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Volumen 46(2012)2, páginas 145-166
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Abstract. Pedersen-Weibel introduced the notion of bounded category of
an additive category, which gives the non-connective delooping of the addi-
tive category under consideration. In this work, a possible candidate for the
bounded category of an exact category is constructed which shares many prop-
erties of the bounded categories of Pedersen-Weibel.
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Resumen. Pedersen-Weibel introducen la noción de categoŕıa limitada de una
categoŕıa aditiva, la cual da el “non-connective delooping” de la categoŕıa
aditiva en consideración. En este trabajo, se construye un posible candidato
para la categoŕıa limitada de una categoŕıa exacta el cual posee muchas de las
propiedades de las categoŕıas limitadas de Pedersen-Weibel.

Palabras y frases clave. Delooping, Categoŕıa exacta, Pedersen-Weibel, Cate-
goŕıa limitada, K-teoŕıa negativa.

1. Introduction

Quillen’s definition of higher K-groups of a ring R led to the idea of viewing
algebraic K-theory of the ring R as a connective spectrum in the sense of stable
homotopy theory. A connective spectrum is one which has no homotopy groups
in negative dimensions. Along the ideas of Quillen, the algebraic K-theory could
be defined for an arbitrary exact category. But the connective spectra does not
capture the negative K-groups of a ring R or of an exact category. To address
this we explain the problem of non-connective delooping.
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146 SESHENDRA PALLEKONDA

Given an exact category E , find an exact category C (E ) such that

Ki+1C (E ) = KiÊ where Ê is the idempotent completion of E and i ≥ 0.

Once this is done, we can define K−1E = K0Ĉ (E ) and all the other negative
K-groups inductively.

In the case of an additive category i.e., an exact category whose exact
sequences are split, Pedersen and Weibel (see [6]) solved the problem of non-
connective delooping using bounded category methods which proved to be use-
ful in geometric topology to understand assembly maps. The negative K-groups
of the category of finitely generated projective R-modules agreed with the defi-
nition of negative algebraic K-theory groups of a ring R given by Bass (see [1]).

For general exact categories, where the exact sequences are not necessarily
split, Schlichting solved the problem of non-connective delooping by algebraic
methods (see [9]).

Let us recall the main results of Pedersen-Weibel in [6].

Definition 1. Let A be an additive category and X a proper metric space.
Then the Bounded Category CX(A ) of A is defined as follows:

Objects: A CX(A ) object A is a collection of A objects indexed by X,
{Ax}x∈X satisfying the locally finite condition: {x : Ax 6= 0} ∩ S is finite
for every bounded set S ⊂ X.

Morphisms: A CX(A ) morphism f : A→ B is a collection of A -morphisms
fxy : Ax → By for which ∃D(f) ≥ 0 such that fxy = 0 if dX(x, y) > D(f).

Composition of f : A→ B and g : B → C: is defined by (g ◦ f)xy =∑
z

gzy ◦ fxz. Note that the sum makes sense because of the locally fi-

nite condition.

Remark 2. The category CX(A ) inherits an additive structure from A .

The main theorem of Pedersen-Weibel as given below (see Theorems A and
B in [6]) uses the machinery of connective Ω-spectra associated to a symmetric
monoidal category and the notion of the bounded category to obtain a de-
looping of the K-theory spectrum. For the sake of notational simplicity, all the
categories involved are assumed to be idempotent complete. Note that only the
K0 of an additive category and its idempotent completion are different.

Theorem 3. Let K(A ) denote the connective K-theory spectrum of an additive
category. Then K(A ) is homotopy equivalent to ΩK(CZA ).

In the hope of obtaining a non-connective delooping for exact categories
along the lines of Pedersen-Weibel, a possible candidate for the bounded cate-
gory of an exact category E denoted by E(X,U ) is described in this paper and
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BOUNDED CATEGORY OF AN EXACT CATEGORY 147

it will be shown that it agrees with the Pedersen-Weibel bounded category in
the case of split exact structure. Note that CX(A ) does not inherit an exact
structure in an obvious manner, if A were given a non-split exact structure.

Theorem 4 (Main Theorem). The category E(X,U ) inherits an exact structure
from E . Moreover, E(pt,U ) and E are naturally isomorphic and hence have the
same K-theory. The connective spectrum of E(Z≤0,U ) is contractible.

2. Definition of Bounded Category of an Exact Category

Let us recall the definition of an Exact category for the sake of completeness. For
the equivalence of this definition with the one given by Quillen in [8] (see [5]).

Definition 5. Let E be an additive category. A short sequence in E is a pair of
composable morphisms L→M → N such that L→M is a kernel for M → N
and M → N is a cokernel for L→M .

