,Z)
such that α, α′ ∈ E8⊕U and β ∈ U and ε the class of e+f in U2 := U/2U where
{e, f} is the basis of the hyperbolic lattice U . Then the following conditions are
equivalent:

i) π∗λ = 0 and λ /∈ (1− τ∗)
(
H2(X,Z)

)
;

ii) τ∗λ = −λ and λ2 ≡ 2 mod 4.

iii) the class β = ε and α′ = −α.

Corollary 18. π : Br′(Y )→ Br′(X) is trivial if and only if there exists a line
bundle L on X with τ∗L = L∨ and c1(L)2 ≡ 2 mod 4.

Now, we quickly recall a kind of divisors in the period domain Ω of E8(2)⊕
U(2)-polarized marked K3 surfaces. If we fix the unique primitive embedding
of E8(2)⊕ U(2) in the K3 lattice Λ, then Ω is by definition

Ω :=
{

[ω] ∈ P
((
E8(2)⊕ U(2)

)⊥
C

)
: ω2 = 0, ωω > 0

}
.

Let S ⊂ Λ be a primitive sublattice of rank 11 containing the lattice E8(2)⊕
U(2). Then the subset

Ω(S) :=
{

[ω] ∈ P
(
S⊥C
)

: ω2 = 0, ωω > 0
}

is called the Heegner divisor of type S in Ω.

Proposition 19. ([9, Proposition. 3.1]) If X corresponds to a very general
point of Ω(S), i.e. in the complement of a union of countably many proper
closed analytic subset of Ω(S), then we have NS(X) = S.
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THE BRAUER GROUP OF K3 COVERS 195

Remark 20. Ohashi proved in [9, Theorem. 3.4], that for a lattice S = U(2)⊕
E8(2)⊕〈−2N〉 with N ≡ 0 mod 4, there exists a K3 surface X with an Enriques
quotient and such that NS(X) = S.

Example 21. Now, we will show the existence of a K3 surface X covering an
Enriques surface Y with ρ(X) = 11 and E1,1

2 = 0 which from (4) implies that
π∗ : Br′(Y )→ Br′(X) is injective. Let α ∈ Λ, defined by (see [7])

α =

(∑
i odd

aiei,−
∑
i odd

aiei, 0, f1 − f2,−f1 + f2

)
,

where the a′is are integers. This is a primitive element, α = β − ρ(β) where

β = (a1e1 + a3e3,−a5e5 − a7e7, 0, f1, f2)

and
α2 = −4

∑
i odd

a2
i = −4m.

Thus, E8(2)⊕U(2)⊕αZ ↪→ E⊕2
8 ⊕U⊕3 is a primitive embedding (note that

E8(2)⊕ U(2) diagonally embeds in E⊕2
8 ⊕ U⊕3). Note that by the Lagrange’s

four-square Theorem ([4, Proposition 17.7.1]), m can take any positive integer
value. By Proposition 19 and Remark 20, there exists a K3 surface X with an
Enriques quotient Y and such that

NS(X) = E8(2)⊕ U(2)⊕ αZ

and by [1, Lemma 19.1] there exists an isometry φ : H2(X,Z) → Λ such that
φ ◦ τ∗ = ρ ◦ φ. Now, we take a line bundle L with c1(L) = φ−1(α). Then,

α = −ρ(α)

= −ρ
(
φ
(
φ−1(α)

))
= −φ

(
τ∗
(
φ−1(α)

))
= −φ

(
τ∗
(
c1(L)

))
= −φ

(
c1(τ∗L)

)
= φ

(
c1
(
τ∗L∨

))
.

Then, from the injectivity of φ, it follows that

c1(τ∗L ⊗ L) = 0,

and since X is a K3 surface we deduce

τ∗L ⊗ L = OX ,
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i.e. [L] ∈ E1,1
2 . Now, since α = β − ρ(β) and E1,1

2 ⊆ E1,2
2,Z (Lemma 15), then

[L] = 0 in E1,1
2 .

