4	1	9	8	5	0
3	1	4	3	5	6
8	2	9	4	5	0
5	1	9	4	1	2
4	8	9	4	5	4
3	1	2	4	5	0
6	4	1	4	2	7
3	1	9	4	3	5
7	2	3	1	5	0
3	1	9	4	8	2
1	0	7	6	5	0
3	1	2	4	5	0
8	5	9	8	4	2

On a Problem of Krasnosel'skii and Rutickii

Sobre un problema de Krasnosel'skii y Rutickii

Diomedes Bárcenas ${ }^{1, \mathrm{a}}$, Carlos Finol ${ }^{2, \mathrm{~b}}$
${ }^{1}$ Universidad de Los Ándes, Mérida, Venezuela
${ }^{2}$ Universidad Central de Venezuela, Caracas, Venezuela

Abstract

In [5, p. 30], M. A. Krasnosel'skii and Ya. B. Rutickii proposed a problem, which can be reformulated as follows. Let f be an N-function such that $f(t s) \leq f(t) f(s), s, t \geq 1$. Is there another N-function F such that $F(s t) \leq F(t) F(s), s, t>0$ and equivalent to f on $[1, \infty) ?$. We give a necessary and sufficient condition for a positive and constructive solution

Key words and phrases. Orlicz Functions, N-Functions, Submultiplicative Functions, Matuszewska-Orlicz indices.

2000 Mathematics Subject Classification. 39B62, 26B25, 26A51.

Resumen. En [5, p. 30], M. A. Krasnosel'skii y Ya. B. Rutickii proponen un problema, el cual puede ser reformulado de la siguiente manera: Sea f una N-función tal que $f(t s) \leq f(t) f(s)$ para todo $t, s \geq 1$. ¿Existe alguna función F tal que $F(s t) \leq F(s) F(t), s, t \geq 0$, que sea equivalente a f en $[1, \infty)$?. En este articulo, damos una condición necesaria y suficiente para una solución positiva y constructiva.

Palabras y frases clave. Funciones de Orlicz, N-funciones, funciones submultiplicativas, indices de Matuszewska-Orlicz.

[^0]
1. Introduction and Preliminaries

In [1] J. Alexopoulos answers negatively the question posed by Krasnosel'skii and Rutickii, in the case when f has a complementary function f^{*} such that, $\left(f^{*}(x)\right)^{2} \leq f^{*}(k x)$. This rises the problem: characterize those N-function for which the answer to the question is positive.

Let us begin with some auxiliary definitions and results.
Let $\mathbb{R}^{+}:=(0, \infty)$. Let $I \subset \mathbb{R}^{+}$be such that $I^{2} \subset I$. A function $f: I \rightarrow \mathbb{R}^{+}$ is submultiplicative if

$$
f(t s) \leq f(t) f(s), \quad t, s \in I
$$

If the reverse inequality holds, then we say that f is supermultiplicative.
We shall assume that the functions involved are not of the form $f(t)=$ $t^{p} g(t)$, with $g(t)$ bounded and bounded away from zero on I.

A function $f:[0, \infty) \rightarrow[0, \infty)$ is an Orlicz function, if it is convex, increasing, $f(0)=0$, and $f(t) \rightarrow \infty$ as $t \rightarrow \infty$. If, furthermore, $\lim _{t \rightarrow 0} \frac{f(t)}{t}=0$ and $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\infty$, then we say that f is an N-function.

An N-function is said to be δ_{2} if there are positive constants M, a, such that $f(2 t) \leq M f(t), t \in\left(0, \frac{a}{2}\right)$. If $f(2 t) \leq M f(t), a \leq t<\infty$, then we say that f is Δ_{2}. If this inequality holds for any $t \in \mathbb{R}^{+}$, then we say that f is $\left(\delta_{2}, \Delta_{2}\right)$.

