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Resumen. Presentamos una caracterización algebraica de los posibles ten-
sores característicos de una variedad infinitesimalmente homogénea con G-
estructura. Tales conceptos son introducidos en [5].
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1. Introduction

The concept of infinitesimally homogeneous affine manifold with G-structure
was introduced in the recent article [5] with the aim to find a unifying lan-
guage for several isometric immersion (Bonnet type) theorems that appear in
the classical literature [1] (immersions into Riemannian manifolds with con-
stant sectional curvature, immersions into Kähler manifolds of constant holo-
morphic curvature), and also some more recent results (see for instance [3, 2])
concerning the existence of isometric immersions in more general Riemannian
manifolds. By an affine manifold with G-structure we mean a triple (M,∇, P ),
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with M an n-dimensional differentiable manifold, ∇ a connection on M and P
a G-structure on M , i.e., G is a Lie subgroup of GL(n) and P is a G-principal
subbundle of the frame bundle of M . We denote by R and T , respectively, the
curvature and torsion tensors of ∇. In order to handle the case in which P is
not compatible with ∇, the concept of inner torsion was introduced in [5]: it
is a tensor IP that plays the role of a covariant derivative of the G-structure
P and it vanishes if and only if ∇ is compatible with P . The concept of in-
finitesimal homogeneity plays the same role in the theory of affine manifolds
with G-structure as the concept of constant sectional curvature plays in Rie-
mannian geometry; in fact, Riemannian manifolds with constant sectional cur-
vature are precisely the infinitesimally homogeneous triples (M,∇, P ) in which
P is the O(n)-principal bundle of orthonormal frames and both the torsion
and the inner torsion vanish. Notice that Riemannian manifolds with constant
sectional curvature are those in which the (four indexed) matrix representing
the curvature tensor with respect to orthonormal frames is independent of the
orthonormal frame and of the point on the manifold. While it does not make
sense to require that a tensor field on a manifold be constant, we can define, for
manifolds endowed with a G-structure, the notion of G-constant tensor field:
that is a tensor field whose matrix with respect to frames that belong to the
G-structure is independent of the frame and of the point of the manifold. An
affine manifold with G-structure (M,∇, P ) is said to be infinitesimally homo-
geneous if the tensor fields R, T and IP are all G-constant. When M is simply
connected and ∇ is geodesically complete then this condition implies that the
group of all affine G-structure preserving diffeomorphisms of M acts transi-
tively on the frames that belong to P and in that case we say that the triple
(M,∇, P ) is homogeneous [5].

The G-constant tensor fields R and T of an infinitesimally homogeneous
triple (M,∇, P ) are represented, with respect to an arbitrary frame belonging
to P , by multilinear maps R0 : Rn × R

n × R
n → R

n and T0 : Rn × R
n → R

n,
respectively; moreover, the G-constant inner torsion IP is represented (with re-
spect to an arbitrary frame belonging to P ) by a linear map IP0 : Rn → gl(n)/g,
where g denotes the Lie algebra of G. We call R0, T0, I

P
0 the characteristic ten-

sors of (M,∇, P ). The characteristic tensors R0, T0, I
P
0 characterize locally an

infinitesimally homogeneous triple (M,∇, P ), in the sense that two infinites-
imally homogeneous triples having the same characteristic tensors are locally
equivalent (by means of affine G-structure preserving diffeomorphisms). It is
then very natural to ask what are the necessary and sufficient conditions for
maps R0, T0, I

P
0 to be the characteristic tensors of an infinitesimally homoge-

neous triple (M,∇, P ). This paper answers such question.

The main result of this paper can be seen as part of a program of reducing a
problem of classification of certain geometric objects to a problem of classifica-
tion of certain algebraic objects. Other examples of such reductions are: (i) the
result that two Lie groups having the same Lie algebra are locally isomorphic
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AFFINE MANIFOLDS WITH G-STRUCTURE 151

and every Lie algebra is the Lie algebra of a Lie group; (ii) the result that
two Riemannian symmetric spaces having the same orthogonal involutive Lie
algebra (oil algebra) are locally isometric and every oil algebra is the oil algebra
of a Riemannian symmetric space (see [4]).

It would be natural to ask what are the necessary and sufficient conditions
for R0, T0, IP0 to be the characteristic tensors of a (globally) homogeneous
triple (M,∇, P ). Is it true that if R0, T0, I

P
0 are the characteristic tensors of an

infinitesimally homogeneous triple then they are also the characteristic tensors
of some (globally) homogeneous triple? While we do not know the answer to
that question, a partial answer will be given in a forthcoming paper.