Homomorphisms of short sequences are defined in the obvious way as com-
mutative diagrams.

An Exact Category is an additive category E together with a choice of
a class of short sequences, called short exact sequences, closed under isomor-
phisms and satisfying the axioms below. A short exact sequence is displayed as
L�M � N . L�M is called an admissible monomorphism and M � N is
called an admissible epimorphism. The axioms are as follows:

1) The identity morphism of the zero object is an admissible monomorphism
and an admissible epimorphism.

2) The class of admissible monomorphisms is closed under composition and
cobase changes by pushouts along arbitrary morphisms, i.e., given any ad-
missible monomorphism L� M and any arbitrary L → L′, their pushout
M ′ exists and the induced morphism L′ → M ′ is again an admissible
monomorphism.

L // //

��

M

��

L′ // // M ′

3) Dually, the class of admissible epimorphisms is closed under composition
and base changes by pullbacks along arbitrary morphisms, i.e., given any
admissible epimorphism M � N and any arbitrary N ′ → N , their pullback
M ′ exists and the induced morphism M ′ → N ′ is again an admissible
epimorphism.

M ′ //

����

M

����

N ′ // N
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148 SESHENDRA PALLEKONDA

Remark 6. Any extension closed full subcategory of an abelian category is
exact. In fact any exact category is an extension closed full subcategory of an
abelian category. See Appendix A in [10].

Let E ⊂ U be a pair, where U is a co-complete abelian category and E is
an extension closed, full subcategory. Since the composition of two admissible
monomorphisms is again an admissible monomorphism, if we restrict to the
admissible monomorphisms on the objects of E , we obtain a subcategory coE .

We consider a category of functors from the bounded subsets of a proper
metric space X to the exact category E and show that this inherits an exact
structure from E . A very similar construction of an exact category parametrized
over a metric space is explained in [3]. The category CX(E ⊂ U ) is defined as
follows:

Definition 7. Let P(X) be the poset of all subsets of X, Pbd(X) be the
poset of all bounded subsets of X, coE ⊂ E be the subcategory of admissible
monomorphisms (also called cofibrations in Waldhausen’s language) of E and
coU ⊂ U be the subcategory of monomorphisms of U . Let Nρ : Pbd(X) →
Pbd(X) be the functor which maps a bounded set S to Nρ(S) = {x ∈ X :
dX(x, S) ≤ ρ}. Then CX(E ⊂ U ) has the following:

Objects: A CX(E ⊂ U )-object is a functor of pairs A :
(
P(X),Pbd(X)

)
→

(coU , coE ) that satisfies:

• A maps the empty set to the zero object.

• In U , the cokernel of A(S ⊂ X), is non-trivial, for any proper
bounded subset inclusion.

• ∃D ≥ 0 such that
⊕

S|diam(S)≤D

A(S)� A(X) in U .

Morphisms: A CX(E ⊂ U )-morphism f : A → B is a U -morphism f :
A(X) → B(X) for which ∃ρ ≥ 0 which depends only on f , such that
∀S ∈Pbd(X), f |A(S) factors through BNρ(S)� B(X).

A(S) //

f |A(S)

��

A(X)

f

��

BNρ(S)
i
// B(X) .

Such a U -morphism is called a controlled morphism and ρ is called a
control parameter of f .

Now let us consider the full subcategory E(X,U ) of CX(E ⊂ U ) on the

objects satisfying A(S) =
⊕
s∈S

A(s) for all subsets S of X.
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BOUNDED CATEGORY OF AN EXACT CATEGORY 149

3. More about CX(E ⊂ U )

Before describing the exact structure on CX(E ⊂ U ) and proving the Main
Theorem (Theorem 4) we need to understand the morphisms in general and
isomorphisms in particular. The following subsections provide various details
in this direction.

3.1. Additiveness of CX(E ⊂ U )

Proposition 8. CX(E ⊂ U ) is an additive category.

Proof. Firstly, let us verify that the composition of two controlled U -morphisms
is controlled. Let f : A → B and g : B → C be controlled U -morphisms with
parameters ρ(f) and σ(g) respectively. Then ρ(f)+σ(g) is a control parameter
for g ◦ f as the following diagram shows:

A(S) //

��

A(X)

f

��

BNρ(S) //

vv ��

B(X)

g

��

CNσ
(
Nρ(S)

)
// CNσ+ρ(S) // C(X) .

Notice that in a metric space X the containment Nρ(Nσ) ⊆ Nρ+σ could be
strict.

