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Abstract. Let A be a commutative power-associative nilalgebra. In this paper
we prove that when A (of characteristic 6= 2) is of dimension ≤ 10 and the
identity x4 = 0 is valid in A, then ((y2)x2)x2 = 0 for all y, x in A and
((A2)2)2 = 0. That is, A is solvable.
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Resumen. Sea A una nilágebra conmutativa de potencias asociativas. En este
trabajo demostramos que cuando A (de característica 6= 2) es de dimensión
≤ 10 y la identidad x4 = 0 es válida en A, entonces ((y2)x2)x2 = 0 para todo
y, x en A y ((A2)2)2 = 0. Es decir, A es soluble.

Palabras y frases clave. Conmutativa, potencias asociativas, nilálgebra, soluble,
nilpotente.

1. Preliminaries

In this section A is a commutative algebra over a field K. If x is an element of A,
we define x1 = x and xk+1 = xkx for all k ≥ 1 A is called power-associative, if
the subalgebra of A generated by any element x ∈ A is associative. An element
x ∈ A is called nilpotent, if there is an integer r ≥ 1 such that xr = 0. If
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any element in A is nilpotent, then A is called a nilalgebra. Now A is called a
nilalgebra of nilindex n ≥ 2, if yn = 0 for all y ∈ A and there is x ∈ A such
that xn−1 6= 0.

If B, D are subspaces of A, then BD is the subspace of A spanned by all
products bd with b ∈ B, d ∈ D. Also we define B1 = B and Bk+1 = BkB for
all k ≥ 1. If there exists an integer n ≥ 2 such that Bn = 0 and Bn−1 6= 0,
then B is nilpotent of index n.

A is called solvable in case A(k) = 0 for some integer k, where A(1) = A and

A(n+1) =
(

A(n)
)2

for all n ≥ 1.

A is a Jordan algebra, if it satisfies the Jordan identity x2(yx) = (x2y)x
for all x, y ∈ A. It is known that any Jordan algebra (of characteristic 6= 2)
is power-associative and also that any finite-dimensional Jordan nilalgebra is
nilpotent (see [9]).

If the identity x3 = 0 is valid in A, then A is a Jordan algebra (see
[11, p. 114]). Therefore, if A is a finite dimensional, then A is nilpotente and
hence solvable.

We will denote by 〈a1, . . . , aj〉 the subspace of A generated over K by the
elements a1, . . . , aj ∈ A. In the following a greek letter indicates an element of
the field K.

The problem of nilpotence in a commutative power-associative nilalgebra is
known as Albert’s problem [1]: Is every commutative finite dimensional power-
associative nilalgebra nilpotent?

In [10], D. Suttles constructs (as a counterexample to a conjecture due to
A. A. Albert) a commutative power-associative nilalgebra of nilindex 4 and
dimension 5, which is solvable and is not nilpotent. In [4] (Theorem 3.3), we
prove that this algebra is the unique commutative power-associative nilalgebra
of nilindex 4 and dimension 5, which is not Jordan algebra.

At present there exists the following conjecture: Any commutative finite
dimensional power-associative nilalgebra is solvable. The solvability of these
algebras for dimension 4, 5 and 6, are proved in [8], [4] and [2] respectively.

Let A be a commutative power-associative nilalgebra. In [6], is proved that
when A is of nilindex n and dimension ≤ n+ 2, then A is solvable. In [5], we
prove that if A is of nilindex 4 and dimension ≤ 8, then A is solvable. In [7], is
proved that if A is of nilindex 5 and dimension 8, then A is solvable. Therefore,
if A is of dimension ≤ 8, then A is solvable.

We will use the following results which we demonstrated in [5]:

Theorem 1. Let A be a commutative power-associative nilalgebra (of charac-
teristic 6= 2, 3) such that x4 = 0 for all x in A.

a) If exist elements y, x ∈ A such that (yx2)x2 6= 0, then y, yx, (yx)x,
(

(yx)x
)

x,
(yx2)x2, x, x2, x3, yx2 are linearly independent.
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b) If A is of dimension ≤ 8, then
(

(A2)2
)2

= 0. That is, A is solvable.