2. Notation and Preliminaries

2.1. Vector spaces

Let V be a real finite-dimensional vector space. We denote by GL(V ) the general
linear group of V and by gl(V ) its Lie algebra. If W is another real finite-
dimensional vector space, Link(V ;W ) denotes the space of k-linear maps from
V to W . Given multilinear maps T ∈ Link(V ;V ), S ∈ Link(W ;W ) and a (not
necessarily invertible) linear map σ : V → W then T is said to be σ-related
with S if:

S
(
σ(v1), . . . , σ(vk)

)
= σ

(
T (v1, . . . , vk)

)
,

for all v1, . . . , vk ∈ V . If p : V → W is a linear isomorphism we denote by
Ip : GL(V ) → GL(W ) the Lie group isomorphism given by conjugation with
p and Adp = dIp(Id) : gl(V ) → gl(W ) denotes the Lie algebra isomorphism
given by conjugation with p.

2.2. G-structures on Manifolds

If G is a Lie subgroup of GL(n), by a G-structure on an n-dimensional real
vector space V we mean a G-orbit of the action given by right composition of
GL(n) on the set of all linear isomorphisms p : Rn → V . By a G-structure on an
n-dimensional differentiable manifold M we mean a G-principal subbundle P
of FR(TM), such that for each x ∈ M , Px is a G-structure on the vector space
TxM . Let M and M ′ be n-dimensional differentiable manifolds endowed with
G-structures P and P ′, respectively. A smooth map f : M → M ′ is said to be
G-structure preserving if for each x ∈ M , the linear map dfx : TxM → Tf(x)M

′

sends frames of Px to frames that belong to P ′

f(x).

Remark 1. If G is a Lie subgroup of GL(n) a multilinear map τ0 ∈ Link(R
n;Rn)

is said to be G-invariant, if for each g ∈ G, τ0 is g-related with itself. Clearly,
given a G-invariant tensor τ0 ∈ Link(R

n;Rn) one can induce a version of τ0 on
every vector space endowed with a G-structure. More precisely, let V be a real
n-dimensional vector space endowed with a G-structure P . Given any p ∈ P let
τV ∈ Link(V ;V ) be the tensor which is p-related with τ0. The G-invariance of
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τ0 implies that τV does not depend on the choice of p ∈ P . In particular, when
M is an n-dimensional differentiable manifold endowed with a G-structure P
and τ0 ∈ Link(R

n;Rn) is G-invariant, by using frames that belong to P it is
possible to define a tensor field τ on M such that for each x ∈ M , the map
τx ∈ Link(TxM ;TxM) is the version of τ0 in TxM .

2.3. Connections on Vector Bundles

Let E be a vector bundle over a differentiable manifold M with typical fiber
E0. We denote by Γ(E) the set of all smooth sections of E and by FRE0(E)
the GL(E0)-principal bundle over M formed by all E0-frames of E. When
E0 = R

n we write FR(E) instead of FRE0(E). If ǫ : U → E is a local section
of the vector bundle E and s : U → FRE0(E) is a smooth local frame for E
then the representation of the section ǫ with respect to the smooth local frame
s is a map ǫ̃ : U → E0 defined by: ǫ̃(x) = s(x)−1

(
ǫ(x)

)
, for all x ∈ U .

A smooth local frame s : U → FRE0(E) defines, in a natural way, a con-
nection dIs in E|U , which corresponds via the trivialization of E|U defined by
s to the standard derivative. More explicitly, we set:

dIsvǫ = s(x)
(
dǫ̃x(v)

)
,

for all x ∈ U , v ∈ TxM and all ǫ ∈ Γ(E|U ), where ǫ̃ : U → E0 denotes the
representation of ǫ with respect to the local frame s.

If ∇ is a connection in E, the Christoffel tensor of ∇ with respect to the
smooth local frame s is the smooth tensor Γ = ∇ − dIs ∈ Γ(TM∗ ⊗ E∗ ⊗ E)
such that:

∇vǫ = dIsvǫ+ Γx

(
v, ǫ(x)

)
,

for all x ∈ U , v ∈ TxM and all ǫ ∈ Γ(E|U ). Denoting by ω the smooth
gl(E0)-valued connection form on FRE0(E) associated to ∇, we have the fol-
lowing:

Γx(v) = s(x) ◦ ωx(v) ◦ s(x)
−1 ∈ gl(Ex), (1)

for all x ∈ U , v ∈ TxM , where ω = s∗ω denotes the pullback by s of the
connection form ω.

