# On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4 

# Sobre la solubilidad de nilágebras conmutativas de potencias asociativas de nilíndice 4 

Luisa Elgueta ${ }^{\text {a }}$, Avelino Suazo

Universidad de La Serena, La Serena, Chile


#### Abstract

Let $A$ be a commutative power-associative nilalgebra. In this paper we prove that when $A$ (of characteristic $\neq 2$ ) is of dimension $\leq 10$ and the identity $x^{4}=0$ is valid in $A$, then $\left(\left(y^{2}\right) x^{2}\right) x^{2}=0$ for all $y, x$ in $A$ and $\left(\left(A^{2}\right)^{2}\right)^{2}=0$. That is, $A$ is solvable.

Key words and phrases. Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent.


2000 Mathematics Subject Classification. 17A05, 17A30.
Resumen. Sea $A$ una nilágebra conmutativa de potencias asociativas. En este trabajo demostramos que cuando $A$ (de característica $\neq 2$ ) es de dimensión $\leq 10$ y la identidad $x^{4}=0$ es válida en $A$, entonces $\left(\left(y^{2}\right) x^{2}\right) x^{2}=0$ para todo $y, x$ en $A$ y $\left(\left(A^{2}\right)^{2}\right)^{2}=0$. Es decir, $A$ es soluble.

Palabras y frases clave. Conmutativa, potencias asociativas, nilálgebra, soluble, nilpotente.

## 1. Preliminaries

In this section $A$ is a commutative algebra over a field $K$. If $x$ is an element of $A$, we define $x^{1}=x$ and $x^{k+1}=x^{k} x$ for all $k \geq 1 A$ is called power-associative, if the subalgebra of $A$ generated by any element $x \in A$ is associative. An element $x \in A$ is called nilpotent, if there is an integer $r \geq 1$ such that $x^{r}=0$. If

[^0]any element in $A$ is nilpotent, then $A$ is called a nilalgebra. Now $A$ is called a nilalgebra of nilindex $n \geq 2$, if $y^{n}=0$ for all $y \in A$ and there is $x \in A$ such that $x^{n-1} \neq 0$.

If $B, D$ are subspaces of $A$, then $B D$ is the subspace of $A$ spanned by all products $b d$ with $b \in B, d \in D$. Also we define $B^{1}=B$ and $B^{k+1}=B^{k} B$ for all $k \geq 1$. If there exists an integer $n \geq 2$ such that $B^{n}=0$ and $B^{n-1} \neq 0$, then $B$ is nilpotent of index $n$.
$A$ is called solvable in case $A^{(k)}=0$ for some integer $k$, where $A^{(1)}=A$ and $A^{(n+1)}=\left(A^{(n)}\right)^{2}$ for all $n \geq 1$.
$A$ is a Jordan algebra, if it satisfies the Jordan identity $x^{2}(y x)=\left(x^{2} y\right) x$ for all $x, y \in A$. It is known that any Jordan algebra (of characteristic $\neq 2$ ) is power-associative and also that any finite-dimensional Jordan nilalgebra is nilpotent (see [9]).

If the identity $x^{3}=0$ is valid in $A$, then $A$ is a Jordan algebra (see [11, p. 114]). Therefore, if $A$ is a finite dimensional, then $A$ is nilpotente and hence solvable.

We will denote by $\left\langle a_{1}, \ldots, a_{j}\right\rangle$ the subspace of $A$ generated over $K$ by the elements $a_{1}, \ldots, a_{j} \in A$. In the following a greek letter indicates an element of the field $K$.

The problem of nilpotence in a commutative power-associative nilalgebra is known as Albert's problem [1]: Is every commutative finite dimensional powerassociative nilalgebra nilpotent?

In [10], D. Suttles constructs (as a counterexample to a conjecture due to A. A. Albert) a commutative power-associative nilalgebra of nilindex 4 and dimension 5, which is solvable and is not nilpotent. In [4] (Theorem 3.3), we prove that this algebra is the unique commutative power-associative nilalgebra of nilindex 4 and dimension 5 , which is not Jordan algebra.

At present there exists the following conjecture: Any commutative finite dimensional power-associative nilalgebra is solvable. The solvability of these algebras for dimension 4, 5 and 6 , are proved in [8], [4] and [2] respectively.

Let $A$ be a commutative power-associative nilalgebra. In [6], is proved that when $A$ is of nilindex $n$ and dimension $\leq n+2$, then $A$ is solvable. In [5], we prove that if $A$ is of nilindex 4 and dimension $\leq 8$, then $A$ is solvable. In [7], is proved that if $A$ is of nilindex 5 and dimension 8 , then $A$ is solvable. Therefore, if $A$ is of dimension $\leq 8$, then $A$ is solvable.

We will use the following results which we demonstrated in [5]:
Theorem 1. Let $A$ be a commutative power-associative nilalgebra (of characteristic $\neq 2,3$ ) such that $x^{4}=0$ for all $x$ in $A$.
a) If exist elements $y, x \in A$ such that $\left(y x^{2}\right) x^{2} \neq 0$, then $y, y x,(y x) x,((y x) x) x$, $\left(y x^{2}\right) x^{2}, x, x^{2}, x^{3}, y x^{2}$ are linearly independent.
b) If $A$ is of dimension $\leq 8$, then $\left(\left(A^{2}\right)^{2}\right)^{2}=0$. That is, $A$ is solvable.