2. Solvability

In this section, A is a commutative power-associative algebra over a field K
with characteristic 6= 2, 3 such that the identity x4 = 0 is valid in A. Linearizing
the identities (x2)2 = 0 and x4 = 0, we obtain that for all y, x, z, v ∈ A:

(yx)x2 = 0, 2(xy)2 + x2y2 = 0 (1)

(yz)x2 + 2(yx)(zx) = 0, (yx2)(vx2) = 0 (2)

(xy)(zv) + (xz)(yv) + (xv)(yz) = 0 (3)

2
(

(yx)x
)

x+ (yx2)x+ yx3 = 0 (4)

2
(

(yx)x
)

z + 2
(

(zx)x
)

y + 2
(

(yz)x
)

x+ (yx2)z+

(zx2)y + 2
(

(yx)z
)

x+ 2
(

(zx)y
)

x = 0 (5)

It is known that the following identities are valid in A:

4
((

(yx)x
)

x
)

x = (yx2)x2 = −2(yx)x3 (6)
(((

(yx)x
)

x
)

x
)

x = 0 (7)
((

· · · (yxmt) · · ·
)

xm2

)

xm1 = 0 (8)

where m1,. . . , mt are positive integers such that m1 + · · ·+mt ≥ 5. This last
identity is proved in [3].

Lemma 1. If there exist elements y, x ∈ A such that (y3x2)x2 6= 0, then A is
of dimension ≥ 11.

Proof. We consider the subspace U of A generated by y3, y3x, (y3x)x,
(

(y3x)x
)

x,
(y3x2)x2, x, x2, x3, y3x2. By Theorem 1(a), U is a subspace of dimension 9.

Using (8) and (6) we get that (Ux)x is generated by (y3x)x,
(

(y3x)x
)

x,

(y3x2)x2, x3,
(

(y3x2)x
)

x.

We observe that using (2), (1) and (8) we get

(

(yx)x
)(

(y2x)x
)

= −
1

2

(

(yx)(y2x)
)

x2 =
1

4
(y3x2)x2,

((

(yx)x
)

x
)(

(y2x)x
)

=
1

4

((

(yx)y2
)

x2
)

x2 = 0,

(

(y3x)x
)(

(y2x)x
)

=
1

4
(y5x2)x2 = 0,

((

(y3x)x
)

x
)(

(y2x)x
)

=
1

4

((

(y3x)y2
)

x2
)

x2 = 0,
(

(yx2)x2
)

x3 = 0 and

((

(y3x2)x
)

x
)(

(y2x)x
)

=
1

4

((

(y3x2)y2
)

x2
)

x2 = 0.
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Using the previous relations, we obtain that
(

(Ux)x
)(

(y2x)x
)

is generated

by
(

(y3x2)x2
)(

(y2x)x
)

.

Let αy + βyx ∈ U . We will prove that α = β = 0.

For this we see that
((

(αy + βyx)x
)

x
)(

(y2x)x
)

∈
(

(Ux)x
)(

(y2x)x
)

and

hence α
(

(yx)x
)(

(y2x)x
)

+β
((

(yx)x
)

x
)(

(y2x)x
)

= γ
(

(y3x2)x2
)(

(y2x)x
)

. There-

fore 1
4α(y

3x2)x2 = γ
(

(y3x2)x2
)(

(y2x)x
)

. If we suppose that α 6= 0, then γ 6= 0
and so we obtain that uv = 1

4αγ
−1u where u = (y3x2)x2 and v = (y2x)x.

Using (7), we get that (14αγ
−1)5u = 0, which is a contradiction. Therefore

α = 0.