Now, we show that for any line bundleM such that τ∗M⊗M = OX , there
exists an integer n such thatM = L⊗n. By construction of the above primitive
embedding, we have that the action of τ∗ on E8(2)⊕U(2) is the identity. Thus,
if M is a line bundle, it can be written as M = L⊗n ⊗ F for some invariant
line bundle F . Hence

OX = τ∗M⊗M = τ∗L⊗n ⊗ τ∗F ⊗ L⊗n ⊗F = F⊗2.

Hence F = OX because Pic(X) is torsion free and thus M = L⊗n. Thus, we
have shown that E1,1

2 = 0.

Example 22. Let E1, E2 be elliptic curves over k (a field of characteristic
0) which are not isogeneous over k and such that their points of order 2 are
defined over k. For i = 1, 2, let Di be a principal homogeneous space of Ei
whose class in H1

(
Gal

(
k/k

)
, Ei
)

has order 2. The antipodal involution P 7→
−P defines an involution on D1 and on D2, and defines a Kummer surface
X by considering the minimal desingularization of the quotient of D1 × D2

by the simultaneous antipodal involution. Since X is a Kummer surface, it
covers an Enriques surface Y . Harari and Skorobogatov were able to prove
that for this example the morphism π∗ : Br′

(
Y
)
→ Br′

(
X
)

is injective (see [3,

Corollary 2.8]) where X and Y are the surfaces over k obtained from X and
Y respectively by extending the ground field from k to k. We also know from
Corollary 4.4 in [6] that ρ

(
X
)
≥ 17 because X is a Kummer surface.

Let π : X → Y be the universal covering map of an Enriques surface Y and
let τ be the fixed point free involution of X associated to π. We proceed to
study how τ acts on H2

(
X,O∗X

)
and on H3

(
X,O∗X

)
.

Lemma 23. Let X be a K3 surface with a fixed point free involution τ . The
involution τ acts on H2

(
X,O∗X

)
as τ∗α = α−1.

Proof. The involution τ acts on H2(X,OX) as − id. Indeed, since H2
(
X,OX

)
is one dimensional then the action τ on this is ± id. If θ is a 2−form and
τ∗θ = θ, the form descends to a 2−form on Y := X/τ . This is a contradiction
because for any Enriques surface, h0,2(Y ) = 0. From the exponential sequence
we get

H2
(
X,OX

)
H2
(
X,O∗X

)

H2
(
X,OX

)
H2
(
X,O∗X

)
τ∗− id
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Hence for every α ∈ H2
(
X,O∗X

)
, τ∗α = α−1. �X

Lemma 24. Let X be a K3 surface. Any element in the Brauer group Br′(X)
is 2−divisible.

Proof. From the exact sequence

0→ Z/2Z→ O∗X → O∗X → 0

we get

0→ Br′(X)2 → Br′(X)→ Br′(X)→ 0

because H3(X,Z/2Z) = 0. �X

Remark 25. Let ρ := ρ(X) denote the Picard number of a surface X. Let X be
a K3 surface with an involution τ that has no fixed points. For any invariant line
bundle L under τ , there is a line bundle M on the Enriques surface Y := X/τ
such that π∗M = L. This is no longer true for Brauer classes. Indeed, by
Lemma 23, the invariant elements of Br′(X) under τ consist of all the 2-torsion
elements of Br′(X). Since X is a K3 surface, Br′(X)2

∼= (Z/2Z)22−ρ. Hence,
since ρ ≤ 20, there exists an element α ∈ Br′(X) such τ∗α = α which is not in
the image im

(
π∗ : Br′(Y ) → Br′(X)

)
. In conclusion, you may have picked α

that happens to be in the image, but since 22− ρ ≥ 2, there is always another
one.