## 2. Solvability

In this section, $A$ is a commutative power-associative algebra over a field $K$ with characteristic $\neq 2,3$ such that the identity $x^{4}=0$ is valid in $A$. Linearizing the identities $\left(x^{2}\right)^{2}=0$ and $x^{4}=0$, we obtain that for all $y, x, z, v \in A$ :

$$
\begin{gather*}
(y x) x^{2}=0, \quad 2(x y)^{2}+x^{2} y^{2}=0  \tag{1}\\
(y z) x^{2}+2(y x)(z x)=0, \quad\left(y x^{2}\right)\left(v x^{2}\right)=0  \tag{2}\\
(x y)(z v)+(x z)(y v)+(x v)(y z)=0  \tag{3}\\
2((y x) x) x+\left(y x^{2}\right) x+y x^{3}=0  \tag{4}\\
2((y x) x) z+2((z x) x) y+2((y z) x) x+\left(y x^{2}\right) z+ \\
\left(z x^{2}\right) y+2((y x) z) x+2((z x) y) x=0 \tag{5}
\end{gather*}
$$

It is known that the following identities are valid in $A$ :

$$
\begin{align*}
4(((y x) x) x) x=\left(y x^{2}\right) x^{2} & =-2(y x) x^{3}  \tag{6}\\
((((y x) x) x) x) x & =0  \tag{7}\\
\left(\left(\cdots\left(y x^{m_{t}}\right) \cdots\right) x^{m_{2}}\right) x^{m_{1}} & =0 \tag{8}
\end{align*}
$$

where $m_{1}, \ldots, m_{t}$ are positive integers such that $m_{1}+\cdots+m_{t} \geq 5$. This last identity is proved in [3].
Lemma 1. If there exist elements $y, x \in A$ such that $\left(y^{3} x^{2}\right) x^{2} \neq 0$, then $A$ is of dimension $\geq 11$.

Proof. We consider the subspace $U$ of $A$ generated by $y^{3}, y^{3} x,\left(y^{3} x\right) x,\left(\left(y^{3} x\right) x\right) x$, $\left(y^{3} x^{2}\right) x^{2}, x, x^{2}, x^{3}, y^{3} x^{2}$. By Theorem 1(a), $U$ is a subspace of dimension 9 .

Using (8) and (6) we get that $(U x) x$ is generated by $\left(y^{3} x\right) x,\left(\left(y^{3} x\right) x\right) x$, $\left(y^{3} x^{2}\right) x^{2}, x^{3},\left(\left(y^{3} x^{2}\right) x\right) x$.

We observe that using (2), (1) and (8) we get

$$
\begin{aligned}
((y x) x)\left(\left(y^{2} x\right) x\right)=-\frac{1}{2}\left((y x)\left(y^{2} x\right)\right) x^{2} & =\frac{1}{4}\left(y^{3} x^{2}\right) x^{2}, \\
(((y x) x) x)\left(\left(y^{2} x\right) x\right)=\frac{1}{4}\left(\left((y x) y^{2}\right) x^{2}\right) x^{2} & =0, \\
\left(\left(y^{3} x\right) x\right)\left(\left(y^{2} x\right) x\right)=\frac{1}{4}\left(y^{5} x^{2}\right) x^{2} & =0, \\
\left(\left(\left(y^{3} x\right) x\right) x\right)\left(\left(y^{2} x\right) x\right)=\frac{1}{4}\left(\left(\left(y^{3} x\right) y^{2}\right) x^{2}\right) x^{2} & =0, \\
\left(\left(y x^{2}\right) x^{2}\right) x^{3} & =0 \quad \text { and } \\
\left(\left(\left(y^{3} x^{2}\right) x\right) x\right)\left(\left(y^{2} x\right) x\right)=\frac{1}{4}\left(\left(\left(y^{3} x^{2}\right) y^{2}\right) x^{2}\right) x^{2} & =0 .
\end{aligned}
$$

Using the previous relations, we obtain that $((U x) x)\left(\left(y^{2} x\right) x\right)$ is generated by $\left(\left(y^{3} x^{2}\right) x^{2}\right)\left(\left(y^{2} x\right) x\right)$.

Let $\alpha y+\beta y x \in U$. We will prove that $\alpha=\beta=0$.
For this we see that $(((\alpha y+\beta y x) x) x)\left(\left(y^{2} x\right) x\right) \in((U x) x)\left(\left(y^{2} x\right) x\right)$ and hence $\alpha((y x) x)\left(\left(y^{2} x\right) x\right)+\beta(((y x) x) x)\left(\left(y^{2} x\right) x\right)=\gamma\left(\left(y^{3} x^{2}\right) x^{2}\right)\left(\left(y^{2} x\right) x\right)$. Therefore $\frac{1}{4} \alpha\left(y^{3} x^{2}\right) x^{2}=\gamma\left(\left(y^{3} x^{2}\right) x^{2}\right)\left(\left(y^{2} x\right) x\right)$. If we suppose that $\alpha \neq 0$, then $\gamma \neq 0$ and so we obtain that $u v=\frac{1}{4} \alpha \gamma^{-1} u$ where $u=\left(y^{3} x^{2}\right) x^{2}$ and $v=\left(y^{2} x\right) x$. Using (7), we get that $\left(\frac{1}{4} \alpha \gamma^{-1}\right)^{5} u=0$, which is a contradiction. Therefore $\alpha=0$.