We have now that βyx ∈ U and hence βyx = α1y
3 + α2y

3x + α3(y
3x)x +

α4

(

(y3x)x
)

x+α5(y
3x2)x2+α6x+α7x

2+α8x
3+α9y

3x2. Multiplying by x2 and
using (1) we obtain α1y

3x2 +α6x
3 + α9(y

3x2)x2 = 0, which implies that α1 =
α6 = α9 = 0. Therefore βyx = α2y

3x+α3(y
3x)x+α4

(

(y3x)x
)

x+α5(y
3x2)x2+

α7x
2 + α8x

3 and so β(yx)x = α2(y
3x)x+ α3

(

(y3x)x
)

x+ 1
4α4(y

3x2)x2 + α7x
3.

Multiplying by (y2x)x, we get that 1
4β(y

3x2)x2 = 1
4α4

(

(y3x2)x2
)(

(y2x)x
)

. Us-
ing the same argument earlier we conclude that β = 0 and therefore
dimK(A) ≥ 11. �X

Theorem 2. If A is of dimension ≤ 10, then (y2x2)x2 = 0 is an identity in A.

Proof. Suppose that there exist y, x ∈ A such that (y2x2)x2 6= 0. By Lemma 1
we can suppose that (y3x2)x2 = 0 and Theorem 1(a) implies that y2, y2x, (y2x)x,
(

(y2x)x
)

x, (y2x2)x2, x, x2, x3, y2x2 are linearly independent.

Let αyx+β(yx)x = α1y
2+α2y

2x+α3(y
2x)x+α4

(

(y2x)x
)

x+α5(y
2x2)x2+

α6x + α7x
2 + α8x

3 + α9y
2x2. Multiplying by x2 we obtain α1y

2x2 + α6x
3 +

α9(y
2x2)x2 = 0, which implies α1 = α6 = α9 = 0.

Now we have αyx+β(yx)x = α2y
2x+α3(y

2x)x+α4

(

(y2x)x
)

x+α5(y
2x2)x2+

α7x
2 + α8x

3. Multiplying by x we get α(yx)x + β
(

(yx)x
)

x = α2(y
2x)x +

α3

(

(y2x)x
)

x+ α4

((

(y2x)x
)

x
)

x+ α7x
3 and therefore

(

α(yx)x− α2(y
2x)x

)2
=

(

−β
(

(yx)x
)

x+α3

(

(y2x)x
)

x+α4

((

(y2x)x
)

x
)

x+α7x
3
)2
. Using the identities (1),

(2) and (8), we obtain 1
4α

2(y2x2)x2 − 1
2αα2(y

3x2)x2 = 0. Since (y3x2)x2 = 0,
then α = 0.

Now β(yx)x = α2y
2x + α3(y

2x)x + α4

(

(y2x)x
)

x + α5(y
2x2)x2 + α7x

2 +

α8x
3. Multiplying three times by x we obtain that α2 = 0. Now

(

β(yx)x −

α3(y
2x)x

)2
=

(

α4

(

(y2x)x
)

x+ α5(y
2x2)x2 + α7x

2 + α8x
3
)2

=
(

α4

(

(y2x)x
)

x+

4α5

((

(y2x)x
)

x
)

x+α7x
2+α8x

3)2, implies that 1
4β

2(y2x2)x2 = 0 and so β = 0.

Therefore dimension of A ≥ 11, which is a contradiction. �X

Lemma 2. If (y2x2)x2 = 0 for all x, y ∈ A, then the following identities are
valid in A:

x2
(

(xz)(yu)
)

+ (xz)
(

(yu)x2
)

= 0, (yx)3 = 0 (9)
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((

(xy)2(uv)2
)

x2
)

(uv)2 = 0,
((

(xy)2(uv)2
)

(uv)
)

(xy)2 = 0 (10)
((

(xy)(uv)
)

(xy)
)

(uv)2 = 0,
((

(xy)(uv)
)

(uv)
)

(xy)2 = 0 (11)
((

(xy)(uv)2
)

(xy)
)

(uv)2 = 0,
((

(xy)(uv)2
)

(uv)
)

(xy)2 = 0.

Proof. Linearizing the identity (y2x2)x2 = 0 we obtain that x2
(

(xz)(yu)
)

+

(xz)
(

(yu)x2
)

= 0. Substituting z by y, u by y and using (1), we obtain (yx)3 =
0. So we obtain (9).