Remark 2. If ∇ is a (symmetric) connection on TM and t : Γ(TM) ×
Γ(TM) → Γ(TM) is an arbitrary C∞(M)-bilinear (symmetric) map, ∇′ =
∇+ t is also a (symmetric) connection on TM and a simple calculation shows
that, (see [6]):

R′(X,Y )Z = R(X,Y )Z + (∇X t)(Y, Z)− (∇Y t)(X,Z) + [t(X), t(Y )]Z, (2)

T ′(X,Y ) = T (X,Y ) + t(X)Y − t(Y )X, (3)

for each X,Y, Z ∈ Γ(TM). Where R′ and T ′ denote the curvature and torsion
tensors of ∇′, respectively; R and T denote the curvature and torsion tensors
of ∇, respectively.
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3. Infinitesimally Homogeneous Manifolds

Let (M,∇, P ) be an n-dimensional affine manifold with G-structure P , the
inner torsion of P with respect to the connection ∇ was introduced in [6],
this notion gives rise to a tensor field IP on M that measures the lack of
compatibility of the connection ∇ with P , since this notion plays an important
role in this work, we present below its definition in a brief way.

For each x ∈ M , we denote by Gx the Lie subgroup of GL(TxM) consisting
of G-structure preserving endomorphisms of TxM . Clearly Gx = Ip(G), for all
p ∈ Px, so that Gx is a Lie subgroup of GL(TxM). We denote by gx ⊂ gl(TxM)
the Lie algebra of Gx. It is clear that Adp(g) = gx, for all p ∈ Px, where
g ⊂ gl(n) denotes the Lie algebra of G. Since Adp : gl(n) → gl(TxM) carries g

onto gx; therefore, it induces an isomorphism:

Adp : gl(n)/g −→ gl(TxM)/gx.

Let s : U ⊂ M → P be a smooth local section of P , with x ∈ U and set
s(x) = p. If ω denotes the gl(n)-valued connection form on FR(TM) associated
with ∇ and ω = s∗ω. The map

TxM

IP
x

44

ωx
// gl(n)

q
// gl(n)/g

Adp
// gl(TxM)/gx (4)

does not depend on the choice of the local section s. The linear map IPx defined
by (4) is called the inner torsion of the G-structure P at the point x with
respect to the connection ∇. It follows from (1), that if s : U → P is a smooth
local section with x ∈ U and Γ denotes the Christoffel tensor of ∇ with respect
to s then the inner torsion IPx is precisely the composition of the Γx : TxM →
gl(TxM) with the quotient map gl(TxM) → gl(TxM)/gx. This observation
gives a simple way of computing inner torsions, (see [5]).

The geometry of an affine manifold with G-structure (M,∇, P ) is described
by three tensors of M : the torsion T of ∇, the curvature R of ∇ and the inner
torsion IP . An important class of examples of affine manifolds with G-structure
is defined by the property that these three tensors T , R and IP be constant
when written in frames of the G-structure P . When this is the case, (M,∇, P )
is said to be infinitesimally homogeneous. This statement is made more precise
in the following definition.

Definition 1. An n-dimensional affine manifold with G-structure, (M,∇, P ) is
said to be infinitesimally homogeneous if there exist maps R0 ∈ Lin3(R

n,Rn),
T0 ∈ Lin2(R

n,Rn) and a linear map I0 : Rn → gl(n)/g such that: for every
x ∈ M , every p ∈ Px relates T0 with Tx, R0 with Rx and Adp ◦ I0 = IPx ◦ p.
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The maps T0, R0, I0 as referred above are called the characteristic tensors
of the infinitesimally homogeneous manifold (M,∇, P ).

Clearly, the characteristic tensors T0, R0, I0 of an infinitesimally homoge-
neous manifold (M,∇, P ) are invariant by the action of the structural group
G. Therefore, it follows from the G-invariance condition that the following re-
lations hold:

R0(u, v) = Adg ·R0

(
g−1 · u, g−1 · v

)
; (5)

T0(u, v) = g · T0

(
g−1 · u, g−1 · v

)
; (6)

Adg

(
λ(g−1 · u)

)
− λ(u) ∈ g, (7)

for all g ∈ G, all u, v ∈ R
n. Where λ : Rn → gl(n) is an arbitrary lifting of I0.

Notice that Relation (7) does not depend on λ. In fact, let λ, δ be liftings of
I0. Write λ = δ + L, where L is a g-valued linear map defined in R

n. An easy
computation shows that:

g ∋ Adg

(
λ(g−1 · u)

)
− λ(u) =

Adg
(
δ(g−1 · u)

)
− δ(u) + Adg

(
L(g−1 · u)

)
− L(u)

︸ ︷︷ ︸
∈ g

,

for all g ∈ G, u ∈ R
n. Which shows the independence on λ.

By differentiating (5), (6), and (7) we obtain the following:

Lemma 1. Let λ : Rn → gl(n) be an arbitrary lifting of I0. Then for all L ∈ g

and all u, v ∈ R
n, the following conditions hold:

(1)
[
L,R0(u, v)

]
−R0(L · u, v)−R0(u, L · v) = 0;

(2) L ◦ T0(u, v)− T0(L · u, v)− T0(u, L · v) = 0;

(3)
[
L, λ(u)

]
− λ(L · u) ∈ g.