Let $I=[0, \lambda]$. Let f_{1}, f_{2} be positive functions defined on I. If there are positive constants a, b such that $a f_{1}(t) \leq f_{2}(t) \leq b f_{1}(t), t \in I$ then we say that f_{1} and f_{2} are equivalent at zero. If this inequality holds for $t \geq \lambda$, then we say that f_{1} and f_{2} are equivalent at infinity.

The solution to the problem considered herein depends on some numerical parameters, the so called Matuszewska-Orlicz indices [7, 8, 9, 10, 11, 12, 13]. There are various ways to define these indices. We shall use the version given by Lindenstrauss and Tzafriri [8, 9, 10].

Let $f:[0, \infty) \rightarrow[0, \infty)$ be and Orlicz function. Define $\alpha_{f}^{0}, \alpha_{f}^{\infty}, \beta_{f}^{0}, \beta_{f}^{\infty}$ by

$$
\begin{aligned}
\alpha_{f}^{0} & :=\sup \left\{p>0: \sup _{1 \leq s, t<\infty} \frac{f(s t)}{s^{p} f(t)}<\infty\right\}, \\
\beta_{f}^{0} & :=\inf \left\{p>0: \inf _{1 \leq s, t<\infty} \frac{f(s t)}{s^{p} f(t)}>0\right\}, \\
\alpha_{f}^{\infty} & :=\sup \left\{p>0: \sup _{1 \leq s, t<\infty} \frac{f(s) t^{p}}{f(s t)}<\infty\right\}, \\
\beta_{f}^{\infty} & :=\inf \left\{p>0: \inf _{1 \leq s, t<\infty} \frac{f(s) t^{p}}{f(s t)}>0\right\}
\end{aligned}
$$

Let $f:[0,1] \rightarrow \mathbb{R}^{+}$be a submultiplicative and δ_{2} Orlicz-function. It is known that $\alpha_{f}^{0}=\lim _{t \rightarrow 0} \frac{\log f(t)}{\log t}[11,12,13]$. Similarly, if $f:[1, \infty) \rightarrow \mathbb{R}^{+}$then $\beta_{f}^{\infty}=\lim _{t \rightarrow 0} \frac{\log f(t)}{\log t}$.

The following result is well known.
Theorem 1. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a submultiplicative function. Write $\alpha:=\alpha_{f}^{0}$, $\beta:=\beta_{f}^{\infty}$. We have that

$$
-\infty<\alpha \leq \beta<\infty
$$

Also, f can be represented as follows:

$$
f(t)= \begin{cases}t^{\alpha} g_{1}(t), & 0<t \leq 1 \\ t^{\beta} g_{2}(t), & t \geq 1\end{cases}
$$

This representation is unique in the sense that, for each $\varepsilon>0, t^{\varepsilon} g_{1}(t) \rightarrow 0$ as $t \rightarrow 0$ and $t^{-\varepsilon} g_{2}(t) \rightarrow 0, t \rightarrow \infty$. Also, $g_{1}(t) \geq 1$, and $g_{2}(t) \geq 1$.

The subaditive version of this theorem appears in [6, p. 410]. See also [4, p. 244].

We end this section with a few remarks.
The problem posed by Krasnosel'skii and Rutickii, which hereafter will be called "the problem", is as follows: Given an N-fuction $f:[0, \infty) \rightarrow[0, \infty)$ such that, for $c>0, t_{0}>0$, we have that $f(t s) \leq c f(t) f(s)$, for all $s, t \geq t_{0}$, find an N-function F, submultiplicative on $[0, \infty)$ and equivalent to f on $\left[t_{0}, \infty\right)$.

For any such function we have that the function

$$
\bar{f}_{t_{0}}(t):=\sup _{t_{0} \leq u \leq \infty} \frac{f(t u)}{f(u)}, \quad t \geq 1
$$

with $t_{0}>1$, is submultiplicative on $[1, \infty), \bar{f}_{t_{0}}(1)=1$ and equivalent to f on $\left[t_{0}, \infty\right)$. Therefore, we shall assume that the function f itself, has these properties.