Now, let us compute some elements of the spectral sequence Ep,q2 introduced
in (1), associated to the universal covering map π : X → Y of an Enriques
surface Y . First, we know from the exponential sequence that

H3(Y,O∗Y ) ∼= H4(Y,Z) = Z. (14)

Remark 26. By Theorem 6,

E2,1
2 = H2

(
Z/2Z,Pic(X)

)
=

{
L ∈ Pic(X) : τ∗L⊗ L∨ = OX

}{
τ∗M ⊗M : M ∈ Pic(X)

}
and

E1,2
2 = H1

(
Z/2Z, H2(X,O∗X)

)
=

{
α ∈ H2

(
X,O∗X

)
: τ∗(α).α = 1

}{
τ∗(β).β−1 : β ∈ H2

(
X,O∗X

)} .

By Lemmas 23 and 24, E1,2
2 = 0. Now, if L ∈ Pic(X) with τ∗L ⊗ L∨ =

OX . Then [L⊗2] = [τ∗(L) ⊗ L], i.e. [L] is a 2-torsion element in E2,1
2 =

H2
(
Z/2Z,Pic(X)

)
.
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Thus E1,2
2 = 0, E3,0

2 = Z/2Z (cf. (3)) and E2,1
2 is a torsion group (by (26)).

In conclusion, we get from the (14) which says that E3 = Z, that

E0,3
∞ = Z, (15)

E1,2
∞ = E2,1

∞ = E3,0
∞ = 0. (16)

The action τ on H3
(
X,O∗X

)
= H4(X,Z) = Z is ± id. If τ∗ = − id, then

E0,3
2 = H0

(
Z/2Z, H3

(
X,O∗X

))
= H3

(
X,O∗X

)τ
= 0, but this contradicts the

fact E0,3
∞ = Z. Thus, we have shown the following lemma. (Note that this

lemma trivially follows only from the fact that H3
(
X,O∗X

)
= H4(X,Z) = Z

and the action on the last cohomology group is id, but the computations above
are needed).

Lemma 27. Let X be a K3 surface with a fixed point free involution τ . Then
the action of τ on H3

(
X,O∗X

)
is trivial.

Remark 28. Let L be a line bundle such that τ∗L ⊗ L = OX . Thus, L⊗2 =
L⊗ (τ∗L)∨, i.e. [L]⊗ [L] = [L⊗2] = 0 in E1,1

2 = H1(Z/2Z,Pic(X)). Since

E0,2
2 = H0

(
Z/2Z, H2

(
X,O∗X

))
= H2

(
X,O∗X

)τ
,

by Lemma 23, E0,2
2 = Br′(X)2. Indeed, if α ∈ Br′(X) with τ∗α = α, then by

Lemma 23, α = τ∗α = α−1, i.e. α is a 2−torsion element of Br′(X). On the
other hand, if α ∈ Br′(X)2, then by Lemma 23, α = α−1 = τ∗α. Finally, by
Remark 25, E0,2

2 = Br′(X)2 = (Z/2Z)22−ρ.

Since any element in E1,1
2 is a 2-torsion element, we have only the following

four cases:

i) E1,1
2 = 0 or

ii) E1,1
2 = Z/2Z, d1,1

2 = id, i.e. E1,1
∞ = 0 or

iii) E1,1
2 = Z/2Z, d1,1

2 = 0, i.e. E1,1
∞ = Z/2Z or

iv) E1,1
2 = Z/2Z× Z/2Z, d1,1

2 6= 0, i.e. 0→ Z/2Z→ E1,1
2

d1,12→ E3,0
2 → 0.

Lemma 29. Let Y be an Enriques surface, π : X → Y the universal cov-
ering map of Y and τ the fixed point free involution given by π. If E1,1

2 =
H1
(
Z/2Z,Pic(X)

)
= 0. Then E2,1

2 = H2
(
Z/2Z,Pic(X)

)
= (Z/2Z)20−ρ.