4. Algebraic Relation Between the Characteristic Tensors

It is a natural question to ask whether one can give a (local) classification of
infinitesimally homogeneous manifolds with prescribed group G and prescribed
characteristic tensors T0, R0, I0. We solve this question in this paper by giving
necessary and sufficient conditions for maps T0, R0, I0 to be the characteristic
tensors of an infinitesimally homogeneous manifold. Our plan for developing
the necessary condition is the following: we show that to give a classification
of infinitesimally homogeneous manifolds with prescribed group G is equiva-
lent to finding an infinitesimally homogeneous manifold without torsion whose
structural group is G, and to give a classification of the G-invariant maps
t0 ∈ Lin2(R

n,Rn). Once, this is done, in order to obtain the aimed condition,
it will be sufficient to consider the case of symmetric connections (equivalently
T0 = 0). This is the purpose of this section, and the sufficient conditions will
be developed in the following section.
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4.1. Covariant Derivative for G-Constant Tensors

Let (M,∇, P ) be an homogeneous affine manifold with G-structure P . If IP =
0, i.e., the covariant derivative of P is zero, it follows that every G-constant
tensor is parallel with respect to ∇. On the other hand, if ∇ is not compatible
with P , i.e., the covariant derivative of P is not zero, it is not true that every
G-constant tensor is parallel with respect to ∇. Hence, we need to find a simply
way to calculate the covariant derivative for G-constant tensors on this case,
i.e., when IP 6= 0. Which we do next.

Denoting by Vec the category whose objects are real finite-dimensional vec-
tor spaces and whose morphisms are linear isomorphisms. Given a smooth
functor F : Vec → Vec and any object V of Vec, F induces a Lie group homo-
morphism F : GL(V ) −→ GL

(
F(V )

)
, whose differential at the identity is a Lie

algebra homomorphism that will be denoted by f : gl(V ) −→ gl
(
F(V )

)
.

Let E be a vector bundle with typical fiber E0 on M . Given a smooth
functor F : Vec → Vec we denote by F(E) =

⋃
x∈M F(Ex), the vector bundle

with typical fiber F(E0) obtained from E by using F.

Given a smooth funtor F : Vec → Vec we have the following:

Lemma 2. Let t be a smooth G-constant section of F(TM). Then

∇vt = f(L) · tx, (8)

for all x ∈ M , v ∈ TxM , where L ∈ gl(TxM) is such that IPx (v) = L+ gx.

Proof. Clearly t can be thought as an FR(TM)-valued 0-form on M , which
is associated to a 0-form φ : FR(TM) → F(Rn) such that: φ(p) = F(p)−1(tx)
for all x ∈ M , p ∈ FR(TM). Moreover, the covariant exterior differential Dφ
is associated to the covariant exterior differential Dt of t. More explicitly, we
have:

dφp(ζ) = Dφp(ζ) = F(p)−1(Dt)x · v = F(p)−1∇vt, (9)

for all x ∈ M , p ∈ Px, v ∈ TxM and ζ an horizontal vector such that dΠp(ζ) =
v, where Π : FR(TM) → M denotes the canonical projection. To obtain the
desired result, we must calculate dφp(ζ). If X ∈ gl(n) is such that Adp(X+g) =
IPx (v) then:

ζ = (dΠp, ωp)
−1(v,X)− (dΠp, ωp)

−1(0, X) = (dΠp, ωp)
−1(v,X)︸ ︷︷ ︸

∈ TpP

−dβp(1) ·X,

where βp denotes the map given by the action of GL(n) on p. Since φ|P is
constant, we have:

dφp(ζ) = −dφp

(
dβp(1) ·X

)
= f(X) · t0. (10)

But (8) follows directly from equalities (9), (10). �X
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Example 1. Let F : Vec → Vec be the functor defined by:

F(V ) = Link(V ; Lin(V ))

for each object V of Vec. Let (M,∇, P ) be an n-dimensional affine manifold
with G-structure. If t0 ∈ Link

(
R

n; gl(n)
)

is a G-constant tensor, denoting by
tx the induced version of t0 on TxM , by using (2) we have:

∇vt =
[
L, tx(·, . . . , ·)

]
− tx(L·, ·, . . . , ·)− · · · − tx(·, ·, . . . , L·),

where L ∈ gl(TxM) is such that IPx (v) = L+ gx. On the other hand, it is clear
that an arbitrary lifting λ : Rn → gl(n) of I0, induces a derivation Dλ(X) on the
tensor algebra over the vector space R

n, for all X ∈ R
n; an easy computation

shows that: (
Dλ(X)t0

)
= f

(
λ(X)

)
· t0.

Therefore, if λ is an arbitrary lifting of I0, given x ∈ M , p ∈ Px and X ∈ R
n

such that v = p(X) and Adp
(
λ(X)

)
= L we have:

Adp

(
Dλ(X)t0

)
= (∇vt) ◦ (p, . . . , p).