We have now that $\beta y x \in U$ and hence $\beta y x=\alpha_{1} y^{3}+\alpha_{2} y^{3} x+\alpha_{3}\left(y^{3} x\right) x+$ $\alpha_{4}\left(\left(y^{3} x\right) x\right) x+\alpha_{5}\left(y^{3} x^{2}\right) x^{2}+\alpha_{6} x+\alpha_{7} x^{2}+\alpha_{8} x^{3}+\alpha_{9} y^{3} x^{2}$. Multiplying by $x^{2}$ and using (1) we obtain $\alpha_{1} y^{3} x^{2}+\alpha_{6} x^{3}+\alpha_{9}\left(y^{3} x^{2}\right) x^{2}=0$, which implies that $\alpha_{1}=$ $\alpha_{6}=\alpha_{9}=0$. Therefore $\beta y x=\alpha_{2} y^{3} x+\alpha_{3}\left(y^{3} x\right) x+\alpha_{4}\left(\left(y^{3} x\right) x\right) x+\alpha_{5}\left(y^{3} x^{2}\right) x^{2}+$ $\alpha_{7} x^{2}+\alpha_{8} x^{3}$ and so $\beta(y x) x=\alpha_{2}\left(y^{3} x\right) x+\alpha_{3}\left(\left(y^{3} x\right) x\right) x+\frac{1}{4} \alpha_{4}\left(y^{3} x^{2}\right) x^{2}+\alpha_{7} x^{3}$. Multiplying by $\left(y^{2} x\right) x$, we get that $\frac{1}{4} \beta\left(y^{3} x^{2}\right) x^{2}=\frac{1}{4} \alpha_{4}\left(\left(y^{3} x^{2}\right) x^{2}\right)\left(\left(y^{2} x\right) x\right)$. Using the same argument earlier we conclude that $\beta=0$ and therefore $\operatorname{dim}_{K}(A) \geq 11$.
Theorem 2. If $A$ is of dimension $\leq 10$, then $\left(y^{2} x^{2}\right) x^{2}=0$ is an identity in $A$.
Proof. Suppose that there exist $y, x \in A$ such that $\left(y^{2} x^{2}\right) x^{2} \neq 0$. By Lemma 1 we can suppose that $\left(y^{3} x^{2}\right) x^{2}=0$ and Theorem 1(a) implies that $y^{2}, y^{2} x,\left(y^{2} x\right) x$, $\left(\left(y^{2} x\right) x\right) x,\left(y^{2} x^{2}\right) x^{2}, x, x^{2}, x^{3}, y^{2} x^{2}$ are linearly independent.

Let $\alpha y x+\beta(y x) x=\alpha_{1} y^{2}+\alpha_{2} y^{2} x+\alpha_{3}\left(y^{2} x\right) x+\alpha_{4}\left(\left(y^{2} x\right) x\right) x+\alpha_{5}\left(y^{2} x^{2}\right) x^{2}+$ $\alpha_{6} x+\alpha_{7} x^{2}+\alpha_{8} x^{3}+\alpha_{9} y^{2} x^{2}$. Multiplying by $x^{2}$ we obtain $\alpha_{1} y^{2} x^{2}+\alpha_{6} x^{3}+$ $\alpha_{9}\left(y^{2} x^{2}\right) x^{2}=0$, which implies $\alpha_{1}=\alpha_{6}=\alpha_{9}=0$.

Now we have $\alpha y x+\beta(y x) x=\alpha_{2} y^{2} x+\alpha_{3}\left(y^{2} x\right) x+\alpha_{4}\left(\left(y^{2} x\right) x\right) x+\alpha_{5}\left(y^{2} x^{2}\right) x^{2}+$ $\alpha_{7} x^{2}+\alpha_{8} x^{3}$. Multiplying by $x$ we get $\alpha(y x) x+\beta((y x) x) x=\alpha_{2}\left(y^{2} x\right) x+$ $\alpha_{3}\left(\left(y^{2} x\right) x\right) x+\alpha_{4}\left(\left(\left(y^{2} x\right) x\right) x\right) x+\alpha_{7} x^{3}$ and therefore $\left(\alpha(y x) x-\alpha_{2}\left(y^{2} x\right) x\right)^{2}=$ $\left(-\beta((y x) x) x+\alpha_{3}\left(\left(y^{2} x\right) x\right) x+\alpha_{4}\left(\left(\left(y^{2} x\right) x\right) x\right) x+\alpha_{7} x^{3}\right)^{2}$. Using the identities (1), (2) and (8), we obtain $\frac{1}{4} \alpha^{2}\left(y^{2} x^{2}\right) x^{2}-\frac{1}{2} \alpha \alpha_{2}\left(y^{3} x^{2}\right) x^{2}=0$. Since $\left(y^{3} x^{2}\right) x^{2}=0$, then $\alpha=0$.