Proof. Since E1,1
2 = 0,

E3,0
3 =

E3,0
2

im
(
d1,1

2 : E1,1
2 → E3,0

2

) = E3,0
2 = Z/2Z
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and by (16)

0 = E3,0
∞ = E3,0

4 =
E3,0

3

im
(
d0,2

3 : E0,2
3 → E3,0

3

) .
Thus d0,2

3 is surjective. Since E1,1
2 = 0,

Z/2Z = E0,2
∞ = E0,2

4 = ker
(
d0,2

3 : E0,2
3 → E3,0

3

)
, (17)

and since E3,0
3 = E3,0

2 = Z/2Z and all elements in E0,2
2 are 2-torsion,

E0,2
3 = Z/2Z× Z/2Z. (18)

By (16)

0 = E2,1
∞ =

E2,1
2

im
(
d0,2

2 : E0,2
2 → E2,1

2

) ,
and thus the morphism d0,2

2 : E0,2
2 → E2,1

2 is surjective. Hence, by (17) and the
fact that any element in E0,2

2 is a 2−torsion element (cf. Remark 28),

E0,2
2 = E0,2

3 × E2,1
2 .

From E0,2
2 = (Z/2Z)22−ρ (cf. Remark 28) and (18), E2,1

2 = (Z/2Z)20−ρ. �X

Lemma 30. Let Y be an Enriques surface, π : X → Y the universal cov-
ering map of Y and τ the fixed point free involution given by π. If E1,1

2 =
H1
(
Z/2Z,Pic(X)

)
= Z/2Z and E1,1

∞ = 0. Then E2,1
2 = H2

(
Z/2Z,Pic(X)

)
=

(Z/2Z)21−ρ.

Proof. Since E1,1
2 6= 0 and E1,1

∞ = 0, im
(
d1,1

2

)
= E3,0

2 = Z/2Z (cf. (3)). Thus

E3,0
3 =

E3,0
2

im
(
d1,1

2 : E1,1
2 → E3,0

2

) = 0. (19)

By Remark 26, any element in E2,1
2 is 2−torsion. Then there is an integer m

such that E2,1
2 = (Z/2Z)m. By (16),

0 = E2,1
∞ =

E2,1
2

im
(
d0,2

2 : E0,2
2 → E2,1

2

)
and thus im

(
d0,2

2

)
= (Z/2Z)m. Hence

ker
(
d0,2

2

)
= (Z/2Z)22−ρ−m
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because E0,2
2 = (Z/2Z)22−ρ. Since E0,2

∞ = Z/2Z,

Z/2Z = E0,2
∞ = E0,2

4 = ker
(
d0,2

3 : ker
(
d0,2

2

)
→ E3,0

3

)
and from (19)

Z/2Z = ker
(
d0,2

2

)
= (Z/2Z)22−ρ−m

and so m = 21− ρ. �X

Lemma 31. Let X be a K3 surface that covers an Enriques surface Y and
such that its spectral sequence satisfies E1,1

2 = H1
(
Z/2Z,Pic(X)

)
= Z/2Z and

E1,1
∞ = Z/2Z. Then E2,1

2 = H2
(
Z/2Z,Pic(X)

)
= (Z/2Z)21−ρ.

Proof. By assumptions d1,1
2 is trivial and so

E3,0
3 =

E3,0
2

im
(
d1,1

2 : E1,1
2 → E3,0

2

) = E3,0
2 = Z/2Z

and by definition

E3,0
4 =

E3,0
3

im
(
d0,2

3 : E0,2
3 → E3,0

3

) . (20)

On the other hand,

0 = E0,2
∞ = ker

(
d0,2

3 : E0,2
3 → E3,0

3

)
because E1,1

∞ = Z/2Z. Hence d0,2
3 : E0,2

3 → E3,0
3 = Z/2Z is injective and this

and (20) imply the following equivalence:

E0,2
3 = Z/2Z if and only if E3,0

∞ = E3,0
4 = 0. (21)

By (16), E3,0
∞ = 0. Thus, the equivalence (21) implies E0,2

3 = Z/2Z. Since by
Remark 26, any element in E2,1

2 is a 2-torsion element, there exists an integer
m such that E2,1

2 = (Z/2Z)m. By (16),

0 = E2,1
∞ =

E2,1
2

im
(
d0,2

2 : E0,2
2 → E2,1

2

) ,
and thus

im
(
d0,2

2 : E0,2
2 → E2,1

2

)
= (Z/2Z)m,

i.e. the map d0,2
2 is surjective. Since E0,2

2 = (Z/2Z)22−ρ (cf. Remark 28), E0,2
3 =

ker
(
d0,2

2

)
, it yields from the surjectivity of d0,2

2 that

E0,2
3 = (Z/2Z)22−ρ−m.