Associativity in CX(E ⊂ U ) follows from the associativity in U and the
fact that composition of controlled morphisms is controlled. 1A : A −→ A, the
identity morphism exists because we can choose a control parameter ρ = 0 and
the identity morphism in U . This shows that CX(E ⊂ U ) is a category.

Given A,B ∈ Ob CX(E ⊂ U ), we can define A⊕ B :
(
P(X),Pbd(X)

)
→

(coU , coE ) as A⊕B(Y ) := A(Y )⊕B(Y ), ∀Y ∈P(X).

Given two morphisms f, g : A→ B in CX(E ⊂ U ), with control parameters
ρ and σ respectively, then the U -morphism, f + g is in CX(E ⊂ U ), because
we can choose a control parameter max(ρ, σ). This shows that CX(E ⊂ U ) is
an additive category. �X

3.2. Isomorphisms in CX(E ⊂ U )

Isomorphisms in U that are controlled need not be isomorphisms in
CX(E ⊂ U ), i.e., their inverses need not be controlled. To distinguish this
difference we have the following definition.
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150 SESHENDRA PALLEKONDA

Definition 9. A CX(E ⊂ U ) morphism f : A→ B is said to be bicontrolled if
∃ρ ≥ 0 such that for any S ∈Pbd(X), im(f) ∩B(S)� im(f) factors through
im(f |ANρ(S)) � im(f), where im(f) is the image of f : A(X) → B(X) in the
Abelian Category U and ∩ is the pullback in U .

im
(
f |ANρ(S)

)
��

��

im(f) ∩B(S) // //

��

��

66

y

im(f)
��

��

B(S // // B(X)

The following are two examples of U -isomorphisms that are not bicon-
trolled.

Example 10. Let U = Category of Abelian groups, E = Category of finitely
generated abelian groups and X = Z. A,B :

(
P(Z),Pbd(Z)

)
−→ (coU , coE ),

objects of CZ(E ⊂ U ), and a morphism f : A → B with control parameter 0
are defined as shown below.

Define a sequence of integers by an = n(n + 1). Let Ti denote any proper
subset of N2(i+1)({ai}) where {ai} ∈P(Z). Any element of P(Z) that is not
a Ti is termed as REST .

The object A is defined as the functor A(Ti) = Z,∀S ∈P(Z) and A maps
every inclusion in P(Z) of the type Ti ⊂ REST to the multiplication by 2
map and all the other inclusions to the identity map.

The object B is defined as the constant functor B(S) = Z∀S ∈ P(Z) and
B maps every inclusion in P(Z) to the identity morphism.

Let f : A→ B, be the natural transformation, when restricted to the sub-
sets REST is the identity map. f is controlled as it is a natural transformation.
f is not bicontrolled because A(X) ∩ B({an}) → A(X) factors only through
ANρ({an})→ A(X) where ρ ≥ 2(n+ 1). So there is no uniform bound ρ that
works all S ∈P(Z).

On the other hand A(X) ∩B(S) ∼= A(S) ∩B(S), ∀S ∈P(Z).

The following is an example from Pedersen-Weibel’s paper [6].

Example 11. Let U = Category of Abelian groups, E = Category of finitely
generated abelian groups andX = Z. LetW :

(
P(Z),Pbd(Z)

)
−→ (coU , coE ),

an object of CZ(E ⊂ U ), be defined as follows:

∀ Y ∈P(Z), W (Y ) :=
⊕
Y≤0

Z,
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BOUNDED CATEGORY OF AN EXACT CATEGORY 151

where Y≤0 = {y ∈ Y : y ≤ 0}. Note that if Y is bounded thenW (Y ) ∈ ObE . Let
sh be the shift operator on W (Z), which moves the coordinates of an element
of W (Z) one place to the right

sh(. . . , 0, a−n, a−n+1, . . . , a−1, a0) = (. . . , 0, a−n, a−n+1, . . . , a−2, a−1)

and 1 be the identity operator on W . Consider the map 1 − sh : W → W .
Explicitly

1− sh(. . . , 0, a−n, a−n+1, . . . , a−1, a0) =

(. . . , 0, a−n, a−n+1 − a−n, . . . , a−1 − a−2, a0 − a−1).

Pictorially 1− sh can be seen as follows

A(Z)

1−sh
��

· · ·
−1

��

Z
−1

��

Z
−1

��

Z
0

��

0 0 · · ·

A(Z) · · · Z Z Z 0 0 · · · .

Claim 12. (1− sh) is a CZ(E ⊂ U ) morphism.

Proof. If we choose ρ = 1 then ∀S ∈Pbd(Z) we have the following diagram.

⊕
S

Z

1−sh|

��

// //

0⊕
i=−∞

Z

1−sh
��⊕

N1(S)

Z // //

0⊕
i=−∞

Z.

