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Abstract. Let R be an arbitrary ring with identity and M a right R-module
with S = EndR(M). In this paper we introduce dual π-Rickart modules as a
generalization of π-regular rings as well as that of dual Rickart modules. The
module M is said to be dual π-Rickart if for any f ∈ S, there exist e2 = e ∈ S
and a positive integer n such that Im fn = eM . We prove that some results
of dual Rickart modules can be extended to dual π-Rickart modules for this
general settings. We investigate relations between a dual π-Rickart module
and its endomorphism ring.
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Resumen. Sea R un anillo arbitrario con identidad y M un R-modulo derecho
con S = EndR(M). En este art́ıculo introducimos los módulos π-Rickart duales
como una generalización de los anillos π-regulares aśı como también de los
módulos Rickart. El módulo M se dice dual π-Rickart si para cada f ∈ S,
existe e2 = e ∈ S y un entero positivo n tales que Im fn = eM . Demostramos
que algunos resultados de los módulos de Rickart pueden ser extendidos a los
módulos π-Rickart duales para este marco general. Finalmente, investigamos
las relaciones entre un módulo π-Rickart dual y su anillo de endomorfismos.

Palabras y frases clave. Módulos π-Rickart , módulos π-Rickart duales, módulos
ajustados, anillos izquierdos principalmente proyectivos generalizados, anillos
π-regulares.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and modules
are unitary right R-modules. For a module M , S = EndR(M) is the ring of
all right R-module endomorphisms of M . In this work, for the (S,R)-bimodule
M , lS(·) and rM (·) are the left annihilator of a subset of M in S and the right
annihilator of a subset of S in M , respectively. A ring is reduced if it has no
nonzero nilpotent elements. Baer rings [8] are introduced as rings in which the
right (left) annihilator of every nonempty subset is generated by an idempotent.
Principally projective rings were introduced by Hattori [3] to study the torsion
theory, that is, a ring R is called left (right) principally projective if every
principal left (right) ideal is projective. The concept of left (right) principally
projective rings (or left (right) Rickart rings) has been comprehensively studied
in the literature. Regarding a generalization of Baer rings as well as principally
projective rings, recall that a ring R is called generalized left (right) principally
projective if for any x ∈ R, the left (right) annihilator of xn is generated by an
idempotent for some positive integer n. A number of papers have been written
on generalized principally projective rings (see [4] and [7]). A ring R is (von
Neumann) regular if for any a ∈ R there exists b ∈ R with a = aba. The ring
R is called π-regular if for each a ∈ R there exist a positive integer n and an
element x in R such that an = anxan. Similarly, call a ring R strongly π-regular
if for every element a ∈ R there exist a positive integer n (depending on a) and
an element x ∈ R such that an = an+1x, equivalently, there exists y ∈ R such
that an = yan+1. Every regular ring is π-regular and every strongly π-regular
ring is π-regular. There are regular or π-regular rings which are not strongly
π-regular.

According to Rizvi and Roman, a module M is said to be Rickart [13] if for
any f ∈ S, rM (f) = eM for some e2 = e ∈ S. The class of Rickart modules is
studied extensively by different authors (see [1] and [9]). Recently the concept
of a Rickart module is generalized in [16] by the present authors. The module
M is called π-Rickart if for any f ∈ S, there exist e2 = e ∈ S and a positive
integer n such that rM (fn) = eM . Dual Rickart modules are defined by Lee,
Rizvi and Roman in [10]. The module M is called dual Rickart if for any f ∈ S,
Im f = eM for some e2 = e ∈ S.

In the second section, we investigate general properties of dual π-Rickart
modules and Section 3 contains the results on the structure of endomorphism
ring of a dual π-Rickart module. In what follows, we denote by Z, Q, R and Zn,
the ring of integers, rational numbers, real numbers and the ring of integers
modulo n, respectively, and J(R) denotes the Jacobson radical of a ring R.