Thus, m = 21− ρ because E0,2
3 = Z/2Z. Hence

E2,1
2 = (Z/2Z)21−ρ. �X
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Lemma 32. Let Y be an Enriques surface and π : X → Y the universal
covering map of Y such that E1,1

2 = H1
(
Z/2Z,Pic(X)

)
= (Z/2Z)2. Then

E2,1
2 = H2

(
Z/2Z,Pic(X)

)
= (Z/2Z)22−ρ. Moreover ρ(X) ≥ 12.

Proof. Since E1,1
2 = (Z/2Z)2 and E3,0

2 = Z/2Z, the map d1,1
2 6= 0. Hence

E1,1
∞ = E1,1

3 = ker
(
d1,1

2

)
is nontrivial, and it must be Z/2Z. By definition,

E3,0
3 =

E3,0
2

im
(
d1,1

2 : E1,1
2 → E3,0

2

) = 0 (22)

and by (16)

E2,1
∞ = E2,1

3 =
E2,1

2

im
(
d0,2

2 : E0,2
2 → E2,1

2

) = 0. (23)

Since E1,1
∞ = Z/2Z, then

0 = E0,2
∞ = E0,2

4 = ker
(
d0,2

3 : E0,2
3 → E3,0

3

)
.

Thus, by (22), E0,2
3 = 0. By definition,

E0,2
3 = ker

(
d0,2

2 : E0,2
2 → E2,1

2

)
and then d0,2

2 : E0,2
2 → E2,1

2 is injective. Hence, by (23),

E2,1
2 = E0,2

2 .

Since
E0,2

2 = Br′(X)2 = (Z/2Z)22−ρ,

one finds
E2,1

2 = (Z/2Z)22−ρ.

Since E2,1
2 is a quotient of Pic(X)τ and thus of Pic(Y ) = Z10 × Z/2Z,

one finds 22 − ρ ≤ 10 (note that Z/2Z ⊂ Pic(Y ) goes to zero in E2,1
2 ). Thus

ρ ≥ 12 �X

In conclusion, by lemmas 29, 30, 31, 32 and the statement before Lemma 29,
we only have the following four cases:

i) E1,1
2 = 0, E2,1

2 = (Z/2Z)20−ρ or

ii) E1,1
2 = Z/2Z, E1,1

∞ = 0, E2,1
2 = (Z/2Z)21−ρ or

iii) E1,1
2 = Z/2Z, E1,1

∞ = Z/2Z, E2,1
2 = (Z/2Z)21−ρ or

iv) E1,1
2 = (Z/2Z)2, E1,1

∞ = Z/2Z, E2,1
2 = (Z/2Z)22−ρ.
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Note that in the cases ii) and iii) we have that ρ ≥ 11.

Theorem 33. Let X be a K3 surface with a fixed point free involution τ
and Picard number ρ such that H2

(
Z/2ZPic(X)

)
= (Z/2Z)22−ρ. Then the

morphism π∗ : Br′(Y )→ Br′(X) is trivial, where Y := X/〈τ〉.

Proof. Since E2,1
2 = (Z/2Z)22−ρ, we are in case iv). Hence E1,1

∞ = Z/2Z. By
(4), the morphism π : Br′(Y )→ Br′(X) is trivial. �X

Theorem 34. Let X be a K3 surface with a fixed point free involution τ
and Picard number ρ such that H2

(
Z/2ZPic(X)

)
= (Z/2Z)20−ρ. Then the

morphism π∗ : Br′(Y )→ Br′(X) is nontrivial, where Y := X/〈τ〉.