The restriction of 1−sh to
⊕
S

Z gives the required natural transformation.

�X

Claim 13. (1− sh) is not bicontrolled.

Proof. First notice that (1− sh) is both monic and epic in U . Let S = {−n}
where n > 1. Notice that for 1 ∈ Z = W (S),

(1− sh)−1(1) =

∞∑
i=0

shi(1) = (. . . , 0, 1, 1, . . . , 1︸ ︷︷ ︸
n+1

) ∈
0⊕

i=−n
Z = Nn(S).
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152 SESHENDRA PALLEKONDA

As we vary n we see that no uniform ρ works as a bicontrol parameter
and hence, the factorization im(1− sh) ∩W (S) = W (S)→ (1− sh)|W (Nρ(S))

is not possible. The point is that there is no uniform bound for the above
factorization. Observe that ρ depends on n. �X

It is important to note that composition does not respect bicontrolledness.

Example 14. Let U = Category of Abelian groups, E = Category of finitely
generated abelian groups and X = Z as in Example 11.

Consider the composition of the maps as shown in the picture below. The
subscript 0 is used to make clear the definitions of W and A.

W (Z)

i

��

· · · Z Z Z0 0

��

0

��

· · ·

A(Z)

1−sh
��

· · ·
−1

��

Z
−1

��

Z
−1

��

Z
−1

��

Z
−1

��

Z
−1

��

· · ·

A(Z)

p

��

· · · Z Z Z Z

��

Z

��

· · ·

W (Z) · · · Z Z Z 0 0 · · ·

1− sh as shown above is just a monomorhpism and im(1− sh) is all the tuples
whose sum is 0. Explicitly

(1− sh)−1(. . . , 0, a−m, a−m+1, . . . , a−1, a0, a1, . . . , an, 0, . . .) =(
. . . , 0, a−m, a−m + a−m+1, . . . ,

0∑
i=−m

ai, . . . ,

n−1∑
i=−m

ai, 0, . . .

)
.

Notice that all the three maps i, 1 − sh and p are bicontrolled because
choosing the bicontrol parameter ρ = 0 works for all of them. But the compo-
sition p(1− sh)i = (1− sh) : W (Z)→W (Z), is precisely the map discussed in
Example 11 which is not bicontrolled.

4. Exact structure on CX(E ⊂ U ) and E(X,U )

The idea behind defining an exact structure is as follows. The exact struc-
ture on CX(E ⊂ U ) should inherit the exact sequences from E and should
also contain split exact sequences that come from the additive structure on
CX(E ⊂ U ). And finally we prove that E(X,U ) is an extension closed subcate-
gory of CX(E ⊂ U ). Here comes the definition.
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Definition 15. A strict short sequence in the additive category CX(E ⊂ U )
is a sequence

A //
m // B

q
// // C

satisfying the following:

1) The corresponding sequence in E A(S) //
m // B(S)

q
// // C(S) is a short

exact sequence for all S ∈Pbd(X).

2) m and q have control and bicontrol parameters 0.

We call m a strict admissible monomorphism and q a strict admissible epi-
morphism and we denote them by arrows as shown above.

Let J denote the class of all strict short sequences and Ĵ the class of all
short sequences that are obtained by including all the short sequences that are
isomorphic to strict short sequences in CX(E ⊂ U ).

5. Proof of the Main Theorem

Lemma 16. Let
A //

m //

f

��

B

g

��

C //
n
// Q

be a cocartesian square of R−modules where m is a monic. Then the square is
bicartesian.

Proof. Q := (B ⊕ C)/M , where

M =
{(
m(a),−f(a)

)
: a ∈ A

}
⊆ B ⊕ C.

Here g(b) = (b, 0) +M and n(c) = (0, c) +M . The pullback of n along g is:

P :=
{

(b, c) ∈ B ⊕ C : n(c) = g(b)
}

We have the following diagram.

A // m

��

f

##

! h

!!

P
m̂ //

f̂

��

B

g

��

C //
n
// Q
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where m̂(b, c) = b and f̂(b, c) = c.

By the universal property of P , h is the unique map such that m = m̂h and
f = f̂h. But the map ĥ : A → P , given by ĥ(a) =

(
m(a), f(a)

)
, satisfies the

conditions for the universal properties. So by uniqueness, h = ĥ.

h is monic because m is so. Let (b, c) ∈ P . Then gm̂(b, c) = f̂n(b, c),
i.e., (b, 0) + M = (0, c) + M =⇒ (b,−c) ∈ M =⇒ ∃a ∈ A such that(
m(a),−f(a)

)
= h(a) = (b, c). Hence h is onto. �X

Lemma 17. Let

X
f
//

a
��

Y

b
��

g
// Z

c
��

X̂
f̂

// Ŷ
ĝ
// Ẑ

be a commutative diagram. Assume the square on the right side is a pullback.
Then the square on the left side is a pullback if and only if the whole diagram
is a pullback. i.e., X is a pullback of ĝf̂ along c.