2. Dual π-Rickart Modules

In this section, we introduce the concept of a dual π-Rickart module that
generalizes the notion of a dual Rickart module as well as that of a π-regular
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ring. We prove that some properties of dual Rickart modules hold for this
general setting. Although every direct summand of a dual π-Rickart module is
dual π-Rickart, a direct sum of dual π-Rickart modules is not dual π-Rickart.
We give an example to show that a direct sum of dual π-Rickart modules may
not be dual π-Rickart. It is shown that the class of some abelian dual π-Rickart
modules is closed under direct sums.

We start with our main definition.

Definition 1. Let M be an R-module with S = EndR(M). The module M is
called dual π-Rickart if for any f ∈ S, there exist e2 = e ∈ S and a positive
integer n such that Im fn = eM .

For the sake of brevity, in the sequel, S will stand for the endomorphism
ring of the module M considered. Dual π-Rickart modules are abundant. Every
semisimple module, every injective module over a right hereditary ring and
every module of finite length are dual π-Rickart. Also every quasi-projective
strongly co-Hopfian module, every quasi-injective strongly Hopfian module,
every Artinian and Noetherian module is dual π-Rickart (see Corollary 19).
Every finitely generated module over a right Artinian ring is a dual π-Rickart
module (see Proposition 20).

Proposition 2. Let R be a ring. Then the right R-module R is a dual π-Rickart
module if and only if R is a π-regular ring.

Proof. If the right R-module R is a dual π-Rickart module and f ∈ R, then
there exist e2 = e ∈ R and a positive integer n such that Im fn = eR. There
exist x, y ∈ R such that e = fnx and fn = ey. Multiplying the first equation
from the right by fn, we have fnxfn = ey = fn. Conversely, assume that R is
a π-regular ring. Let g ∈ R. Then there exist a positive integer n and x ∈ R
such that gn = gnxgn. Hence e = gnx is an idempotent of R. Since e ∈ gnR and
gn = gnxgn = egn ∈ eR, we have Im gn = eR. Therefore the right R-module
R is dual π-Rickart. �X

It is clear that every dual Rickart module is dual π-Rickart. The following
example shows that every dual π-Rickart module need not be dual Rickart.

Example 3. Let R denote the ring

(
Z2 Z2

0 Z2

)
and M the right R-module(

0 Z2

Z2 Z2

)
with usual matrix operations. If f ∈ S, then there exist a, b, c ∈ Z2

such that

f

(
0 x

y z

)
=

(
0 ax

by cx+ bz

)
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By using this image of f , we prove that there exists a positive integer n
such that Im fn is a direct summand of M . Consider the following cases for
a, b, c ∈ Z2.

Case 1. If a = b = c = 1, then f is an epimorphism.

Case 2. If a = 0, b = 0, c = 1, then f2 = 0.

Case 3. If a = 0, b = 1, c = 1 or a = 0, b = 1, c = 0, then in either case

Im f =

{(
0 0

x y

) ∣∣∣∣x, y ∈ Z2

}
is a direct summand of M .

Case 4. If a = 1, b = 0, c = 1, then Im f =

{(
0 x

0 x

) ∣∣∣∣x ∈ Z2

}
is a direct

summand of M .

Case 5. If a = 1, b = 0, c = 0, then Im f =

{(
0 x

0 0

) ∣∣∣∣x ∈ Z2

}
is a direct

summand of M .

Case 6. If a = 1, b = 1, c = 0, then f is an identity map.

Case 7. If a = 0, b = 0, c = 0, then f is a zero map.

In all cases there exists a positive integer n such that Im fn is a direct
summand of M and so M is a dual π-Rickart module. The module M is not

dual Rickart, since Im f =

{(
0 0

0 x

) ∣∣∣∣x ∈ Z2

}
in the second case.

Our next aim is to find conditions under which a dual π-Rickart module is
dual Rickart.

Proposition 4. Let M be a dual Rickart module. Then M is dual π-Rickart.
The converse holds if S is a reduced ring.