Now $\beta(y x) x=\alpha_{2} y^{2} x+\alpha_{3}\left(y^{2} x\right) x+\alpha_{4}\left(\left(y^{2} x\right) x\right) x+\alpha_{5}\left(y^{2} x^{2}\right) x^{2}+\alpha_{7} x^{2}+$ $\alpha_{8} x^{3}$. Multiplying three times by $x$ we obtain that $\alpha_{2}=0$. Now $(\beta(y x) x-$ $\left.\alpha_{3}\left(y^{2} x\right) x\right)^{2}=\left(\alpha_{4}\left(\left(y^{2} x\right) x\right) x+\alpha_{5}\left(y^{2} x^{2}\right) x^{2}+\alpha_{7} x^{2}+\alpha_{8} x^{3}\right)^{2}=\left(\alpha_{4}\left(\left(y^{2} x\right) x\right) x+\right.$ $\left.4 \alpha_{5}\left(\left(\left(y^{2} x\right) x\right) x\right) x+\alpha_{7} x^{2}+\alpha_{8} x^{3}\right)^{2}$, implies that $\frac{1}{4} \beta^{2}\left(y^{2} x^{2}\right) x^{2}=0$ and so $\beta=0$. Therefore dimension of $A \geq 11$, which is a contradiction.

Lemma 2. If $\left(y^{2} x^{2}\right) x^{2}=0$ for all $x, y \in A$, then the following identities are valid in $A$ :

$$
\begin{equation*}
x^{2}((x z)(y u))+(x z)\left((y u) x^{2}\right)=0, \quad(y x)^{3}=0 \tag{9}
\end{equation*}
$$

$$
\begin{array}{cc}
\left(\left((x y)^{2}(u v)^{2}\right) x^{2}\right)(u v)^{2}=0, & \left(\left((x y)^{2}(u v)^{2}\right)(u v)\right)(x y)^{2}=0 \\
(((x y)(u v))(x y))(u v)^{2}=0, & (((x y)(u v))(u v))(x y)^{2}=0  \tag{11}\\
\left(\left((x y)(u v)^{2}\right)(x y)\right)(u v)^{2}=0, & \left(\left((x y)(u v)^{2}\right)(u v)\right)(x y)^{2}=0 .
\end{array}
$$

Proof. Linearizing the identity $\left(y^{2} x^{2}\right) x^{2}=0$ we obtain that $x^{2}((x z)(y u))+$ $(x z)\left((y u) x^{2}\right)=0$. Substituting $z$ by $y, u$ by $y$ and using (1), we obtain $(y x)^{3}=$ 0 . So we obtain (9).

Replacing $x$ by $(u v)^{2}, y$ by $(x y)^{2}, z$ by $x^{2}$ in (5) and using (1) and (2) we get the next expressions $\left(\left((x y)^{2}(u v)^{2}\right) x^{2}\right)(u v)^{2}=-\left(x^{2}(u v)^{2}(x y)^{2}\right)(u v)^{2}=$ $\frac{1}{2}\left(x^{2}(u v)^{2}\right)\left(x^{2} y^{2}\right)(u v)^{2}=0$.

Replacing $x$ by $(x y)^{2}, y$ by $(u v)^{2}, z$ by $u v$ in (5) and using (1) we get that $\left(\left((x y)^{2}(u v)^{2}\right)(u v)\right)(x y)^{2}=-\left(\left((x y)^{2}(u v)\right)(u v)^{2}\right)(x y)^{2}=0$. Therefore, we get (10).

Replacing $x$ by $u v, z$ by $x y, u$ by $x$ in (9) and using (2) and (9), we get that $(((x y)(u v))(x y))(u v)^{2}=-((x y)(u v))\left((x y)(u v)^{2}\right)=\frac{1}{2}(x y)^{2}(u v)^{3}=0$. Similarly, we prove that $(((x y)(u v))(u v))(x y)^{2}=0$.

Replacing $x$ by $(u v)^{2}, y$ by $x y$ and $z$ by $x y$ in (5), we get the next expression $\left(\left((x y)(u v)^{2}\right)(x y)\right)(u v)^{2}=0$.

Replacing $x$ by $x y, z$ by $(u v)^{2}, y$ by $v$ in (9) and using (3), (1) and (9), we obtain the next expression $\left(\left((x y)(u v)^{2}\right)(u v)\right)(x y)^{2}=-\left((x y)(u v)^{2}\right)\left((u v)(x y)^{2}\right)=$ $((x y)(u v))\left((x y)^{2}(u v)^{2}\right)=-2((x y)(u v))((x y)(u v))^{2}=-2((x y)(u v))^{3}=0$. So, we prove (11).

Lemma 3. If the identity $\left(y^{2} x^{2}\right) x^{2}=0$ is valid in $A$ and $\left(\left(A^{2}\right)^{2}\right)^{2} \neq 0$, then there exist elements $y, x, u, v \in A$ such that $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2}$, $(x y)^{2}(u v)^{2}$ are linearly independent. Therefore, $A$ is of dimension $\geq 9$.

Proof. Since $\left(\left(A^{2}\right)^{2}\right)^{2} \neq 0$, then there exist elements $y, x, u, v \in A$ such that $\left(x^{2} y^{2}\right)\left(u^{2} v^{2}\right) \neq 0$. From $(1),\left(x^{2} y^{2}\right)\left(u^{2} v^{2}\right)=4(x y)^{2}(u v)^{2}=-8((x y)(u v))^{2} \neq 0$.