Proof. First we will show that X has the desired universal property for the
whole diagram, assuming that the left hand square is a pullback. Assume the
following diagram commutes (do not consider the dotted arrows):

A //
q

$$

p

##

s
!!

r

''
X

f
//

a
��

Y

b
��

g
// Z

c
��

X̂
f̂

// Ŷ
ĝ
// Ẑ.

Since the right hand square is a pullback ∃ a unique r such that f̂p = br
and q = gr. Now since the left hand square is a pullback, ∃ a unique s such
that r = fs and p = as. So ∃ a unique s such that q = gr = gfs and p = as.
So X is the pullback of the whole diagram.
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Now let us assume that the whole diagram is a pullback and show that the
left hand square is so. Assume the following diagram is commutative:

A ..
q

��

p

##

r
!!

X
f
//

a
��

Y

b
��

g
// Z

c
��

X̂
f̂

// Ŷ
ĝ
// Ẑ

.

Since

bq = f̂p (1)

we have ĝbq = ĝf̂p =⇒ c(gq) = ĝf̂(p). Since the whole diagram is a pullback
∃ a unique r such that

(a)r = p; (gf)r = gq. (2)

We need to show that fr = q. We have the following diagram:

A gq

��

f̂p

##

! s

  

Y
g
//

b
��

Z

c
��

Ŷ
ĝ
// Ẑ

.

Now, since the right hand square is a pull back and ĝ(f̂p) = c(gq), ∃ a unique
s such that

bs = f̂p; gs = gq. (3)

But q satisfies (3). So by uniqueness s = q.

Also bfr = f̂ar = f̂p = bq by (1) and (2) and gfr = gq by (2). So fr also
satisfies (3). So, by uniqueness of s, fr = q = s. �X

Remark 18. The dual versions of the above two lemmas are also true and the
proofs are very similar.
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Lemma 19. Given the following diagram

A // i //

f

��
y

B
��

f̂

��

C //
j

//

��

l

��

!!

k
!!

Q

p

��

g

��

P
}}

α

}}

77
β

77

Y //
m

// X y

where the Q is the pushout of i along f and A is the pullback of m along gf̂ ,
tailed arrows are monic and the rest arbitrary and P is the pullback of lower
square, then k is an isomorphism.

Proof. The proof consists of analysing A and P in the light of the hypotheses.

1) Let M =
〈(
i(a),−f(a)

)〉
be the submodule of B ⊕C. Q is the pushout of i

along f means Q = (B ⊕Q)/M . f̂(b) = (b, 0) +M and j(c) = (0, c) +M .

2) A is the pullback of the upper square by Lemma 16. This means

A ∼=
{

(b, c) ∈ B ⊕ C : (b, 0) +M = (0, c) +M
}

∼=
{

(b, c) ∈ B ⊕ C : (b,−c) ∈M
}

∼=
{

(b, c) ∈ B ⊕ C : (b,−c) =
(
i(a),−f(a)

)}
∼=
{(
i(a), f(a)

)} ∼= {(i(a), lf(a)
)}
.

The last line is true since l is monic.

3) A is the pullback of m along gf̂ =⇒

A ∼=
{

(b, y) ∈ B ⊕ Y : m(y) = gf̂(b)
}

∼=
{

(b, y) ∈ B ⊕ Y : m(y) = g
(
(b, 0) +M

)}
.

4) Let P be the pullback of the lower square. So

P =
{(

(b, c) +M,y
)
∈ Q⊕ Y : g

(
(b, c) +M,y

)
= m(y)

}
.
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Since the lower square commutes k is the unique universal map. Using that
αk = l and βk = j, we have a formula for k: k(c) =

(
(0, c) +M, l(c)

)
.

5) k is monic because l is so. Now let us prove that k is epic.(
(b, c) +M,y

)
∈ P

=⇒ g
(
(b, c) +M,y

)
= m(y)

=⇒ g
(
(b, 0) +M

)
+ g
(
(0, c) +M

)
= m(y)

=⇒ g
(
(b, 0) +M

)
+ gj(c) = m(y)

=⇒ g
(
(b, 0) +M

)
+ml(c) = m(y)

=⇒ gf̂(b) = m
(
y − l(c)

)
[See 3)]

=⇒
(
b, y − l(c)

)
∈ A

=⇒ b = i(a) and y − l(c) = lf(a) [See the last line of 2)]

=⇒ b = i(a) and y = l
(
c+ f(a)

)
.