Proof. The first statement is clear. Suppose that S is a reduced ring and M
is a dual π-Rickart module. Let f ∈ S. There exist a positive integer n and
an idempotent e ∈ S such that Im fn = eM . If n = 1, there is nothing to do.
Assume that n > 1, then (1 − e)fnM = 0 and so (1 − e)fn = 0. Since S is
a reduced ring, e is central and

(
(1 − e)f

)n
= 0. Also it implies (1 − e)f = 0

or f = ef . Thus Im f ≤ eM . The reverse inclusion eM ≤ Im f follows from
eM = fnM ≤ f(fn−1)M ≤ fM . Therefore eM = Im f and M is a dual
Rickart module. �X

By using a different condition on an endomorphism ring of a module we
show that a dual π-Rickart module is dual Rickart. To do this we need the
following lemma.
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Lemma 5. Let M be a module. Then M is dual π-Rickart and S is a domain
if and only if every nonzero element of S is an epimorphism.

Proof. The sufficiency is clear. For the necessity, let M be a dual π-Rickart
module and 0 6= f ∈ S. Then there exist a positive integer n and an idempotent
e ∈ S such that Im fn = eM . Hence fn = efn. Since S is a domain and fn is
nonzero, we have e = 1 and so Im fn = M . This implies that Im f = M . Thus
f is an epimorphism. �X

Recall that a module M has C2 condition if any submodule N of M which is
isomorphic to a direct summand of M is a direct summand, while a module M
is said to have D2 condition if any submodule N of M with M/N isomorphic to
a direct summand of M , then N is a direct summand of M . In the next result
we obtain relations between π-Rickart and dual π-Rickart modules by using C2

and D2 conditions. An endomorphism f of a module M is called morphic [12]
if M/fM ∼= Ker f . The module M is called morphic if every endomorphism of
M is morphic.

Theorem 6. Let M be a module. Then we have the following.

(1) If M is a dual π-Rickart module with D2 condition, then it is π-Rickart.

(2) If M is a π-Rickart module with C2 condition, then it is dual π-Rickart.

(3) If M is projective morphic, then it is π-Rickart if and only if it is dual
π-Rickart.

Proof. Since M/Ker fn ∼= Im fn for any positive integer n, D2 and C2 condi-
tions complete the proof of (1) and (2). The proof of (3) is clear. �X

The next result is an immediate consequence of Theorem 6.

Corollary 7. Let M be a module with C2 and D2 conditions. Then M is a
dual π-Rickart module if and only if it is π-Rickart.

In [10, Proposition 2.6], it is shown that M is a dual Rickart module if and
only if the short exact sequence 0 → Im f → M → M/ Im f → 0 splits for
any f ∈ S. In this direction we can give a similar characterization for dual
π-Rickart modules.

Lemma 8. The following are equivalent for a module M .

(1) M is a dual π-Rickart module.

(2) For every f ∈ S there exists a positive integer n such that the short exact
sequence 0→ Im fn →M →M/ Im fn → 0 splits.
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Proof. For any f ∈ S and any positive integer n consider the short exact
sequence 0 → Im fn → M → M/ Im fn → 0. The short exact sequence splits
in M if and only if Im fn is a direct summand of M if and only if M is a dual
π-Rickart module. �X

One may suspect that every submodule of a dual π-Rickart module is dual
π-Rickart. The following example shows that this is not the case.

Example 9. Consider Q as a Z-module. Then S = EndZ(Q) is isomorphic to
Q. Since every element of S is an isomorphism or zero, Q is dual π-Rickart.
Now consider the submodule Z and f ∈ EndZ(Z) defined by f(x) = 2x, where
x ∈ Z. Since the image of any power of f can not be a direct summand of Z,
the submodule Z is not dual π-Rickart.

Although every submodule of a dual π-Rickart module need not be dual
π-Rickart by Example 9, we now prove that every direct summand of dual
π-Rickart modules is also dual π-Rickart.

Proposition 10. Let M be a dual π-Rickart module. Then every direct sum-
mand of M is also dual π-Rickart.

Proof. Let M = N ⊕P with SN = EndR(N). Define g = f ⊕ 0|P , for any f ∈
SN and so g ∈ S. By hypothesis, there exist a positive integer n and e2 = e ∈ S
such that Im gn = eM and gn = fn⊕0|P . Hence eM = Im gn = fnN ≤ N . Let
M = eM⊕Q for some submodule Q. Thus N = eM⊕(N∩Q) = fnN⊕(N∩Q).
Therefore N is dual π-Rickart. �X

Corollary 11. Let R be a π-regular ring with e = e2 ∈ R. Then eR is a dual
π-Rickart R-module.