We will prove first that $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2}$ are linearly independent. Let $\alpha x^{2}+\beta y^{2}+\gamma x y+\delta(x y)^{2}+\alpha_{0} u^{2}+\beta_{0} v^{2}+\gamma_{0} u v+\delta_{0}(u v)^{2}=0$. Multiplying by $y^{2}$, afterwards by $u^{2} v^{2}=-2(u v)^{2}$ and using (1), (2) we obtain $\alpha\left(x^{2} y^{2}\right)\left(u^{2} v^{2}\right)=0$, which implies $\alpha=0$. Similarly, we get $\beta=\alpha_{0}=\beta_{0}=0$. Now we have $\gamma x y+\delta(x y)^{2}=-\left(\gamma_{0} u v+\delta_{0}(u v)^{2}\right)$. Using $(9),\left(\gamma x y+\delta(x y)^{2}\right)^{2}=$ $\left(-\left(\gamma_{0} u v+\delta_{0}(u v)^{2}\right)\right)^{2}$ implies $\gamma^{2}(x y)^{2}=\gamma_{0}^{2}(u v)^{2}$. Since $(x y)^{2},(u v)^{2}$ are linearly independent, then $\gamma=\gamma_{0}=0$. Now $\delta(x y)^{2}=-\delta_{0}(u v)^{2}$ implies $\delta=\delta_{0}=0$. We conclude that $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2}$ are linearly independent.

Now we will prove that $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2},(x y)^{2}(u v)^{2}$ are linearly independent.

Suppose that $(x y)^{2}(u v)^{2}=\alpha x^{2}+\beta y^{2}+\gamma x y+\delta(x y)^{2}+\alpha_{0} u^{2}+\beta_{0} v^{2}+\gamma_{0} u v+$ $\delta_{0}(u v)^{2}$. Multiplying by $x^{2}$, afterwards by $(u v)^{2}=-\frac{1}{2} u^{2} v^{2}$ and using (10), we obtain $\beta\left(x^{2} y^{2}\right)(u v)^{2}=-2 \beta(x y)^{2}(u v)^{2}=0$ and hence $\beta=0$. Using the same argument and the Identities (10), it is possible to demonstrate that $\alpha=\alpha_{0}=$ $\beta_{0}=0$.

Now we have that $(x y)^{2}(u v)^{2}=\gamma x y+\delta(x y)^{2}+\gamma_{0} u v+\delta_{0}(u v)^{2}$. Multiplying by $x y$, afterwards by $(u v)^{2}$ and using (10), we get $\gamma(x y)^{2}(u v)^{2}=0$. Therefore $\gamma=0$. Similarly we prove that $\gamma_{0}=0$.

Now $(x y)^{2}(u v)^{2}=\delta(x y)^{2}+\delta_{0}(u v)^{2}$. Multiplying by $(u v)^{2}$ (also by $(x y)^{2}$ ), we obtain that $\delta=\delta_{0}=0$, which is a contradiction. This completes the proof.

Lemma 4. If the identity $\left(y^{2} x^{2}\right) x^{2}=0$ is valid in $A$ and $\left(\left(A^{2}\right)^{2}\right)^{2} \neq 0$, then there exist elements $y, x, u, v$ in $A$ such that $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2}$, $(x y)^{2}(u v)^{2},(x y)(u v)$ are linearly independent or $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v$, $(u v)^{2},(x y)^{2}(u v)^{2},(x y)(u v)^{2}$ are linearly independent. Therefore $A$ is of dimension $\geq 10$.

Proof. By Lemma 3, we know that there exist $x, y, u, v$ in $A$ such that the subspace $U$ of $A$ generated by $x^{2}, y^{2}, x y,(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2},(x y)^{2}(u v)^{2}$ has dimension 9.

We will prove that $(x y)(u v) \notin U$ or $(x y)(u v)^{2} \notin U$. Suppose that $(x y)(u v)$ and $(x y)(u v)^{2}$ are elements in $U$. Then
(a) $(x y)(u v)=\alpha_{1} x^{2}+\alpha_{2} y^{2}+\alpha_{3} x y+\beta_{1} u^{2}+\beta_{2} v^{2}+\beta_{3} u v+z$ where $z=$ $\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}$, and
(b) $(x y)(u v)^{2}=\gamma_{1} x^{2}+\gamma_{2} y^{2}+\gamma_{3} x y+\delta_{1} u^{2}+\delta_{2} v^{2}+\delta_{3} u v+\gamma_{4}(x y)^{2}+\delta_{4}(u v)^{2}+$ $\lambda_{2}(x y)^{2}(u v)^{2}$.

Multiplying (a) by $x y$ and afterwards by $(u v)^{2}=-\frac{1}{2} u^{2} v^{2}$ and using (1), (2), (9) and (10), we obtain that $\alpha_{3}(x y)^{2}(u v)^{2}=0$ and therefore $\alpha_{3}=0$. Similarly, multiplying (a) by $u v$ and afterwards by $(x y)^{2}=-\frac{1}{2} x^{2} y^{2}$, we obtain $\beta_{3}=0$.