4.2. Infinitesimally Homogeneous Manifolds without Torsion

Let (M,∇, P ) be an n-dimensional affine manifold with G-structure and assume
that ∇ is a symmetric connection. Let t0 ∈ Lin2(R

n,Rn) be a G-invariant skew-
symmetric tensor. For each x ∈ M , we denote by tx the induced version of t0
on TxM . In view of Remark 2, it is clear that ∇′ = ∇+ 1

2 t defines a connection
on M whose torsion is t. We devote this section to prove the following.

Lemma 3. With the same notation as above, if (M,∇, P ) is an infinitesi-
mally homogeneous manifold then the triple (M,∇′, P ) is also infinitesimally
homogeneous.

Proof. It is enough to prove that there exist tensors T ′

0, R
′

0, I
′

0 as in (1). We take
T ′

0 = t0. On the other hand, t can be identified with a smooth Lin(TM)-valued
covariant 1-tensor field on M . Let s : U → P be a smooth local section of P .
We denote by Γ′ and Γ, respectively, the Christoffel tensors of ∇′ and ∇ with
respect to s. Given x ∈ U , it is clear that Γ′

x = Γx+ tx, by composing this with
the canonical projection q : gl(TxM) → gl(TxM)/gx we obtain:

I′Px = IPx + q ◦ tx.

Therefore, we can take I′0 = I0+q◦ t0. On the other hand, we denote by R′

and R, respectively, the curvature tensors of ∇′ and ∇. Let λ be an arbitrary
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lifting of I0, x ∈ U and set s(x) = p. From (2) and by using Lemma 2 we have
that the following holds:

R′

x(p·, p·) = Rx(p·, p·) + (Dt)x(p·, p·) + [tx(p·), tx(p·)]

= Adp ◦
(
R0(·, ·) + Alt

(
Dλ(·)t0

)
·+[t0(·), t0(·)]

)
.

Therefore, in order to obtain the desired result we can take

R′

0 = R0 +Dt0 + [t0, t0]. �X

4.3. The Necessary Conditions

We are now ready to give necessary conditions which must be satisfied by the
characteristic tensors of an infinitesimally homogeneous manifold. To do this,
throughout the subsection we consider a fixed n-dimensional infinitesimally
homogeneous manifold (M,∇, P ) with structural group G. From Lemma 3 it
follows that we may assume without loss of generality that ∇ is a symmetric
connection with curvature R. We denote by R0, I0 the characteristic tensors of
(M,∇, P ). Clearly, a necessary condition is that R0, I0 are G-invariant.

Let ω be the gl(n)-valued connection form on FR(TM) associated with ∇,
let Ω be its curvature form and let θ be the canonical form of FR(TM). Given
a smooth local frame s : U → P then, setting ω = s∗(ω), Ω = s∗Ω, θ = s∗θ, we
have:

Ω = dω + ω ∧ ω, dθ = −ω ∧ θ.

Moreover, the infinitesimal homogeneity implies that:

Ωx(X,Y ) = s(x) ◦Rx(X,Y ) ◦ s(x)−1 = R0

(
s(x)−1X, s(x)−1Y

)
,

q ◦ ωx = Ads(x)−1 ◦ IPx = I0 ◦ θ,

for all x ∈ U , X,Y ∈ TxM , where q : gl(n) → gl(n)/g denotes the canonical
projection and g denotes the Lie algebra of G. Clearly when the linear map IP

vanishes, Ω is a g-valued 2-form on M . Under the previous conditions, in order
to handle the general case in which P is not compatible with ∇ we get:

q ◦ Ω = d(q ◦ ω) + q ◦ ω ∧ ω

= d(I0 ◦ θ) + q ◦ ω ∧ ω

= I0 ◦ dθ + q ◦ ω ∧ ω

= −I0 ◦ (ω ∧ θ) + q ◦ ω ∧ ω.

(11)

Given x ∈ U , let Γ̃ : R
n → gl(n) be the map defined by requiring the

diagram
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TxM gl(TxM)

R
n gl(n)

-Γx

@
@
@
@
@R

ωx

6

s(x)

-
Γ̃

6
Ads(x)

to be commutative. Therefore, I0 = q ◦ Γ̃ and substituting in (11) we obtain
the following relation:

Ωx + Γ̃ ◦
(
ωx ∧ θx

)
− ωx ∧ ωx ∈ g.