Here we give the following result for π-regular rings.

Corollary 12. Let R = R1 ⊕ R2 be a π-regular ring with direct sum of the
rings R1 and R2. Then the rings R1 and R2 are also π-regular.

We now characterize π-regular rings in terms of dual π-Rickart modules.

Theorem 13. Let R be a ring. Then R is π-regular if and only if every cyclic
projective R-module is dual π-Rickart.

Proof. The sufficiency is clear. For the necessity, let M = mR be a projective

module. Then R = rR(m)⊕I for some right ideal I of R. Let I
ϕ→M denote the

isomorphism and f ∈ S. By Proposition 2 and Proposition 10, (ϕ−1fϕ)nI =
(ϕ−1fnϕ)I is a direct summand of I for some positive integer n. Hence I =
(ϕ−1fnϕ)I ⊕K for some right ideal K of I. Thus ϕI = (fnϕ)I ⊕ ϕK, and so
M = fnM ⊕ ϕK. Therefore M is dual π-Rickart. �X
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Theorem 14. Let R be a ring and consider the following conditions:

(1) Every free R-module is dual π-Rickart,

(2) Every projective R-module is dual π-Rickart,

(3) Every flat R-module is dual π-Rickart.

Then (3) ⇒ (2) ⇔ (1). Moreover (2) ⇒ (3) holds for finitely presented
modules.

Proof. (3) ⇒ (2) ⇒ (1) Clear. (1) ⇒ (2) Let M be a projective R-module.
Then M is a direct summand of a free R-module F . By (1), F is dual π-Rickart,
and so is M due to Proposition 10. (2) ⇒ (3) is clear from the fact that finitely
presented flat modules are projective. �X

The next example reveals that a direct sum of dual π-Rickart modules need
not be dual π-Rickart.

Example 15. Let R denote the ring

(
R R
0 R

)
and M the R-module

(
R R
R R

)
.

Let f ∈ S. Then there exist a, c, u, t ∈ R such that

f

(
x y

r s

)
=

(
ax+ ur ay + us

cx+ tr cy + ts

)

where

(
x y

r s

)
∈M .

Consider f ∈ S defined by a = c = 0, u = 3 and t = 2. This implies that

f

(
x y

r s

)
=

(
3r 3s

2r 2s

)
and for any positive integer n we obtain

fn
(
x y

r s

)
=

(
3(2n−1)r 3(2n−1)s

2nr 2ns

)
.

It follows that fnM can not be a direct summand. On the other hand, con-

sider the submodules N =

(
R R
0 0

)
and K =

(
0 0

R R

)
of M . Then EndR(N)

and EndR(K) are isomorphic to R. Hence N and K are dual π-Rickart modules
but M is not dual π-Rickart.

The following lemma is useful to show that a direct sum of some dual π-
Rickart modules is a dual π-Rickart.

Lemma 16. Let M be a module and f ∈ S. If Im fn = eM for some central
idempotent e ∈ S and a positive integer n, then Im fn+1 = eM .
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Proof. Let f ∈ S and Im fn = eM for some central idempotent e ∈ S and
a positive integer n. It is clear that Im fn+1 ⊆ Im fn. Let fn(x) ∈ Im fn,
then fn(x) = efn(x) = fne(x). Since e(x) ∈ Im fn, e(x) = fn(y) for some
y ∈ M . So fn(x) = fn

(
fn(y)

)
= fn+1

(
fn−1(y)

)
∈ Im fn+1. This completes

the proof. �X

A ring R is called abelian if every idempotent is central, that is, ae = ea
for any a, e2 = e ∈ R. A module M is called abelian [14] if fem = efm for any
f ∈ S, e2 = e ∈ S, m ∈M . Note that M is an abelian module if and only if S
is an abelian ring. We now prove that a direct sum of dual π-Rickart modules
is dual π-Rickart for some abelian modules.

Proposition 17. Let M1 and M2 be abelian R-modules. If M1 and M2 are
dual π-Rickart with HomR(Mi,Mj) = 0 for i 6= j, then M1 ⊕M2 is a dual
π-Rickart module.