Replacing x by (uv)2, y by (xy)2, z by x2 in (5) and using (1) and (2)
we get the next expressions

((

(xy)2(uv)2
)

x2
)

(uv)2 = −
(

x2(uv)2(xy)2
)

(uv)2 =
1
2

(

x2(uv)2
)

(x2y2)(uv)2 = 0.

Replacing x by (xy)2, y by (uv)2, z by uv in (5) and using (1) we get
that

((

(xy)2(uv)2
)

(uv)
)

(xy)2 = −
((

(xy)2(uv)
)

(uv)2
)

(xy)2 = 0. Therefore, we
get (10).

Replacing x by uv, z by xy, u by x in (9) and using (2) and (9), we get
that

((

(xy)(uv)
)

(xy)
)

(uv)2 = −
(

(xy)(uv)
)(

(xy)(uv)2
)

= 1
2 (xy)

2(uv)3 = 0.

Similarly, we prove that
((

(xy)(uv)
)

(uv)
)

(xy)2 = 0.

Replacing x by (uv)2, y by xy and z by xy in (5), we get the next expression
((

(xy)(uv)2
)

(xy)
)

(uv)2 = 0.

Replacing x by xy, z by (uv)2, y by v in (9) and using (3), (1) and (9), we ob-
tain the next expression

((

(xy)(uv)2
)

(uv)
)

(xy)2 = −
(

(xy)(uv)2
)(

(uv)(xy)2
)

=
(

(xy)(uv)
)(

(xy)2(uv)2
)

= −2
(

(xy)(uv)
)(

(xy)(uv)
)2

= −2
(

(xy)(uv)
)3

= 0. So,

we prove (11). �X

Lemma 3. If the identity (y2x2)x2 = 0 is valid in A and
(

(A2)2
)2

6= 0, then
there exist elements y, x, u, v ∈ A such that x2, y2, xy, (xy)2, u2, v2, uv, (uv)2,
(xy)2(uv)2 are linearly independent. Therefore, A is of dimension ≥ 9.

Proof. Since
(

(A2)2
)2

6= 0, then there exist elements y, x, u, v ∈ A such that

(x2y2)(u2v2) 6= 0. From (1), (x2y2)(u2v2) = 4(xy)2(uv)2 = −8
(

(xy)(uv)
)2

6= 0.

We will prove first that x2, y2, xy, (xy)2, u2, v2, uv, (uv)2 are linearly inde-
pendent. Let αx2 + βy2 + γxy + δ(xy)2 + α0u

2 + β0v
2 + γ0uv + δ0(uv)

2 = 0.
Multiplying by y2, afterwards by u2v2 = −2(uv)2 and using (1), (2) we obtain
α(x2y2)(u2v2) = 0, which implies α = 0. Similarly, we get β = α0 = β0 = 0.

Now we have γxy+ δ(xy)2 = −(γ0uv+ δ0(uv)
2). Using (9),

(

γxy+ δ(xy)2
)2

=
(

−
(

γ0uv+δ0(uv)
2
))2

implies γ2(xy)2 = γ2
0(uv)

2. Since (xy)2, (uv)2 are linearly
independent, then γ = γ0 = 0. Now δ(xy)2 = −δ0(uv)

2 implies δ = δ0 = 0. We
conclude that x2, y2, xy, (xy)2, u2, v2, uv, (uv)2 are linearly independent.
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Now we will prove that x2, y2, xy, (xy)2, u2, v2, uv, (uv)2, (xy)2(uv)2 are lin-
early independent.

Suppose that (xy)2(uv)2 = αx2+βy2+γxy+δ(xy)2+α0u
2+β0v

2+γ0uv+
δ0(uv)

2. Multiplying by x2, afterwards by (uv)2 = − 1
2u

2v2 and using (10), we
obtain β(x2y2)(uv)2 = −2β(xy)2(uv)2 = 0 and hence β = 0. Using the same
argument and the Identities (10), it is possible to demonstrate that α = α0 =
β0 = 0.