Note that c+f(a) ∈ C. Now k
(
c+f(a)

)
=
((

0, c+f(a)
)
+M, l

(
c+f(a)

))
=((

0, c + f(a)
)

+ M,y
)

=
(
(b, c) + M,y

)
because (b, c) −

(
0, c + f(a)

)
=(

b,−f(a)
)

=
(
i(a),−f(a)

)
∈ M . Therefore k

(
c + f(a)

)
=
(
(b, c) + M,y

)
and k is an isomorphism. �X

Lemma 20. Let C be an additive category and J be a class of short sequences
satisfying all the axioms of Definition 5, but being closed under ismorphisms.

Then the class Ĵ obtained by including all the short sequences in C that are
isomorphic to those in J is an exact structure.

Proof. Let A′ → B′ → C ′ be in Ĵ . This means we have the following com-
mutative diagram:

A
m //

f

��

B
q
//

g

��

C

h
��

A′
m′
// B′

q′
// C ′

where A → B → C is in J and f , g and h are C -isomorphisms. Notice that
both the left and right squares above are bicartesian i.e., the universal property
for a pushout is satisfied by B′, m′, g for the left square and by C ′, q′, h for
the right square. Similarly the universal property for a pullback is satisfied by
A, m, f for the left square and by B, q, g for the right square.

Using Lemma 17 and its dual version we can conclude:

1) Cobase change of m′ along t : A′ → X is the same as cobase change of m
along tf .
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2) Base change of q′ along u : Y → C ′ is the same as base change of q along
h−1u. �X

Given a strict admissible epimorphism q : B � C in CX(E ⊂ U ) and
f : D → C with a control parameter s in CX(E ⊂ U ), let us define as an
object P and maps p : P → D and g : P → B with the following description:

For each S ∈P(X), P (S) is the pullback of the following diagram.

P (S) //

��

D(S)

��

BNs(S) // // CNs(S).

Remarks 21.

1) Note that if S = X then P (X) is the pullback of q along f in the Abelian
Category U . If S is a bounded subset then P (S)→ D(S) is an admissible
epimorphism in E .

2) The map p : P → D is the map p : P (X)→ D(X). Note that this is a map
in CX(E ⊂ U ) with a control parameter 0. The map g : P → B is the map
g : P (X) → B(X). Note that this is a map in CX(E ⊂ U ) with a control
parameter s.

Lemma 22. p : P → D is bicontrolled.

Proof. This is obvious because the way P (S) is defined is such that
im
(
p : P (S)

)
= D(S); so, a bicontrol parameter 0 works for p. �X

Lemma 23. P , p and g defined as above satisfy the universal property of a
pullback in CX(E ⊂ U ).

Proof. We will show that P defined as base change has the universal property
of a pullback in CX(E ⊂ U ). Consider the following commutative diagram in
CX(E ⊂ U ). We need the existence of a unique α as shown below.

P̂

α

��

p̂

��

ĝ

##

P
p
// //

g

��

D

f

��

B
q
// // C
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By the manner we defined P we already have a unique α : P̂ (X) → P (X)
in U . We need to show that α is controlled.

Let ρ = max
{

control parameter of fp̂, control parameter of ĝ
}

. This works

as a control parameter for α by the manner we defined α. �X

Lemma 24. Let q : B → C be a natural transformation that has a bicon-
trol parameter 0 and B(S) � C(S) is an admissible epimorphism in U or E
depending on S. Then q can be extended to a strict short sequence.

Proof. Define A(S) so that A(S)� B(S) is the kernel of B(S) � C(S). We
have a natural transformation m : A → B. Need to check m is bicontrol of
parameter 0.

Now we have the following diagram

A(X) ∩B(S) -- β

&&

��

α

%%

γ
''

A(S) //
n //

��

i

��

B(S)
p
// //

��

j

��

C(S)
��

k

��

A(X) // m
// B(X) q

// // C(X)

1) kpβ = qjβ = qmα = 0 = k0. Since k is monic, pβ = 0.

2) Since n : A(S)� B(S) is the kernel of p : B(S)� C(S), ∃ a unique γ such
that nγ = β and γ is a monic. This is equivalent to saying that m has a
bicontrol parameter 0. �X

Given a strict admissible monomorphism m : A � B in CX(E ⊂ U ), let
us define an object Q and the and maps n : D → Q and g : B → Q with the
following description:

For each S ∈ P(X), Q(S) is defined as the pushout of the following dia-
gram:

A(S) // //

��

B(S)

��

DNr(S) // // Q(S)

Remarks 25.