Proof. Let S1 = EndR(M1), S2 = EndR(M2) and M = M1 ⊕M2. We may

describe S as

(
S1 0

0 S2

)
. Let

(
f1 0

0 f2

)
∈ S, where f1 ∈ S1 and f2 ∈ S2. Then

there exist positive integers n,m and e2
1 = e1 ∈ S1 and e2

2 = e2 ∈ S2 such that
Im fn1 = e1M1 and Im fm2 = e2M2. Consider the following cases:

i.) Let n = m. Obviously, Im

(
f1 0

0 f2

)n
=

(
e1 0

0 e2

)
M .

ii.) Let n < m. By Lemma 16, we have Im fn1 = Im fm1 = e1M1. Clearly,(
e1 0

0 e2

)
M ≤ Im

(
f1 0

0 f2

)m
. Now let

(
m1

m2

)
∈ Im

(
f1 0

0 f2

)m
.

Then m1 ∈ Im fm1 = e1M1 and m2 ∈ Im fm2 = e2M2. Hence(
m1

m2

)
=

(
e1 0

0 e2

)(
m1

m2

)
. Thus

(
m1

m2

)
∈
(
e1 0

0 e2

)
M . Therefore

Im

(
f1 0

0 f2

)m
≤
(
e1 0

0 e2

)
M .

iii.) Let m < n. Since M2 is abelian, the proof is similar to case ii. �X

We close this section with the relations among strongly co-Hopfian modules,
Fitting modules and dual π-Rickart modules.

Recall that a moduleM is called co-Hopfian if every injective endomorphism
of M is an automorphism, while M is called strongly co-Hopfian [5], if for any
endomorphism f of M the descending chain

Im f ⊇ Im f2 ⊇ · · · ⊇ Im fn ⊇ · · ·
stabilizes.
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We now give a relation between abelian and strongly co-Hopfian modules
by using dual π-Rickart modules.

Corollary 18. Let M be a dual π-Rickart module and S an abelian ring. Then
M is strongly co-Hopfian.

Proof. It follows from Lemma 16 and [5, Proposition 2.6]. �X

A module M is said to be a Fitting module [5] if for any f ∈ S, there exists
an integer n ≥ 1 such that M = Ker fn ⊕ Im fn. Due to Armendariz, Fisher
and Snider [2] or [15, Proposition 5.7], the module M is Fitting if and only if
S is strongly π-regular.

We now give the following relation between Fitting modules and dual π-
Rickart modules.

Corollary 19. Every Fitting module is a dual π-Rickart module.

Then we have the following result.

Proposition 20. Let R be an Artinian ring. Then every finitely generated
R-module is dual π-Rickart.

Proof. Let M be a finitely generated R-module. Then M is an Artinian
and Noetherian module. Hence M is a Fitting module and so it is dual
π-Rickart. �X

Proposition 21. Let R be a ring and n a positive integer. If the matrix ring
Mn(R) is strongly π-regular, then Rn is a dual π-Rickart R-module.

Proof. Let Mn(R) be a strongly π-regular ring. Then by [5, Corollay 3.6], Rn

is a Fitting R-module and so it is dual π-Rickart. �X

3. The Endomorphism Ring of a Dual π-Rickart Module

In this section we study relations between a dual π-Rickart module and its
endomorphism ring. We prove that the endomorphism ring of a dual π-Rickart
module is always a generalized left principally projective ring. The converse
holds if the module is self-cogenerator. The modules whose endomorphism rings
are π-regular are characterized. It is shown that if the module satisfies D2

condition, then it is dual π-Rickart if and only if the endomorphism ring of the
module is a π-regular ring.

Lemma 22. If M is a dual π-Rickart module, then S is a generalized left
principally projective ring.
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Proof. Let f ∈ S. By assumption, there exist e2 = e ∈ S and a positive integer
n such that Im fn = eM . Hence lS(fnM) = S(1 − e) = lS(fn). Thus S is a
generalized left principally projective ring. �X

The next result is a consequence of Theorem 10 and Lemma 22.