Now we have that (xy)2(uv)2 = γxy+ δ(xy)2+γ0uv+ δ0(uv)
2. Multiplying

by xy, afterwards by (uv)2 and using (10), we get γ(xy)2(uv)2 = 0. Therefore
γ = 0. Similarly we prove that γ0 = 0.

Now (xy)2(uv)2 = δ(xy)2+δ0(uv)
2. Multiplying by (uv)2 (also by (xy)2), we

obtain that δ = δ0 = 0, which is a contradiction. This completes the proof. �X

Lemma 4. If the identity (y2x2)x2 = 0 is valid in A and
(

(A2)2
)2

6= 0, then
there exist elements y, x, u, v in A such that x2, y2, xy, (xy)2, u2, v2, uv, (uv)2,
(xy)2(uv)2, (xy)(uv) are linearly independent or x2, y2, xy, (xy)2, u2, v2, uv,
(uv)2, (xy)2(uv)2, (xy)(uv)2 are linearly independent. Therefore A is of dimen-
sion ≥ 10.

Proof. By Lemma 3, we know that there exist x, y, u, v in A such that the
subspace U of A generated by x2, y2, xy, (xy)2, u2, v2, uv, (uv)2, (xy)2(uv)2 has
dimension 9.

We will prove that (xy)(uv) /∈ U or (xy)(uv)2 /∈ U. Suppose that (xy)(uv)
and (xy)(uv)2 are elements in U. Then

(a) (xy)(uv) = α1x
2 + α2y

2 + α3xy + β1u
2 + β2v

2 + β3uv + z where z =
α4(xy)

2 + β4(uv)
2 + λ1(xy)

2(uv)2, and

(b) (xy)(uv)2 = γ1x
2+ γ2y

2+ γ3xy+ δ1u
2+ δ2v

2+ δ3uv+ γ4(xy)
2 + δ4(uv)

2 +
λ2(xy)

2(uv)2.

Multiplying (a) by xy and afterwards by (uv)2 = − 1
2u

2v2 and using (1), (2),
(9) and (10), we obtain that α3(xy)

2(uv)2 = 0 and therefore α3 = 0. Similarly,
multiplying (a) by uv and afterwards by (xy)2 = − 1

2x
2y2, we obtain β3 = 0.

Now in (a) we have (xy)(uv) − z = α1x
2 + α2y

2 + β1u
2 + β2v

2 and hence
(

(xy)(uv) − z
)2

= (α1x
2 + α2y

2 + β1u
2 + β2v

2)2. Thus 2α4β4(xy)
2(uv)2 +

(

(xy)(uv)
)2

= 2α1α2x
2y2+2α1β1x

2u2+2α1β2x
2v2+2α2β1y

2u2+2α2β2y
2v2+

2β1β2u
2v2, which implies (multiplying by (uv)2 = − 1

2u
2v2, multiplying by

(xy)2) that α1α2 = 0 and β1β2 = 0. Therefore in (a) we may have the possi-
bilities following:

(i) (xy)(uv) = α1x
2 + β1u

2 + α4(xy)
2 + β4(uv)

2 + λ1(xy)
2(uv)2,
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(ii) (xy)(uv) = α1x
2 + β2v

2 + α4(xy)
2 + β4(uv)

2 + λ1(xy)
2(uv)2,

(iii) (xy)(uv) = α2y
2 + β1u

2 + α4(xy)
2 + β4(uv)

2 + λ1(xy)
2(uv)2,

(iv) (xy)(uv) = α2y
2 + β2v

2 + α4(xy)
2 + β4(uv)

2 + λ1(xy)
2(uv)2.

We will prove that actually α1β1 6= 0 in (i). If we suppose that α1 = 0,
then (xy)(uv) − α4(xy)

2 − λ1(xy)
2(uv)2 = β1u

2 + β4(uv)
2. Now

(

(xy)(uv) −

α4(xy)
2 − λ1(xy)

2(uv)2
)2

=
(

β1u
2 + β4(uv)

2
)2

implies that
(

(xy)(uv)
)2

= 0,
which is a contradiction. Similarly, we obtain that α1β2 6= 0 in (ii), α2β1 6= 0
in (iii) and α2β2 6= 0 in (iv).