Thus, given vectors u, v ∈ R
n the relation above can be written as:

R0(u, v)−
[
Γ̃(u), Γ̃(v)

]
+ Γ̃

(
Γ̃(u)v − Γ̃(v)u

)
∈ g. (12)

This relation does not depend on the choice of Γ̃. Namely, let λ be an arbitrary
lifting of I0 and δ be a g-valued linear map in R

n such that Γ̃ = λ + δ. By
replacing this into (12), we obtain

g ∋ R0(u, v)−
[
λ(u), λ(v)

]
+ λ

(
λ(u)v − λ(v)u

)
+A(δ) + B(δ), (13)

where:

A(δ) =
([
δ(v), λ(u)

]
− λ

(
δ(v) · u

))
−
([
δ(u), λ(v)

]
− λ(δ(u) · v)

)
,

B(δ) = δ
(
Γ̃(u)v − Γ̃(v)u

)
−
[
δ(u), δ(v)

]
.

So that Lemma 1 guarantees that A(δ) ∈ g; moreover, B(δ) ∈ g because δ is
a g-valued linear map. Therefore for an arbitrary lifting λ of I0 the following
relation holds:

R0(u, v)−
[
λ(u), λ(v)

]
+ λ

(
λ(u)v − λ(v)u

)
∈ g,

this shows the independence on the lifting; hence we have proved the following:

Theorem 1. Let M be an n-dimensional differentiable manifold, G a Lie sub-
group of GL(n) with Lie algebra g and assume that M is endowed with a sym-
metric connection ∇ and a G-structure P ⊂ FR(TM). Assume that (M,∇, P )
is an infinitesimally homogeneous manifold with characteristic tensors R0, I0.
Then given an arbitrary lifting λ of I0, the following relation holds:

R0(u, v)−
[
λ(u), λ(v)

]
+ λ

(
λ(u)v − λ(v)u

)
∈ g,

for all u, v ∈ R
n.
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5. Infinitesimally Homogeneous Manifolds with Prescribed Group

and Prescribed Characteristic Tensors

We devote this section to obtain sufficient conditions for maps T0, R0, I0 to be
the characteristic tensors of an infinitesimally homogeneous manifold. There-
fore, throughout section we will consider a fixed real finite-dimensional vec-
tor space m, a Lie subgroup H ⊂ GL(m) with Lie algebra h ⊂ gl(m) and
H-invariant maps R0 ∈ Lin2

(
m, gl(m)

)
, I0 : m → gl(m)/h. As we said above,

our goal is to obtain conditions for the maps R0, I0 to be the characteristic
tensors of an infinitesimally homogeneous manifold (M,∇, P ).

Let λ : m → gl(m) be an arbitrary lifting of I0. As in Section 3, by using
the H-invariance of I0 we conclude that the following relation holds:

[L, λ(X)]− λ(L ·X) ∈ h, (14)

for all L ∈ h, all X,Y ∈ m. An analogous relation to (12) is:

R0(X,Y )−
[
λ(X), λ(Y )

]
+ λ

(
λ(X)Y − λ(Y )X

)
∈ h (15)

for all X,Y ∈ m. Neither relation (14) nor relation (15) depend on the choice
of λ.

Assuming that (15) holds, we have the following:

Definition 2. Setting a = h⊕m. We endow a with a bracket operation which
is defined below. For each X,Y ∈ m, each L, T ∈ h we set:

(1) [X,Y ]m = λ(X) · Y − λ(Y ) ·X ;

(2) [X,Y ]h = R0(X,Y ) + λ
(
λ(X) · Y − λ(Y ) ·X

)
−
[
λ(X), λ(Y )

]
;

(3) [L,X ]m = L ·X ;

(4) [L,X ]h =
[
L, λ(X)

]
− λ(L ·X);

(5) [L, T ] is the Lie bracket of h;

(6) [L,X ] = −[X,L].

We will prove that the vector space a endowed with the bracket operation
as above is a Lie algebra. Before we proceed, we will present some algebraic
preliminaries.

Definition 3. We say that the map R0 satisfies the Bianchi identities if the
following equalities hold:

(B1) SR0(X,Y ) · Z = 0;

(B2) S
(
Dλ(X)R0

)
(Y, Z) = 0.
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Where for X ∈ m, Dλ(X) denotes the derivation on the tensor algebra over
the vector space m induced by λ(X) and S denotes the sum over all cyclic
permutations of X,Y, Z.

Remark 3. For X,Y, Z ∈ m and L ∈ h we set:

S[L,X,Y ] =
[
L, λ(X)

]
· Y − λ(Y ) · (L ·X).

T[X,Y,Z] =
[
λ(X), λ(Y )

]
· Z − λ(Z) · [X,Y ]m.

Thus, it is not difficult to see that:

S[L,X,Y ] − S[L,Y,X] = L
(
[X,Y ]m

)
. (16)

We can also easily see that:

ST[X,Y,Z] = 0. (17)

Remark 4. For X,Y, Z ∈ m by using the Bianchi identities we obtain:

S
([

λ(Z), R0(X,Y )
]
−R0

(
[X,Y ]m, Z

))
= 0. (18)

Lemma 4. Using the same notation and terminology as above, suppose that
the H-invariant maps R0, I0 satisfy the following conditions:

(1) R0 is skew-symmetric;

(2) given an arbitrary lifting λ : m → gl(m) of I0, the map R0 satisfies the
Bianchi identities and relation (15) holds.