Now in (a) we have $(x y)(u v)-z=\alpha_{1} x^{2}+\alpha_{2} y^{2}+\beta_{1} u^{2}+\beta_{2} v^{2}$ and hence $((x y)(u v)-z)^{2}=\left(\alpha_{1} x^{2}+\alpha_{2} y^{2}+\beta_{1} u^{2}+\beta_{2} v^{2}\right)^{2}$. Thus $2 \alpha_{4} \beta_{4}(x y)^{2}(u v)^{2}+$ $((x y)(u v))^{2}=2 \alpha_{1} \alpha_{2} x^{2} y^{2}+2 \alpha_{1} \beta_{1} x^{2} u^{2}+2 \alpha_{1} \beta_{2} x^{2} v^{2}+2 \alpha_{2} \beta_{1} y^{2} u^{2}+2 \alpha_{2} \beta_{2} y^{2} v^{2}+$ $2 \beta_{1} \beta_{2} u^{2} v^{2}$, which implies (multiplying by $(u v)^{2}=-\frac{1}{2} u^{2} v^{2}$, multiplying by $\left.(x y)^{2}\right)$ that $\alpha_{1} \alpha_{2}=0$ and $\beta_{1} \beta_{2}=0$. Therefore in (a) we may have the possibilities following:
(i) $(x y)(u v)=\alpha_{1} x^{2}+\beta_{1} u^{2}+\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}$,
(ii) $(x y)(u v)=\alpha_{1} x^{2}+\beta_{2} v^{2}+\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}$,
(iii) $(x y)(u v)=\alpha_{2} y^{2}+\beta_{1} u^{2}+\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}$,
(iv) $(x y)(u v)=\alpha_{2} y^{2}+\beta_{2} v^{2}+\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}$.

We will prove that actually $\alpha_{1} \beta_{1} \neq 0$ in (i). If we suppose that $\alpha_{1}=0$, then $(x y)(u v)-\alpha_{4}(x y)^{2}-\lambda_{1}(x y)^{2}(u v)^{2}=\beta_{1} u^{2}+\beta_{4}(u v)^{2}$. Now $((x y)(u v)-$ $\left.\alpha_{4}(x y)^{2}-\lambda_{1}(x y)^{2}(u v)^{2}\right)^{2}=\left(\beta_{1} u^{2}+\beta_{4}(u v)^{2}\right)^{2}$ implies that $((x y)(u v))^{2}=0$, which is a contradiction. Similarly, we obtain that $\alpha_{1} \beta_{2} \neq 0$ in (ii), $\alpha_{2} \beta_{1} \neq 0$ in (iii) and $\alpha_{2} \beta_{2} \neq 0$ in (iv).

Multiplying (b) by $x y$ and afterwards by $(u v)^{2}=-\frac{1}{2} u^{2} v^{2}$ and using (11) and (10) we obtain that $\gamma_{3}(x y)^{2}(u v)^{2}=0$ and therefore $\gamma_{3}=0$. Similarly, multiplying (b) by $u v$ and afterwards by $(x y)^{2}=-\frac{1}{2} x^{2} y^{2}$, we obtain that $\delta_{3}=0$.

Multiplying (b) by $v^{2}$ and afterwards by $(x y)^{2}=-\frac{1}{2} x^{2} y^{2}$, we obtain that $\left(\left((x y)(u v)^{2}\right) v^{2}\right)(x y)^{2}=\delta_{1}\left(u^{2} v^{2}\right)(x y)^{2}=-2 \delta_{1}(u v)^{2}(x y)^{2}$. Replacing in (9), $x$ by $x y, z$ by $(u v)^{2}, y$ by $v, u$ by $v$ and using (3), we obtain that $\left(\left((x y)(u v)^{2}\right) v^{2}\right)(x y)^{2}=-\left((x y)(u v)^{2}\right)\left(v^{2}(x y)^{2}\right)=\left((x y) v^{2}\right)\left((x y)^{2}(u v)^{2}\right)$ and hence $\left((x y) v^{2}\right)\left((x y)^{2}(u v)^{2}\right)=-2 \delta_{1}(u v)^{2}(x y)^{2}$. Replacing $x$ by $(x y) v^{2}$ and $y$ by $(x y)^{2}(u v)^{2}$ in (7), we obtain that $-32 \delta_{1}^{5}=0$ and so $\delta_{1}=0$. Similarly, multiplying (b) by $u^{2}$ and afterwards by $(x y)^{2}$, we obtain $\delta_{2}=0$.

In (b), we have $(x y)(u v)^{2}=\gamma_{1} x^{2}+\gamma_{2} y^{2}+\gamma_{4}(x y)^{2}+\delta_{4}(u v)^{2}+\lambda_{2}(x y)^{2}(u v)^{2}$. Multiplying by $(x y)^{2}$, we get $\delta_{4}(u v)^{2}(x y)^{2}=0$ and so $\delta_{4}=0$. Therefore
(c) $(x y)(u v)^{2}=\gamma_{1} x^{2}+\gamma_{2} y^{2}+\gamma_{4}(x y)^{2}+\lambda_{2}(x y)^{2}(u v)^{2}$ with $\gamma_{1} \gamma_{2}=0$.

In fact, $\left((x y)(u v)^{2}-\gamma_{4}(x y)^{2}-\lambda_{2}(x y)^{2}(u v)^{2}\right)^{2}=\left(\gamma_{1} x^{2}+\gamma_{2} y^{2}\right)^{2}$ implies that $\gamma_{1} \gamma_{2} x^{2} y^{2}=0$.