Proof. Since E2,1
2 = (Z/2Z)20−ρ, we are in case i). Hence E1,1

∞ = 0. By (4),
the morphism π∗ : Br′(Y )→ Br′(X) is injective. �X

Let Y be an Enriques surface and π : X → Y its universal covering map. We
know that if X is as in the first case above, then ρ(X) ≥ 10, and if X is one of
the cases ii) or iii), then ρ(X) ≥ 11 and ifX is as in the case iv), then ρ(X) ≥ 12.
Thus, if ρ(X) = 10, the K3 surface X satisfies the conditions of the first case
and we obtain E1,1

2 = 0. Hence, by (4), the morphism π∗ : Br′(Y )→ Br′(X) is
injective. This is another proof of the same result obtained before out Lemma
11.

Proposition 35. Let X be a K3 cover of an Enriques surface Y such that
ρ(X) = 11 and NS(X) = U(2) ⊕ E8(2) ⊕ 〈−2N〉, where N ≥ 2. Then π∗ :
Br′(Y )→ Br′(X) is injective if and only if N is an even number.

Proof. Note that NS(X) = U(2) ⊕ E8(2) ⊕ 〈−2N〉 = π∗NS(Y ) ⊕ 〈−2N〉
(because, as in Example 12, Λ+ ∼= U(2)⊕E8(2) and this is diagonally embedded
in the K3 lattice), i.e. τ∗ acts trivially on U(2) ⊕ E8(2). Now, we show that
τ acts as − id on 〈−2N〉. Let L ∈ NS(X) denote the generator of 〈−2N〉, i.e.
c21(L) = −2N . Thus,

τ∗L = I ⊗ L⊗k (24)

for some integer k and invariant line bundle I and since τ is an involution:

L = τ∗τ∗L = τ∗I ⊗ τ∗L⊗k

= I ⊗ τ∗L⊗k

= I ⊗
(
I ⊗ L⊗k

)⊗k
= I⊗(k+1) ⊗ L⊗k

2

.

Hence
L⊗(k2−1) ⊗ I⊗(k+1) = OX (25)
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and we find that L⊗(k2−1) is an invariant line bundle. Thus,

OX = L⊗(−k2+1) ⊗ τ∗L⊗(k2−1) =
(
L∨ ⊗ τ∗L

)⊗(k2−1)

and if k 6= 1,−1, then OX = L∨⊗τ∗L (because Pic(X) is a free torsion group),
i.e. L is an invariant line bundle which contradicts our assumption about L.
If k = 1, then from (25) we get I = OX and then by (24), L is an invariant
bundle which contradicts our assumption on L. Thus k = −1 and from (25),
I = OX and from (24) we obtain τ∗L⊗ L = OX , i.e. τ acts as − id in 〈−2N〉.

Now, we show that if M is a line bundle such that τ∗M ⊗M = OX , then
M = L⊗m for some integer m. Indeed, if M = L⊗m⊗F where F is an invariant
line bundle, then

OX = τ∗M ⊗M = τ∗L⊗m ⊗ τ∗F ⊗ L⊗m ⊗ F = F⊗2.

Hence F = OX because Pic(X) is torsion free and thus M = L⊗m.

Suppose that N is an even number and that π∗ : Br′(Y )→ Br′(X) is trivial.
By Corollary 18, there exists a line bundle M = L⊗m for some integer m such
that c1(M)2 ≡ 2 mod 4. Thus −2m2N ≡ 2 mod 4, which implies that m2N is
an odd number and thus N is an odd number, a contradiction. On the other
hand, let us suppose that π∗ : Br′(Y ) → Br′(X) is injective. By Corollary 18,
c21(L) 6≡ 2 mod 4. Hence, (1−N) 6≡ 0 mod 2 and thus N is an even number. �X
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