From Theorem 1 we can draw some conclusions: Let f be an N-function, submultiplicative on $[1, \infty)$, let F be a positive solution to the problem, then we must have that $\alpha_{F}^{0}>1$; in fact, if $\alpha_{F}^{0}=1$, then, according to Theorem 1, for any $t \in[0,1]$ we have that $F(t)=t g(t)$, with $g(t) \geq 1$, and so, $\lim _{t \rightarrow 0} \frac{F(t)}{t} \neq 0$.

Also, since f and F are equivalent on $\left[t_{0}, \infty\right)$ and the Matuszewska-Orlicz indices are invariant under equivalence of functions, we must have that $\beta_{f}^{\infty}=$ β_{F}^{∞}. Since $\alpha_{F}^{0} \leq \beta_{F}^{\infty}$, we have that $\beta_{f}^{\infty}>1$.
T. Andó [2] has furnished a negative solution to the problem. This author proved that the N-function $f(t)=(1+t) \log (1+t)-t$, which is submultiplicative on $\left[e^{2}-1, \infty\right)$ can not be extended submultiplicatively to $[0, \infty)$.

Now, for this function we have that $\beta_{f}^{\infty}=1$.
This is a simple proof that f cannot be extended to a submultiplicative N-function on $[0, \infty)$, equivalent to f on $\left[e^{2}-1, \infty\right)$.

2. The Solution

Matuszewska and Orlicz [11] defined the indices in the following way: Let f : $[0, \infty) \rightarrow[0, \infty)$ be a $\left(\delta_{2}, \Delta_{2}\right)$ Orlicz function. Define

$$
\begin{array}{ll}
\bar{f}(t):=\sup _{0<u \leq 1} \frac{f(t u)}{f(u)}, & \underline{f}(t):=\inf _{0<u \leq 1} \frac{f(t u)}{f(u)}, \\
\bar{g}(t):=\sup _{1<u<\infty} \frac{f(t u)}{f(u)}, & \underline{g}(t):=\inf _{1 \leq u<\infty} \frac{f(t u)}{f(u)} .
\end{array}
$$

Also, define

$$
\begin{aligned}
\alpha_{0} & :=\lim _{t \rightarrow 0} \frac{\log \bar{f}(t)}{\log t}, & \beta_{0} & :=\lim _{t \rightarrow 0} \frac{\log \underline{f}(t)}{\log t} \\
\alpha_{\infty} & :=\lim _{t \rightarrow \infty} \frac{\log \underline{g}(t)}{\log t}, & \beta_{\infty} & :=\lim _{t \rightarrow \infty} \frac{\log \bar{g}(t)}{\log t}
\end{aligned}
$$

These numbers are all finite [11].
We prove now that $\alpha_{f}^{0}=\alpha_{0}, \beta_{f}^{0}=\beta_{0}, \alpha_{f}^{\infty}=\alpha_{\infty}$ and, $\beta_{f}^{\infty}=\beta_{\infty}$. Since all functions involved are non negative, then for $p>0$ we have that

$$
\begin{aligned}
\sup _{0<u, t \leq 1} \frac{f(t u)}{f(u) t^{p}} & =\sup _{0<t \leq 1}\left\{\sup _{0<u \leq 1} \frac{f(t u)}{f(u) t^{p}}\right\} \\
& =\sup _{0<t \leq 1}\left\{\frac{\bar{f}(t)}{t^{p}}\right\} \\
& =\sup _{0<t \leq 1}\left\{\sup _{0<u \leq 1} \overline{\bar{f}(t u)} \overline{\bar{f}(u) t^{p}}\right\} \\
& =\sup _{0<u, t \leq 1} \frac{\bar{f}(t u)}{\bar{f}(u) t^{p}},
\end{aligned}
$$

whence, $\alpha_{f}^{0}=\alpha_{0}$. All other cases are dealt with in the same way.
We mention, by passing, that the approach of Matuszewska-Orlicz, in considering the above limits is particularly useful. Indeed, when we consider the problem of finding these limits for other classes of functions, one is confronted with the existence of functions which are submultiplicative on $(0,1]$ and $[1, \infty)$ separately but not on $(0, \infty)$. Others are submultiplicative on $[0,1]$ and supermultiplicative on $[1, \infty)$, and so on, and we cannot rely on Theorem 1 alone (see [3]).