Corollary 23. If R is a π-regular ring, then eRe is a generalized left principal
projective ring for any e2 = e ∈ R.

Corollary 24. Let M be a dual π-Rickart module and f ∈ S. Then Sfn is a
projective left S-module for some positive integer n.

Proof. Clear from Lemma 22, since Sfn ∼= S/lS(fn). �X

Recall that a module is called self-cogenerator if it cogenerates all its factor
modules. The following result shows that the converse of Lemma 22 is true for
self-cogenerator modules. On the other hand, Theorem 25 generalizes the result
[17, 39.11].

Theorem 25. Let M be a module and f ∈ S.

i.) If Sfn is a projective left S-module for some positive integer n, then the
submodule N =

⋂
{Ker g : g ∈ S, Im fn ≤ Ker g} is a direct summand of

M .

ii.) If M is self-cogenerator and S is a generalized left principally projective
ring, then M is a dual π-Rickart module.

Proof. i.) Let Sfn be a projective left S-module for some positive
integer n. Since Sfn ∼= S/lS(fn), lS(fn) = Se for some e2 = e ∈ S. We prove
(1− e)M = N . Due to efnM = 0, we have fnM ≤ (1− e)M . By definition of
N we have N ≤ (1− e)M . Let g ∈ S with Im fn ≤ Ker g. Then gfnM = 0 or
gfn = 0. Hence g ∈ lS(fn) = Se and ge = g. So g(1 − e)M = 0 from which
we have (1 − e)M ≤ Ker g for all g with Im fn ≤ Ker g. Thus (1 − e)M ≤ N .
Therefore (1− e)M = N .

ii.) Assume that M is self-cogenerator and S is generalized left principally
projective. There exist e2 = e ∈ S, a positive integer n such that lS(fn) = Se
and M/ Im fn is cogenerated by M . By [17, 14.5],⋂{

Ker g : g ∈ Hom(M/ Im fn,M)
}

= 0.

Hence
Im fn =

⋂{
Ker g : g ∈ S, Im fn ≤ Ker g

}
.

Thus conditions of i.) are satisfied and so Im fn is a direct summand. �X
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For an R-module M , it is shown that, if S is a von Neumann regular ring,
then M is a dual Rickart module (see [10, Proposition 3.8]). We obtain a similar
result for dual π-Rickart modules.

Lemma 26. Let M be a module. If S is a π-regular ring, then M is dual
π-Rickart.

Proof. Let f ∈ S. Since S is π-regular, there exist a positive integer n and
g ∈ S such that fn = fngfn. Then e = fng is an idempotent of S. Now we
show that Im fn = fngM . It is clear that fnM = efnM ≤ eM . For the other
inclusion, let m ∈M . Hence em = fngm ∈ fnM . Thus Im fn = eM . �X

Since every strongly π-regular ring is π-regular, we have the next result.

Corollary 27. Let M be a module. If S is a strongly π-regular ring, then M
is dual π-Rickart.

The converse statement of Corollary 27 does not hold in general, that is,
there exists a dual π-Rickart module having not a strongly π-regular endomor-
phism ring.

Example 28. Let D be a division ring, M a vector space over D with an
infinite basis {ei ∈M : i = 1, 2, . . .} and S = EndD(M). As a semisimple right
D-module, M is dual π-Rickart, and by [17, 3.9] S is a regular and so π-regular
ring. Assume that S is a strongly π-regular ring and we reach a contradiction.
Let f ∈ S defined by f(ei) = ei+1 for all i = 1, 2, 3, . . .. By assumption, there
is a positive integer n such that fn = fn+1g for some g ∈ S. Then fn = fn+1g
implies fnS = fn+1S and so fnM = fn+1M . Since fn(ei) = ei+n for all i,
we have fnM =

∑
i>n

eiD 6= fn+1M . This is a contradiction. Hence S is not a

strongly π-regular ring (see also [15, 5.5]).

The proof of Lemma 29 may be in the context.

Lemma 29. Let M be a module. Then S is a π-regular ring if and only if there
exists a positive integer n such that Ker fn and Im fn are direct summands of
M for any f ∈ S.

Now we recall some known facts about π-regular rings that will be needed.