Then the vector space a = h ⊕ m endowed with the bracket operation [·, ·],
defined as in Definition (2), is a Lie algebra.

Proof. Since [·, ·] is skew-symmetric, it is enough to show that it satisfies the
Jacobi identity. To do that, we divide the proof in three cases. First we consider
the case that L, T ∈ h, X ∈ m. From Definition 2:

[
[X,L], T

]
= −

[
[L, λ(X)], T

]
− λ

(
T (L ·X)

)
+ T (L ·X) (19)

[
[L, T ], X

]
=

[
[L, T ], λ(X)

]
− λ

(
[L, T ] ·X

)
+ [L, T ] ·X (20)

interchanging T and L in (19) we get:

[
[T,X ], L

]
=

[
[T, λ(X)], L

]
+ λ

(
L(T ·X)

)
− L(T ·X). (21)

The conclusion follows from (19), (20) and (21) by applying the Jacobi identity
in gl(m).
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Now in the case that X,Y ∈ m, L ∈ h. From Definition 2:
[
[X,Y ], L

]m
= −L

(
[X,Y ]m

)
(22)

[
[X,Y ], L

]h
=

[
[λ(X), λ(Y )], L

]
+ λ

(
L · [X,Y ]m

)
− [R0(X,Y ), L] (23)

by using Remark 3 we obtain:

[
[Y, L], X ]m = −S[L,Y,X] (24)
[
[Y, L], X

]h
=

[
[λ(Y ), L], λ(X)

]
+ λ

(
S[L,Y,X]

)
−R0(X,L · Y ) (25)

interchanging X and Y in (24), (25) we get:

[
[L,X ], Y ]m = S[L,X,Y ] (26)
[
[L,X ], Y

]h
=

[
[L, λ(X)], λ(Y )

]
− λ

(
S[L,X,Y ]

)
+R0(Y, L ·X). (27)

It follows from (22), (24) and (26) by using (16) that:

S
[
[X,Y ], L

]m
= 0.

On the other hand, it follows from (23), (25) and (27) by using (16), (18)
and the Jacobi identity in gl(m) that:

S
[
[X,Y ], L

]h
= 0.

Finally, we consider the case X,Y, Z ∈ m. It follows directly from 2 that:

S
[
[X,Y ], Z

]m
= 0.

For the h component we have:

[
[X,Y ], Z

]h
=

[
[λ(X), λ(Y )], λ(Z)

]
−R0

(
[X,Y ]m, Z

)

−
[
R0(X,Y ), λ(Z)

]
− λ

(
T[X,Y,Z] −R0(X,Y )Z

)
.

Hence from (17) and (18) by using the Jacobi identity in gl(m) we can conclude:

S
[
[X,Y ], Z

]h
= 0. �X

Remark 5. The Lie bracket defined in Definition 2 does not depend on the
choice of λ. In fact, if [·, ·]λ denotes the Lie Bracket in a obtained by using

the arbitrary lifting λ of I0, given another lifting λ̃ there exists a linear map
δ : m → h such that λ = λ̃ + δ. The map ϕ : a →

(
a, [·, ·]

λ̃

)
defined by the

matrix: [
Idh δ

0 Idm

]
,

is an isomorphism of vector spaces, moreover, a direct computation shows that
[·, ·]λ = ϕ∗[·, ·]

λ̃
so that ϕ is an isomorphism of Lie algebras. Which shows the

assertion.
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5.1. Existence of an Infinitesimally Homogeneous Manifold

The main goal of this subsection is to show the existence of an infinitesi-
mally homogeneous manifold with prescribed structural group and prescribed
characteristic tensors. To do this, let m be a real finite-dimensional vector
space, let H ⊂ GL(m) be a Lie subgroup with Lie algebra h ⊂ gl(m). Let
R0 ∈ Lin2

(
m, gl(m)

)
, I0 : m → gl(m)/h, be maps satisfying the following con-

ditions:

(1) R0, I0 are H– invariants;

(2) R0 is skew–symmetric;

(3) given an arbitrary lifting λ : m → gl(m) of I0, R0 satisfies the Bianchi
identities and the relation (15) holds.

Now we are going to obtain an infinitesimally homogeneous manifold with
structural group H whose characteristic tensor are R0, I0. It follows from
Lemma 4 that the vector space a = h⊕m endowed with the bracket defined on
Definition 2 is a Lie algebra.

Let λ : a = h⊕m → gl(m) be a map defined by:

λ(X) =

{
λ(X), se X ∈ m;

adX , se X ∈ h.
(28)

where ad denotes the isotropic representation of h on m, more precisely adX(Y ) =
pm

(
[X,Y ]

)
= X(Y ) for all X ∈ h, Y ∈ m.