We split the proof into several lemmas which have an interest of their own.
Lemma 2. Let $f:[1, \infty) \rightarrow[1, \infty)$ be a Δ_{2} function such that $\frac{f(t)}{t}, t \geq 1$, is increasing. Then, the function $F(t), t \in(0,1]$, defined by

$$
F(t):=\sup _{1 \leq t u} \frac{f(t u)}{f(u)}
$$

satisfies $F\left(t_{1} t_{2}\right) \leq F\left(t_{1}\right) F\left(t_{2}\right), t_{1}, t_{2} \in(0,1]$, and $\frac{F(t)}{t}$ is increasing. Also, the function $W(t)$ defined by

$$
W(t):=\int_{0}^{t} \omega(\tau) d \tau, \quad \text { where } \quad \omega(\tau)= \begin{cases}\frac{F(\tau)}{\tau}, & 0<\tau \leq 1 \\ \frac{f(\tau)}{\tau}, & \tau \geq 1\end{cases}
$$

is convex and satisfies the $\left(\delta_{2}, \Delta_{2}\right)$ condition.
Proof. For any t_{1}, t_{2} in $(0,1)$ we have

$$
\begin{aligned}
F\left(t_{1} t_{2}\right) & =\sup _{1 \leq t_{1} t_{2} u} \frac{f\left(t_{1} t_{2} u\right)}{f(u)} \\
& \leq \sup _{1 \leq t_{1} t_{2} u} \frac{f\left(t_{1} t_{2} u\right)}{f\left(t_{1} u\right)} \sup _{1 \leq t_{1} t_{2} u} \frac{f\left(t_{1} u\right)}{f(u)} \\
& \leq \sup _{1 \leq t_{1} u} \frac{f\left(t_{1} u\right)}{f(u)} \sup _{1 \leq t_{2} s} \frac{f\left(t_{2} s\right)}{f(s)} \\
& =F\left(t_{1}\right) F\left(t_{2}\right)
\end{aligned}
$$

Also, for α, t in $(0,1)$, we have

$$
F(\alpha t)=\sup _{1 \leq \alpha t u} f(\alpha t u) / f(u) \leq \alpha \sup _{1 \leq t u} f(t u) / f(u)=\alpha F(t)
$$

that is, $F(t) / t$ is increasing.
As the function $f(t)$ is δ_{2} for $t \leq 1$, then

$$
F(2 t)=\sup _{1 \leq 2 t u} \frac{f(2 t u)}{f(u)}=\sup _{1 \leq t v} \frac{f(t v)}{f\left(\frac{v}{2}\right)} \leq M \sup _{1 \leq t v} \frac{f(t v)}{f(v)}=M F(t), \quad 0<t \leq 1 / 2
$$

for some $M>0$.
The function $\omega(s)$ is clearly δ_{2} for $t \leq 1 / 2$ and Δ_{2} for $t \geq 1$, since so are F and f respectively. Let t be in $(1 / 2,1)$. Then

$$
F(2 t)=\sup _{1 \leq 2 t u} \frac{f(2 t u)}{f(u)} \geq \sup _{2 \leq u} \frac{f(t u)}{f(u)} \geq \frac{f(2 t)}{f(2)}
$$

that is, $f(2 t) \leq f(2) F(t), 1 / 2 \leq t \leq 1$, and consequently $\omega(s)$ is $\left(\delta_{2}, \Delta_{2}\right)$. Since $\omega(s)$ is also increassing, then $W(t)$ is convex and $\left(\delta_{2}, \Delta_{2}\right)$.