Multiplying (b) by xy and afterwards by (uv)2 = − 1
2u

2v2 and using (11)
and (10) we obtain that γ3(xy)

2(uv)2 = 0 and therefore γ3 = 0. Similarly,
multiplying (b) by uv and afterwards by (xy)2 = − 1

2x
2y2, we obtain that

δ3 = 0.

Multiplying (b) by v2 and afterwards by (xy)2 = − 1
2x

2y2, we obtain
that

((

(xy)(uv)2
)

v2
)

(xy)2 = δ1(u
2v2)(xy)2 = −2δ1(uv)

2(xy)2. Replacing in
(9), x by xy, z by (uv)2, y by v, u by v and using (3), we obtain that
((

(xy)(uv)2
)

v2
)

(xy)2 = −
(

(xy)(uv)2
)(

v2(xy)2
)

=
(

(xy)v2
)(

(xy)2(uv)2
)

and

hence
(

(xy)v2
)(

(xy)2(uv)2
)

= −2δ1(uv)
2(xy)2. Replacing x by (xy)v2 and y

by (xy)2(uv)2 in (7), we obtain that −32δ51 = 0 and so δ1 = 0. Similarly,
multiplying (b) by u2 and afterwards by (xy)2, we obtain δ2 = 0.

In (b), we have (xy)(uv)2 = γ1x
2+γ2y

2+γ4(xy)
2+δ4(uv)

2+λ2(xy)
2(uv)2.

Multiplying by (xy)2, we get δ4(uv)
2(xy)2 = 0 and so δ4 = 0. Therefore

(c) (xy)(uv)2 = γ1x
2 + γ2y

2 + γ4(xy)
2 + λ2(xy)

2(uv)2 with γ1γ2 = 0.

In fact,
(

(xy)(uv)2 − γ4(xy)
2 − λ2(xy)

2(uv)2
)2

=
(

γ1x
2 + γ2y

2
)2

implies
that γ1γ2x

2y2 = 0.

Suppose the case (i), that is,

(xy)(uv) = α1x
2 + β1u

2 + α4(xy)
2 + β4(uv)

2 + λ1(xy)
2(uv)2

with α1β1 6= 0. Multiplying (i) by y2 and afterwards by (uv)2, we obtain
that

((

(xy)(uv)
)

y2
)

(uv)2 = α1(x
2y2)(uv)2 = −2α1(xy)

2(uv)2. But,
((

(xy)(uv)
)

y2
)

(uv)2 = −
(

(xy)(uv)
)(

y2(uv)2
)

=
(

(xy)(uv)2
)(

(uv)y2
)

and there-

fore
(

(xy)(uv)2
)(

(uv)y2
)

= −2α1(xy)
2(uv)2.

Multiplying (c) by (uv)y2, we get that
(

(xy)(uv)2
)(

(uv)y2
)

= γ1x
2
(

(uv)y2
)

+

λ2

(

(xy)2(uv)2
)(

(uv)y2
)

and therefore γ1x
2
(

(uv)y2
)

+λ2

(

(xy)2(uv)2
)(

(uv)y2
)

=
−2α1(xy)

2(uv)2. If we suppose that γ1 = 0, then as α1 6= 0, we get that λ2 6= 0
and so

(

(xy)2(uv)2
)(

(uv)y2
)

= −2α1λ
−1
2 (xy)2(uv)2. Replacing x by (uv)y2

and y by (uv)2(xy)2 in (7), we obtain that (−2α1λ
−1
2 )5 = 0, which is a contra-

diction. Therefore γ1 6= 0 and so γ2 = 0. Now we have in (c),

(xy)(uv)2 = γ1x
2 + γ4(xy)

2 + λ2(xy)
2(uv)2.
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So we obtain γ1(xy)(uv) − α1(xy)(uv)
2 = γ1β1u

2 + (γ1α4 − α1γ4)(xy)
2 +

γ1β4(uv)
2 + (γ1λ1 − α1λ2)(xy)

2(uv)2. Since
(

γ1(xy)(uv) − α1(xy)(uv)
2 −

(γ1α4−α1γ4)(xy)
2−(γ1λ1−α1λ2)(xy)

2(uv)2
)2

=
(

γ1β1u
2+γ1β4(uv)

2
)2

, then

γ2
1

(

(xy)(uv)
)2

= − 1
2γ

2
1(xy)

2(uv)2 = 0, a contradiction.