Suppose the case (i), that is,

$$
(x y)(u v)=\alpha_{1} x^{2}+\beta_{1} u^{2}+\alpha_{4}(x y)^{2}+\beta_{4}(u v)^{2}+\lambda_{1}(x y)^{2}(u v)^{2}
$$

with $\alpha_{1} \beta_{1} \neq 0$. Multiplying (i) by $y^{2}$ and afterwards by $(u v)^{2}$, we obtain that $\left(((x y)(u v)) y^{2}\right)(u v)^{2}=\alpha_{1}\left(x^{2} y^{2}\right)(u v)^{2}=-2 \alpha_{1}(x y)^{2}(u v)^{2}$. But, $\left(((x y)(u v)) y^{2}\right)(u v)^{2}=-((x y)(u v))\left(y^{2}(u v)^{2}\right)=\left((x y)(u v)^{2}\right)\left((u v) y^{2}\right)$ and therefore $\left((x y)(u v)^{2}\right)\left((u v) y^{2}\right)=-2 \alpha_{1}(x y)^{2}(u v)^{2}$.

Multiplying (c) by $(u v) y^{2}$, we get that $\left((x y)(u v)^{2}\right)\left((u v) y^{2}\right)=\gamma_{1} x^{2}\left((u v) y^{2}\right)+$ $\lambda_{2}\left((x y)^{2}(u v)^{2}\right)\left((u v) y^{2}\right)$ and therefore $\gamma_{1} x^{2}\left((u v) y^{2}\right)+\lambda_{2}\left((x y)^{2}(u v)^{2}\right)\left((u v) y^{2}\right)=$ $-2 \alpha_{1}(x y)^{2}(u v)^{2}$. If we suppose that $\gamma_{1}=0$, then as $\alpha_{1} \neq 0$, we get that $\lambda_{2} \neq 0$ and so $\left((x y)^{2}(u v)^{2}\right)\left((u v) y^{2}\right)=-2 \alpha_{1} \lambda_{2}^{-1}(x y)^{2}(u v)^{2}$. Replacing $x$ by $(u v) y^{2}$ and $y$ by $(u v)^{2}(x y)^{2}$ in (7), we obtain that $\left(-2 \alpha_{1} \lambda_{2}^{-1}\right)^{5}=0$, which is a contradiction. Therefore $\gamma_{1} \neq 0$ and so $\gamma_{2}=0$. Now we have in (c),

$$
(x y)(u v)^{2}=\gamma_{1} x^{2}+\gamma_{4}(x y)^{2}+\lambda_{2}(x y)^{2}(u v)^{2} .
$$

So we obtain $\gamma_{1}(x y)(u v)-\alpha_{1}(x y)(u v)^{2}=\gamma_{1} \beta_{1} u^{2}+\left(\gamma_{1} \alpha_{4}-\alpha_{1} \gamma_{4}\right)(x y)^{2}+$ $\gamma_{1} \beta_{4}(u v)^{2}+\left(\gamma_{1} \lambda_{1}-\alpha_{1} \lambda_{2}\right)(x y)^{2}(u v)^{2}$. Since $\left(\gamma_{1}(x y)(u v)-\alpha_{1}(x y)(u v)^{2}-\right.$ $\left.\left(\gamma_{1} \alpha_{4}-\alpha_{1} \gamma_{4}\right)(x y)^{2}-\left(\gamma_{1} \lambda_{1}-\alpha_{1} \lambda_{2}\right)(x y)^{2}(u v)^{2}\right)^{2}=\left(\gamma_{1} \beta_{1} u^{2}+\gamma_{1} \beta_{4}(u v)^{2}\right)^{2}$, then $\gamma_{1}^{2}((x y)(u v))^{2}=-\frac{1}{2} \gamma_{1}^{2}(x y)^{2}(u v)^{2}=0$, a contradiction.

Considering the same argument, it is possible to obtain contradictions in the cases (ii), (iii) and (iv).

Corollary 1. If $A$ is of dimension $\leq 9$, then $\left(\left(A^{2}\right)^{2}\right)^{2}=0$. That is, $A$ is solvable.

Theorem 3. If $A$ is of dimension $\leq 10$, then $\left(\left(A^{2}\right)^{2}\right)^{2}=0$. That is, $A$ is solvable.

Proof. Theorem 2, implies that $\left(y^{2} x^{2}\right) x^{2}=0$ is an identity in $A$. Suppose that $\left(\left(A^{2}\right)^{2}\right)^{2} \neq 0$. By Lemma (4), there exist elements $y, x, u, v$ in $A$ and $w \in$ $\left\{(x y)(u v),(x y)(u v)^{2}\right\}$ such that $\left\{x^{2}, y^{2},(x y),(x y)^{2}, u^{2}, v^{2}, u v,(u v)^{2},(x y)^{2}(u v)^{2}\right.$, $w\}$ is a basis of $A$. This implies that $A^{2}=A$.

Since $A^{2}=A$, then using the identities (1), (2), (9) and the Theorem (2), we obtain that $A$ is generated also by the elements $(x y)^{2},(x u)^{2},(x v)^{2}, x^{2}(u v)$, $x^{2}(u v)^{2}, x^{2}\left((x y)^{2}(u v)^{2}\right), x^{2} w,(y u)^{2},(y v)^{2}, y^{2}(u v), y^{2}(u v)^{2}, y^{2}\left((x y)^{2}(u v)^{2}\right)$, $y^{2} w,(x y) u^{2},(x y) v^{2},(x y)(u v),(x y)(u v)^{2},(x y)\left((x y)^{2}(u v)^{2}\right),(x y) w,(x y)^{2} u^{2}$, $(x y)^{2} v^{2},(x y)^{2}(u v),(x y)^{2}(u v)^{2},(u v)^{2}, u^{2}\left((x y)^{2}(u v)^{2}\right), u^{2} w, v^{2}\left((x y)^{2}(u v)^{2}\right)$, $v^{2} w,(u v)\left((x y)^{2}(u v)^{2}\right),(u v) w$.