Lemma 3. Let f and F be as in the previous lemma. Assume further that $f(s t) \leq f(s) f(t)$ for all $s, t \geq 1$. Then the function $\bar{f}(t)$ defined by

$$
\bar{f}(t):= \begin{cases}F(t), & 0<t \leq 1 \\ f(t), & 1 \leq t<\infty\end{cases}
$$

satisfies the inequality $\bar{f}(s t) \leq \bar{f}(s) \bar{f}(t), s, t>0$ and the function $W(t)$ defined by

$$
W(t):=\int_{0}^{t} \frac{\bar{f}(\tau)}{\tau} d r
$$

is $\left(\delta_{2}, \Delta_{2}\right)$, convex, and, for some $k>0, W(s t)<k W(s) W(t), s, t>0$.
Proof. According to Lemma 2, $W(t)$ is convex and $\left(\delta_{2}, \Delta_{2}\right)$. Let us now prove that $\bar{f}(t)$ is submultiplicative on $(0, \infty)$. We need only to prove that $\bar{f}(s t) \leq$ $\bar{f}(s) \bar{f}(t)$ with $t<1$ and $s>1$.

If $s t<1$, then

$$
\begin{aligned}
\bar{f}(s t) & =F(s t)=\sup _{1 \leq s t u} \frac{f(s t u)}{f(u)} \leq \sup _{1 \leq s t u} \frac{f(t u)}{f(u)} \\
& \leq f(s) \sup _{1 \leq t u} \frac{f(t u)}{f(u)}=f(s) F(t)=\bar{f}(s) \bar{f}(t)
\end{aligned}
$$

If, on the order hand, $\underline{s t} \geq 1$, then $f(s t)=\bar{f}(s t)$, and since $f(s) F(t) \geq$ $f(s t), s t>1$, then $\bar{f}(s t) \leq \bar{f}(s) \bar{f}(t)$. It now follows that there exists $k>0$ such that $W(s t) \leq k W(s) W(t), s, t>0$.

Remark 4. Let f be as above. Let $g(t), t \in(0,1]$, be such that the function $G(t)$ defined by

$$
G(t):= \begin{cases}g(t), & 0<t \leq 1 \\ f(t), & 1 \leq t<\infty\end{cases}
$$

is submultiplicative, then $g(t) \geq F(t)$, for all $t \in(0,1)$; in fact, we have from $G(s t) \leq G(s) G(t)$ that $f(s t) / f(s)<g(t)$, and so $F(t)=\sup _{1 \leq s t} f(s t) / f(s) \leq g(t)$.
Lemma 5. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a $\left(\delta_{2}, \Delta_{2}\right) N$-function. Let F be defined as in Lemma 2. Then $\alpha_{f}^{\infty}=\alpha_{F}^{0}$.

Proof. Recall that $\alpha_{f}^{\infty}=\lim _{t \rightarrow \infty} \log \underline{g}(t) / \log t$, with $\underline{g}(t)=\inf _{1 \leq s<\infty} f(s t) / f(t)$, $t \geq 1$. Now, since for each $t \in(0,1]$ we have that

$$
F(t)=\sup _{1 \leq s t} \frac{f(s t)}{f(s)}=\frac{1}{\inf _{1 \leq u<\infty} \frac{f(u / t)}{f(u)}}=\frac{1}{g(1 / t)}
$$

then $\alpha_{F}^{0}=\alpha_{f}^{\infty}$.
Theorem 6. Let $f:[0, \infty) \rightarrow[0, \infty)$ be an N-function, submultiplicative on $[1, \infty)$. There is a submultiplicative N-function $F:[0, \infty) \rightarrow[0, \infty)$, equivalent to f on $[1, \infty)$, if and only if, $\alpha_{f}^{\infty}>1$.