Lemma 30. Let R be a ring. Then

i.) If R is π-regular, then eRe is also π-regular for any e2 = e ∈ R.

ii.) If Mn(R) is π-regular for any positive integer n, then so is R.

iii.) If R is a commutative ring, then R is π-regular if and only if Mn(R) is
π-regular for any positive integer n.
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Proposition 31. Let R be a commutative π-regular ring. Then every finitely
generated projective R-module is dual π-Rickart.

Proof. Let M be a finitely generated projective R-module. So the endomor-
phism ring of M is eMn(R)e with some positive integer n and an idempotent
e in Mn(R). Since R is commutative π-regular, Mn(R) is also π-regular, and
so is eMn(R)e by Lemma 30. Hence M is dual π-Rickart by Lemma 26. �X

Theorem 32. Let M be a module with D2 condition. Then M is dual π-Rickart
if and only if S is π-regular.

Proof. The necessity holds by Lemma 26. For the sufficiency, let 0 6= f ∈ S.
Since M is dual π-Rickart, Im fn is a direct summand of M for some positive
integer n. Because of M/Ker fn ∼= Im fn, D2 condition implies that Ker fn is
a direct summand of M . The rest is obvious from Lemma 29. �X

The following is a consequence of Proposition 31 and Theorem 32.

Corollary 33. Let R be a commutative ring and satisfy D2 condition. Then
the following are equivalent.

i.) R is a π-regular ring.

ii.) Every finitely generated projective R-module is dual π-Rickart.

Recall that a module M is called quasi-projective if it is M -projective. Since
every quasi-projective module has D2 condition, we have the following.

Corollary 34. If M is a quasi-projective dual π-Rickart module, then the
endomorphism ring of M is a π-regular ring.

Theorem 35. The following are equivalent for a ring R.

i.) Mn(R) is π-regular for every positive integer n.

ii.) Every finitely generated projective R-module is dual π-Rickart.

Proof. i.)⇒ ii.) Let M be a finitely generated projective R-module. Then M ∼=
eRn for some positive integer n and e2 = e ∈ Mn(R). Hence S is isomorphic
to eMn(R)e. By i.), S is π-regular. Thus, due to Lemma 26, M is π-Rickart.

ii.) ⇒ i.) Mn(R) can be viewed as the endomorphism ring of a projective
R-module Rn for any positive integer n. By ii.), Rn is dual π-Rickart. Then,
by Corollary 34, Mn(R) is π-regular. �X
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Recall that an R-module M is called duo if every submodule of M is fully
invariant, i.e., for any submodule N of M , fN ≤ N for each f ∈ S. Equiva-
lently, every right R-submodule of M is also left S-submodule. Our next aim
is to determine conditions under which any factor module of a dual π-Rickart
module is also dual π-Rickart.

Corollary 36. Let M be a quasi-projective module and N a fully invariant
submodule of M . If M is dual π-Rickart, then so is M/N .

Proof. Let f ∈ S and π denote the natural epimorphism from M to M/N .
Consider the following diagram.

M

f

��

π // M/N

f∗

��
M

π
// M/N

Since N is fully invariant, we have Kerπ ⊆ Kerπf . By the Factor Theorem,
there exists a unique homomorphism f∗ such that f∗π = πf . Hence we define
a homomorphism ϕ : S → EndR(M/N) with ϕ(f) = f∗ for any f ∈ S. As M
is quasi-projective, ϕ is an epimorphism. Thus EndR(M/N) ∼= S/Kerϕ. By
Corollary 34, S is π-regular, and so is S/Kerϕ. Therefore, due to Lemma 26
M/N is dual π-Rickart. �X

Corollary 37. Let M be a quasi-projective duo module. If M is dual π-Rickart,
then M/N is also dual π-Rickart for every submodule N of M .

Corollary 38. If M be a quasi-projective dual π-Rickart module, then so is
M/Rad(M) and M/Soc(M).

Proposition 39. Let M be a dual π-Rickart module. Then every endomor-
phism of M with a small image in M is nilpotent.