Now using the identities of Lemma 2, we obtain that $(x y)^{2} A$ is generated by $(x y)^{2}(u v)^{2},(x y)^{2}\left(u^{2} w\right),(x y)^{2}\left(v^{2} w\right)$ and $(u v)^{2} A$ is generated by $(x y)^{2}(u v)^{2}$, $(u v)^{2}\left(x^{2} w\right),(u v)^{2}\left(y^{2} w\right)$.

We will prove that $\left((x y)^{2} A\right)\left((u v)^{2} A\right)=0$.
If $w=(x y)(u v)$, then $w^{2}=-\frac{1}{2}(x y)^{2}(u v)^{2}$ and $\left((x y)^{2}\left(u^{2} w\right)\right)\left((u v)^{2}\left(x^{2} w\right)\right)=$ $-\left((x y)^{2}(u v)^{2}\right)\left(\left(u^{2} w\right)\left(x^{2} w\right)\right)=-w^{2}\left(\left(u^{2} x^{2}\right) w^{2}\right)=0$. In a similar way we prove that the other products are zero.

Now, if $w=(x y)(u v)^{2}$, then $w^{2}=0$ and hence $\left((x y)^{2}\left(u^{2} w\right)\right)\left((u v)^{2}\left(x^{2} w\right)\right)=$ $-\left((x y)^{2}(u v)^{2}\right)\left(\left(u^{2} w\right)\left(x^{2} w\right)\right)=\frac{1}{2}\left((x y)^{2}(u v)^{2}\right)\left(\left(u^{2} x^{2}\right) w^{2}\right)=0$. In a similar way we prove that the other products are zero.

We will prove that $\left((x y)^{2}(u v)^{2}\right) A=0$. Observe that it is sufficient to prove that $\left((x y)^{2}(u v)^{2}\right)\left(z_{1} z_{2}\right)=0$ for all $z_{1}, z_{2} \in A$. Now $\left((x y)^{2}(u v)^{2}\right)\left(z_{1} z_{2}\right)=$ $-\left((x y)^{2} z_{1}\right)\left((u v)^{2} z_{2}\right)-\left((x y)^{2} z_{2}\right)\left((u v)^{2} z_{1}\right)=0$. Therefore $J=\left\langle(x y)^{2}(u v)^{2}\right\rangle$ is an ideal of $A$. Now $\bar{A}=A / J$ is a commutative power-associative in which $x^{4}=0$ for all $x$ in $\bar{A}$. Corollary 1 and $\operatorname{dim}(\bar{A})=9$ imply that $\bar{A}$ is solvable. Thus $\operatorname{dim}\left(\bar{A}^{2}\right)<9$. Finally we conclude that $\bar{A}^{2}=A^{2} / J=A / J=\bar{A}$, which is a contradiction. Therefore $\left(\left(A^{2}\right)^{2}\right)^{2}=0$, as desired.

Acknowledgment. The authors thank the referee for many useful remarks.

## References

[1] A. A. Albert, Power-Associative Rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
[2] I. Correa, I. R. Hentzel, and L. A. Peresi, On the Solvability of the Commutative Power-Associative Nilalgebras of Dimension 6, Linear Alg. Appl. 369 (2003), 185-192.
[3] L. Elgueta, J. C. Gutiérrez Fernández, and A. Suazo, Nilpotence of a Class of Commutative Power-Associative Nilalgebras, Journal of Algebra 291 (2005), 492-504.
[4] L. Elgueta and A. Suazo, Jordan Nilalgebras of Nilindex $n$ and Dimension $n+1$, Communications in Algebra 30 (2002), 5547-5561.
[5] $\qquad$ Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4 and Dimension $\leq 8$, Proyecciones 23 (2004), no. 2, 123-129.
[6] J. C. Gutiérrez Fernández, On Commutative Power-Associative Nilalgebras, Communications in Algebra 32 (2004), no. 6, 2243-2250.
[7] J. Carlos Gutiérrez Fernández and Avelino Suazo, Commutative PowerAssociative Nilalgebras of Nilindex 5, Results in Mathematics 47 (2005), 296-304.
[8] M. Gerstenhaber and H. C. Myung, On Commutative Power-Associative Nilalgebras of Low Dimension, Proc. Amer. Math. Soc. 48 (1975), 29-32.
[9] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, United States, 1966.
[10] D. A. Suttles, Counterexample to a Conjecture of Albert, Notices Amer. Math. Soc. 19 (1972), A-566, Abstract 72T- A169.
[11] K. A. Zhevlakov, A.M. Slinko, I. P. Shestakov, and A. I. Shirshov, Rings that are Nearly Associative, Academic Press, New York, United States, 1982.
(Recibido en abril de 2010. Aceptado en agosto de 2010)

Departamento de Matemáticas
Universidad de La Serena
Cisternas 1200
La Serena, Chile
e-mail: lelgueta@userena.cl
e-mail: asuazo@userena.cl


[^0]:    ${ }^{\text {a Research supported by Dirección de Investigación de la Universidad de La Serena, Chile, }}$ Proyecto Iniciación PI 07102.