Lemma 5. If L ∈ h and X ∈ a. Then

[
λ(L), λ(X)

]
= λ

(
[L,X]

)
.

Proof. We set X = T +X , for T ∈ h, X ∈ m.

λ
(
[L,X]

)
= ad[L,T ] + adph([L,X]) + λ(L ·X)

=
[
adL, adT

]
+
[
adL, λ(X)

]

=
[
λ(L), λ(X)

]
. �X

Let A be a Lie group such that T1A = a. Let M ′ ⊂ A be a submanifold of
A through 1 such that T1M

′ = m. Let pm
L be the left invariant 1-form on A

induced by the linear projection pm : a = h⊕m → m. Setting κ = pm
L|M ′ then:

κ1(X) = pm
L(X) = pm(X) = X

for all X ∈ m. Let M be a neighborhood of 1 in M ′ such that for all x ∈ M the
map κx : TxM → m is a linear isomorphism. Then, the map s : M → FRm(TM)
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defined by s(x) = κ−1
x : m → TxM , for all x ∈ M gives us a global section of

the GL(m)-principal bundle FRm(TM) over M . Given x ∈ M , the set

Px = s(x) ·H = {s(x) ◦ h | h ∈ H},

is an H-structure on TxM and P =
⋃

x∈M

Px defines an H-structure on M .

In order to construct ∇, let λ
L

the left invariant 1-form on A induced by

the linear map λ defined in (28). Setting ω = λ
L
|M , it is clear that ω is a

gl(m)-valued smooth 1-form on M . Let ω be the unique gl(m)-valued 1-form
on FRm(TM) such that s∗ω = ω. Then ω is a connection form on FRm(TM).

So far, we have obtained an affine manifold with H-structure (M,∇, P ),
where ∇ denotes the linear connection associated with the connection form
ω. We claim that (M,∇, P ) is an infinitesimally homogeneous manifold whose
characteristic tensors are R0, I0. In fact, given x ∈ M and X ∈ TxM , we have:

ωx(X) = λ
L

x (X) = λ(x−1 ·X) = adph
(x−1 ·X)

︸ ︷︷ ︸
∈ h

+λ
(
pm(x

−1 ·X)
)
,

therefore, in the quotient gl(m)/h the following equality holds:

ωx(X) = λ
(
pm(x

−1 ·X)
)
;

clearly pm(x
−1 ·X) = κx(X) = s(x)−1 ·X . Thus we have:

IPx (X) = Ads(x)
(
q ◦ λ ◦ s(x)−1 ·X

)
= Ads(x)

(
I0 ◦ s(x)

−1 ·X
)
.

On the other hand, we set Ω = s∗Ω, where Ω denotes the curvature form of
ω. For each x ∈ M , X,Y ∈ TxM . Setting x−1·X = L+κx·X , x−1·Y = T+κx·Y ,
for L, T ∈ h. It follows from Lemma 5 that:

−ωx

(
[X,Y ]

)
= −λ

(
[L, T + κx · Y ] + [κx ·X,T ] + [κx ·X,κx · Y ]

)

= −
[
λ(L), λ(T + κx · Y )

]
−
[
λ(κx ·X), λ(T )

]
− λ

[
κx ·X,κx · Y

]
.

moreover:

[
ωx(X), ωx(Y )

]
=

[
λ(L), λ(T + κx · Y )

]
+
[
λ(κx ·X), λ(T )

]

+
[
λ(κx ·X), λ(κx · Y )

]
.

since

Ωx(X,Y ) = dωx(X,Y ) +
[
ωx(X), ωx(Y )

]
= −ωx

(
[X,Y ]

)
+
[
ωx(X), ωx(Y )

]
,

it follows from the two previous equalities that:

Ωx(X,Y ) = −λ
[
κx ·X,κx · Y

]
+
[
λ(κx ·X), λ(κx · Y )

]
= R0(κx ·X,κx · Y )

which shows the claim. The following theorem summarizes all subsections:
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Theorem 2. Let m be a real finite-dimensional vector space, let H ⊂ GL(m)
be a Lie subgroup with Lie algebra h ⊂ gl(m). Let R0 ∈ Lin2

(
m, gl(m)

)
, I0 :

m → gl(m)/h, be maps satisfying the following conditions:

(1) R0, I0 are H– invariants;

(2) R0 is skew–symmetric;

(3) given an arbitrary lifting λ : m → gl(m) of I0, the map R0 satisfies the
Bianchi identities and the relation

R0(X,Y )− [λ(X), λ(Y )] + λ
(
λ(X)Y − λ(Y )X

)
∈ h

holds.

Then there exists an infinitesimally homogeneous manifold (M,∇, P ) with struc-
tural group H, whose characteristic tensors are R0, I0.
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