Proof. Let F be defined as in Lemma 2. Then, as we have seen, the function $W(t)=\int_{0}^{s} \bar{f}(\tau) \tau^{-1} d r$, with $\bar{f}(\tau)$ as in Lemma 3, is convex and for some $k>0$, we have that $W(s t) \leq k W(s) W(t)$. Also, $W(t) \leq F(t)$ and since, from the hypothesis, we must have $\alpha_{F}^{0}=\alpha_{f}^{\infty}>1$, then writing $F(t)=t^{\alpha_{F}^{0}} h(t)$, we have $0 \leq \lim _{t \rightarrow 0} W(t) / t^{\alpha_{F}^{0}} h(t)=0$.

From the hypothesis that f is an N-function, we deduce that $\lim _{t \rightarrow \infty} W(t) / t=$ ∞; this proves that $W(t)$ is an N-function.

It is apparent that W is equivalent to f at infinity. Finally, the function $\bar{W}(t)=\sup _{0<s<\infty} W(s t) / W(s)$ is a submultiplicative N-function, equivalent to f at infinity.

If, on the order hand, $\alpha_{f}^{\infty}=1$ then for any submultiplicative function $G(t)$, equivalent to f on $[1, \infty)$, we have that $F(t) \leq G(t), t \in[0,1]$, according to Remark 4. Therefore $1=\alpha_{F}^{0}=\alpha_{f}^{0} \geq \alpha_{G}^{0}$ and G cannot be an N-function.

Notice that for any submultiplicative N-function f on $[0, \infty)$ we have, according to the last argumentation, that $\alpha_{f}^{\infty} \geq \alpha_{f}^{0}$.

References

[1] J. Alexopoulos, De la Vallée Poussin's Theorem and Weakly Compact Sets in Orlicz Spaces, QM 17 (1994), 231-248.
[2] T. Andô, On Some Properties of Convex Functions, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys 8 (1960), 413-418.
[3] C. E. Finol and M. Wójtowicz, Multiplicative Properties of Real Functions with Applications to Classical Functions, Aequationes Math 59 (2000), 134-149.
[4] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AmerMath. Soc, Providence, United States, 1957.
[5] M. A. Krasnosielskii and Ya B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff Ltd, Groningen, Holland, 1961.
[6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, P.W.N, Warszawa-Kraków, Polska, 1985.
[7] K. Lindberg, On Subspaces of Orlicz Sequences Spaces, Studia Math 45 (1973), 119-146.
[8] J. Lindenstrauss and L. Tzafiri, On Orlicz Sequence Spaces II, Israel J Math 10 (1971), no. 3, 379-390.
[9] \qquad On Orlicz Sequences Spaces III, Israel J Math 10 (1973), no. 4, 368-389.
[10] \qquad , Classical Banach Spaces I, Ergebnisse der Math. und ihrer Grenzgebiete, Springer-Verlag, Berlin, Germany, 1977.
[11] W. Matuszewska and W Orlicz, On Certain Properties of φ-Functions, Bull Acad. Polon. Sci. Sér. Math. Astronom Phys 8 (1960), 439-443.
[12] \qquad , On Some Classes of Funtions with Regard to the their Order of Growth, Studia Math 26 (1965), 11-24.
[13] W. Orlicz, On spaces of φ-integrable functions, Proc. of the International Symp. on Linear Spaces held at the Hebrew University of Jerusalem (Jerusalem, Israel), Academic Press, July, 5-12 1960, pp. 357-365.
(Recibido en marzo de 2011. Aceptado en agosto de 2011)

Departamento de Matemática
Universidad de Los Ándes
Facultad de Ciencias
Merida, Venezuela
$\dagger 28$ De enero de 1949 - 13 De noviembre de 2009

Escuela de Matemática
Universidad Central de Venezuela
Facultad de Ciencias
P.O. Box 48059

Caracas 1041 - Venezuela
e-mail: carlos.finol@ciens.ucv.ve

[^0]: ${ }^{\text {a }}$ Passed away.
 ${ }^{\mathrm{b}}$ Research supported partially by C.D.C.H. Universidad Central de Venezuela grant 03-006040-2005.