1) Note that if S = X then Q(X) is the pushout of m along f in U .
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2) The map n : D → Q is the map n : D(X)→ Q(X) which is controlled with
a control parameter 0. The map g : B → Q is the map n : B(X) → Q(X)
which is controlled with a control parameter 0.

Lemma 26. Q, n and g defined as above satisfy the universal property of a
pushout in CX(E ⊂ U ).

Proof. We will show that Q defined as cobase change has the universal prop-
erty of a pushout in CX(E ⊂ U ). Consider the following commutative diagram
in CX(E ⊂ U ). We need the existence of a unique α as shown below.

A // m //

f

��

B

ĝ

��

g

��

D //
n
//

n̂ ..

Q

α

!!

Q̂

By the manner we defined Q we already have a unique α : Q(X) → Q̂(X)
in U . We need to show that α is controlled.

Let ρ = max
{

control parameter of n̂f , control parameter of ĝ
}

. This works

as a control parameter for α by the manner we defined α. �X

Lemma 27. n : D → Q is bicontrolled.

Proof. We have the following commutative diagram in U .

A(X) //
m //

f

��

B(X)

g

��

A(S) // //

��

dd

dd

I

V

B(S)

II

��

;;

;;

DNr(S)

III

IV

// //
zz

zz

Q(S)
##

##

D(X) //
n

// Q(X)

The squares are numbered for convenience and the back square with m, n,
f and g is numbered V I.
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1) Square I is a pullback because m has bicontrol parameter 0.

2) Squares V and V I are pullbacks by Lemma 16 and Freyd’s embedding
theorem which states that if U is a small abelian category, then there exists
a ring R and a full, faithful and exact functor F : U → R-Mod, where R-
Mod is the abelian category of left R-modules (see [4]).

3) By Lemma 17, the gluing of squares I and V I is a pullback.

4) By commutativity the gluing of squares V and III is the same as the gluing
of squares I and V I and hence is a pullback.

5) By Lemma 19, square III is a pullback which means that n is bicontrolled
with a parameter r. �X

Lemma 28. Let m : A → B be a natural transformation that has a bicontrol
parameter 0 and A(S) � B(S) is an admissible monomorphism in U or E
depending on S. Then m can be extended to a strict short sequence.

Proof. Define C(S) so that B(S) � C(S) is the cokernel of A(S) � B(S).
We have a natural transformation q : B → C. Need to check q has a bicontrol
parameter 0.

Now we have the following diagram

im(q : B(S))
��

��

C(S) // // C(X)

which shows that q has a bicontrol parameter 0. �X

Now combining all the previous Lemmas we can finish the proof of the
exactness part of the Main theorem as follows.

Lemma 29. The class J of strict short sequences in CX(E ⊂ U ) satisfies all
the axioms in Definition 5, other than being closed under isomorphisms.

Proof. Let the following be a strict short sequence in CX(E ⊂ U ):

A //
m // B

q
// // C .

1) m is a kernel of q and q is a cokernel of m by definition of a strict short
sequence.

2) The class of strict admissible epimorphisms is closed under base changes by
Lemmas 22, 23 and 24. and Remarks 21.
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3) The class of strict admissible monomorphisms is closed under cobase changes
by Lemmas 26, 27, 28 and Remarks 25.

4) The fact that 0→ 0→ 0 is a strict short sequence is obvious. �X

Theorem 30. E(X,U ) is extension closed in CX(E ⊂ U ) and hence inherits
the exact structure from CX(E ⊂ U ).

Proof. Let 0 → A� B � C → 0 be an exact sequence in CX(E ⊂ U ) with
A and B in E(X,U ). Without loss of generality we can assume that the above
exact sequence is strict (maps are bicontrolled with parameter ρ = 0). Also it
suffices to prove that for a subset S ⊂ X and x /∈ S, B(x, S) ∼= B(x) ⊕ B(S).
Here (x, S) is to be understood as {x} ∪ S. The above exact sequence and
the definition of objects in CX(E ⊂ U ) gives us the following commutative
diagram:

0 // A(x)⊕A(S) // // B(x)⊕B(S) // //
��

��

C(x)⊕ C(S) // 0

0 // A(x, S) // // B(x, S) // // C(x, S) // 0.

Applying five lemma, we can conclude B(x, S) ∼= B(x)⊕B(S). �X

The fact that E(X,U ) is naturally isomorphic to E is straight forward. To
prove that the connective spectrum K(E(X,U )) is contractible, let us recall the
following Proposition of Pedersen-Weibel [6].