Proof. Let f ∈ S with Im f small in M . Then Im fn is a direct summand of
M for some positive integer n. Also Im fn is small in M . Hence fn = 0. �X

Corollary 40. Let M be a dual π-Rickart discrete module. Then J(S) is nil
and S/J(S) is von Neumann regular.

Proof. Since M is discrete, by [11, Theorem 5.4], J(S) consists of endomor-
phisms with small image. By Proposition 39, J(S) is nil and again by [11,
Theorem 5.4], S/J(S) is von Neumann regular. �X

Theorem 41. The following are equivalent for a module M .

i.) M is a dual π-Rickart module.
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ii.) S is a generalized left principally projective ring and fnM = rM
(
lS(fnM)

)
for all f ∈ S and a positive integer n.

Proof. i.) ⇒ ii.) By Lemma 22, we only need to show that fnM =
rM
(
lS(fnM)

)
for all f ∈ S. Since M is dual π-Rickart, for any f ∈ S,

fnM = eM for some e2 = e ∈ S and a positive integer n. Thus rM
(
lS(fnM)

)
=

rM
(
lS(eM)

)
= eM = fnM .

ii.) ⇒ i.) Let f ∈ S. Since S is a generalized left principally projective ring,
lS(fnM) = Se for some e2 = e ∈ S and a positive integer n. By hypothesis,
fnM = rM

(
lS(fnM)

)
= rM (Se) = (1− e)M . Thus M is dual π-Rickart. �X

Corollary 42. Let M be a module. Then M is dual π-Rickart if and only if
fnM = rM

(
lS(fnM)

)
and rM

(
lS(fnM)

)
is a direct summand of M .

Theorem 43. Let M be a dual π-Rickart module. Then the left singular ideal
Zl(S) of S is nil and Zl(S) ⊆ J(S).

Proof. Let f ∈ Zl(S). Since M is dual π-Rickart, Im(fn) = eM for some
positive integer n and e = e2 ∈ S. Then, by Lemma 22, lS(fn) = S(1 − e).
Since lS(fn) is essential in S as a left ideal, we have lS(fn) = S. This implies
that fn = 0 and so Zl(S) is nil. On the other hand, for any g ∈ S and f ∈ Zl(S),
according to previous discussion, (gf)n = 0 for some positive integer n. Hence
1− gf is invertible. Thus f ∈ J(S). Therefore Zl(S) ⊆ J(S). �X

Proposition 44. The following are equivalent for a module M .

i.) M is an indecomposable dual π-Rickart module.

ii.) Each element of S is either an epimorphism or nilpotent.

Proof. i.) ⇒ ii.) Let f ∈ S. Then fnM is a direct summand of M for some
positive integer n. AsM is indecomposable, we see that fnM = 0 or fnM = M .
This implies that f is an epimorphism or nilpotent.

ii.)⇒ i.) Let e = e2 ∈ S. If e is nilpotent, then e = 0. If e is an epimorphism,
then e = 1. Hence M is indecomposable. Also for any f ∈ S, fM = M or
fnM = 0 for some positive integer n. Therefore M is dual π-Rickart. �X

Theorem 45. Consider the following conditions for a module M .

i.) S is a local ring with nil Jacobson radical.

ii.) M is an indecomposable dual π-Rickart module.

Then i.) ⇒ ii.). If M is a morphic module, then ii.) ⇒ i.).
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Proof. i.) ⇒ ii.) Clearly, each element of S is either an epimorphism or nilpo-
tent. Then, due to Proposition 44, M is indecomposable dual π-Rickart.

ii.) ⇒ i.) Let f ∈ S. Then fnM = eM for some positive integer n and an
idempotent e in S. If e = 1, then f is an epimorphism. Since M is morphic,
f is invertible by [12, Corollary 2]. If e = 0, then fn = 0. Hence 1 − f is
invertible. This implies that S is a local ring. Now let 0 6= f ∈ J(S). Since f
is not invertible and M is morphic, f is nilpotent by Proposition 44. Therefore
J(S) is nil. �X

The next result can be obtained from Theorem 45 and [6, Lemma 2.11].

Corollary 46. Let M be an indecomposable dual π-Rickart module. If M is
morphic, then S is a left and right π-morphic ring.
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