Considering the same argument, it is possible to obtain contradictions in
the cases (ii), (iii) and (iv). �X

Corollary 1. If A is of dimension ≤ 9, then
(

(A2)2
)2

= 0. That is, A is
solvable.

Theorem 3. If A is of dimension ≤ 10, then
(

(A2)2
)2

= 0. That is, A is
solvable.

Proof. Theorem 2, implies that (y2x2)x2 = 0 is an identity in A. Suppose

that
(

(A2)2
)2

6= 0. By Lemma (4), there exist elements y, x, u, v in A and w ∈

{(xy)(uv), (xy)(uv)2} such that
{

x2, y2, (xy), (xy)2, u2, v2, uv, (uv)2, (xy)2(uv)2,

w
}

is a basis of A. This implies that A2 = A.

Since A2 = A, then using the identities (1), (2), (9) and the Theorem (2),
we obtain that A is generated also by the elements (xy)2, (xu)2, (xv)2, x2(uv),
x2(uv)2, x2

(

(xy)2(uv)2
)

, x2w, (yu)2, (yv)2, y2(uv), y2(uv)2, y2
(

(xy)2(uv)2
)

,

y2w, (xy)u2, (xy)v2, (xy)(uv), (xy)(uv)2, (xy)
(

(xy)2(uv)2
)

, (xy)w, (xy)2u2,

(xy)2v2, (xy)2(uv), (xy)2(uv)2, (uv)2, u2
(

(xy)2(uv)2
)

, u2w, v2
(

(xy)2(uv)2
)

,

v2w, (uv)
(

(xy)2(uv)2
)

, (uv)w.

Now using the identities of Lemma 2, we obtain that (xy)2A is generated
by (xy)2(uv)2, (xy)2(u2w), (xy)2(v2w) and (uv)2A is generated by (xy)2(uv)2,
(uv)2(x2w), (uv)2(y2w).

We will prove that
(

(xy)2A
)(

(uv)2A
)

= 0.

If w = (xy)(uv), then w2 = − 1
2 (xy)

2(uv)2 and
(

(xy)2(u2w)
)(

(uv)2(x2w)
)

=

−
(

(xy)2(uv)2
)(

(u2w)(x2w)
)

= −w2
(

(u2x2)w2
)

= 0. In a similar way we prove
that the other products are zero.

Now, if w = (xy)(uv)2, then w2 = 0 and hence
(

(xy)2(u2w)
)(

(uv)2(x2w)
)

=

−
(

(xy)2(uv)2
)(

(u2w)(x2w)
)

= 1
2

(

(xy)2(uv)2
)(

(u2x2)w2
)

= 0. In a similar way
we prove that the other products are zero.

We will prove that
(

(xy)2(uv)2
)

A = 0. Observe that it is sufficient to prove

that
(

(xy)2(uv)2
)

(z1z2) = 0 for all z1, z2 ∈ A. Now
(

(xy)2(uv)2
)(

z1z2
)

=

−
(

(xy)2z1
)(

(uv)2z2
)

−
(

(xy)2z2
)(

(uv)2z1
)

= 0. Therefore J = 〈(xy)2(uv)2〉

is an ideal of A. Now A = A/J is a commutative power-associative in which
x4 = 0 for all x in A. Corollary 1 and dim

(

A
)

= 9 imply that A is solvable.

Thus dim
(

A
2
)

< 9. Finally we conclude that A
2
= A2/J = A/J = A, which

is a contradiction. Therefore
(

(A2)2
)2

= 0, as desired. �X
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