Proposition 31. K(CZ≥0
(A )) is contractible.

Proof. We restrict our attention to the metric space of non-negative integers.
There is an endo functor T : CZ≥0

(A ) → CZ≥0
(A ) which is a right shift

functor and a natural transformation t : 1→ T . More explicitly, for any object
A ∈ CZ≥0

(A ), T (An) = An−1 and tA : A → T (A) is an isomorphism, the
inverse given by the left shift. Now the following diagram helps us understand

that
∑
i≥0

Tn is an endo functor of CZ≥0
(A ).
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A0 A1 A2 A3 A4 · · ·

A0 A1 A2 A3 · · ·

A0 A1 A2 · · ·

A0 A1 · · ·

A0 · · ·∑
n≥0

Tn picks up the direct sum of A′is vertically and although it is a sum

of infinitely many shifts, at each stage we only get finitely many summands.

Notice that t induces a natural isomorphism t :
∑
n≥0

Tn →
∑
n≥1

Tn.

As endo functors of CZ≥0
(A ) we have a natural equivalence 1 +

∑
n≥1

Tn
∑
n≥1

Tn.

Hence, as self-maps of the loop space K
(
CZ≥0

(A )
)
, 1 ∼ 0. �X

Proposition 32. K(E(X,U )) is contractible.

Proof. Let E ⊂ U be a small exact category embedded fully in an abelian
category. Then there is a functor from the category of proper metric spaces and
proper and eventually Lipschitz maps(see [7] for more details) to the category
of small exact categories defined in the natural way: X 7→ E(X,U ).

Given a proper eventually Lipschitz map f : X → Y , we have a functor
f∗ : E(X,U ) → E(Y,U ) by defining f∗(A)(S) := A

(
f−1(S)

)
, where S is a subset

of Y . The proper and eventually Lipschitz conditions ensure that we do get
controlled maps in CY (E ⊂ U ).

In our case, let X = Y = Z≥0 and sh given by Z≥0 → Z≥0 where the map
is addition by 1. This induces an endo functor sh (a little abuse of notation) on
E(Z≥0,U ). Notice that for A ∈ E(Z≥0,U ), sh A(S) = A(S − 1), where S ⊂ Z≥0

and S−1 := {s−1 : s ∈ S}. Hence, if we apply sh to a bounded set [a, b]∩Z≥0,

for b + 1 times, we get that 0 ∈ E(Z≥0,U ). This gives us that

∞∑
n=0

shn is a well

defined endo functor on E(Z≥0,U ).
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Let us define the natural transformation t : sh→ id as shown in the diagram
below.

sh A(S) = A(S − 1) //

��

sh A(Z≥0) = A(Z≥0)

AN1(S) // A(Z≥0).

This natural transformation induces a natural transformation between the endo
functors 1 +

∑
n≥1

shn =
∑
n≥0

shn and
∑
n≥1

shn. Hence, as self-maps of the loop

space K(E(Z≥0,U )), 1 ∼ 0. �X

This concludes the proof of the Main Theorem.

6. Comparison with Pedersen-Weibel Bounded Category and
Further Questions

Let A be an additive category, i.e., an exact category with split short exact
sequences. There is an obvious functor F : CZ(A ) → CZ(A ⊂ U ) where
CZ(A ) is the Pedersen-Weibel definition of the bounded category. The functor
F : CZ(A )→ A(Z,U ) is defined as follows.

An object of CZ(A ) is a set A = {An : An ∈ A , n ∈ Z}. Now the object
F (A) : P(Z) → coU in the category A(Z,U ) is defined as follows. Let S be a

subset of Z. Then F (A)(S) :=
⊕
i∈S

Ai.

Let f : A → B be a morphism in CZ(A ). Note that U contains countable
sums of objects of A . Hence F (f) is a map in U .

f ∈ MorCZ(A ) means that there exists a number ρ such that fxy = 0 for
all x and y such that |x− y| > ρ. F (f) Now we have the following diagram

F (A)(S) // //

��

F (A)

F (f)

��

F (B)Nρ(S) // // F (B),

showing that F (f) is actually controlled and hence a map in A(Z,U ).

Notice that in the case of an additive category A , Pedersen-Weibel con-
struction CZ(A ) coincides with A(Z,U ) and hence they have the same K-theory.

Question. Is the category E(X,U ) a the deloop of E ?

Problem. Let a group Γ act on a matrix space X. This action can be extended
to E(X,U ). In this context, define an equivariant version of K-theory as carried
out in [2] and analyse the fixed spectra.
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Question. Can one deloop the K-theory of Waldhausen Categories [11] using
the bounded category methods?
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