Revista Colombiana de Matemáticas Volumen 44(2010)2, páginas 119-128

On the Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4

Sobre la solubilidad de nilágebras conmutativas de potencias asociativas de nilíndice 4

Luisa Elgueta^a, Avelino Suazo

Universidad de La Serena, La Serena, Chile

ABSTRACT. Let A be a commutative power-associative nilalgebra. In this paper we prove that when A (of characteristic $\neq 2$) is of dimension ≤ 10 and the identity $x^4 = 0$ is valid in A, then $((y^2)x^2)x^2 = 0$ for all y, x in A and $((A^2)^2)^2 = 0$. That is, A is solvable.

Key words and phrases. Commutative, Power-associative, Nilalgebra, Solvable, Nilpotent.

2000 Mathematics Subject Classification. 17A05, 17A30.

RESUMEN. Sea A una nilágebra conmutativa de potencias asociativas. En este trabajo demostramos que cuando A (de característica $\neq 2$) es de dimensión ≤ 10 y la identidad $x^4 = 0$ es válida en A, entonces $((y^2)x^2)x^2 = 0$ para todo y, x en A y $((A^2)^2)^2 = 0$. Es decir, A es soluble.

Palabras y frases clave. Conmutativa, potencias asociativas, nilálgebra, soluble, nilpotente.

1. Preliminaries

In this section A is a commutative algebra over a field K. If x is an element of A, we define $x^1 = x$ and $x^{k+1} = x^k x$ for all $k \ge 1$ A is called power-associative, if the subalgebra of A generated by any element $x \in A$ is associative. An element $x \in A$ is called nilpotent, if there is an integer $r \ge 1$ such that $x^r = 0$. If

^aResearch supported by Dirección de Investigación de la Universidad de La Serena, Chile, Proyecto Iniciación PI 07102.

¹¹⁹

any element in A is nilpotent, then A is called a nilalgebra. Now A is called a nilalgebra of nilindex $n \ge 2$, if $y^n = 0$ for all $y \in A$ and there is $x \in A$ such that $x^{n-1} \ne 0$.

If B, D are subspaces of A, then BD is the subspace of A spanned by all products bd with $b \in B$, $d \in D$. Also we define $B^1 = B$ and $B^{k+1} = B^k B$ for all $k \ge 1$. If there exists an integer $n \ge 2$ such that $B^n = 0$ and $B^{n-1} \ne 0$, then B is nilpotent of index n.

A is called solvable in case $A^{(k)} = 0$ for some integer k, where $A^{(1)} = A$ and $A^{(n+1)} = (A^{(n)})^2$ for all $n \ge 1$.

A is a Jordan algebra, if it satisfies the Jordan identity $x^2(yx) = (x^2y)x$ for all $x, y \in A$. It is known that any Jordan algebra (of characteristic $\neq 2$) is power-associative and also that any finite-dimensional Jordan nilalgebra is nilpotent (see [9]).

If the identity $x^3 = 0$ is valid in A, then A is a Jordan algebra (see [11, p. 114]). Therefore, if A is a finite dimensional, then A is nilpotente and hence solvable.

We will denote by $\langle a_1, \ldots, a_j \rangle$ the subspace of A generated over K by the elements $a_1, \ldots, a_j \in A$. In the following a greek letter indicates an element of the field K.

The problem of nilpotence in a commutative power-associative nilalgebra is known as Albert's problem [1]: Is every commutative finite dimensional powerassociative nilalgebra nilpotent?

In [10], D. Suttles constructs (as a counterexample to a conjecture due to A. A. Albert) a commutative power-associative nilalgebra of nilindex 4 and dimension 5, which is solvable and is not nilpotent. In [4] (Theorem 3.3), we prove that this algebra is the unique commutative power-associative nilalgebra of nilindex 4 and dimension 5, which is not Jordan algebra.

At present there exists the following conjecture: Any commutative finite dimensional power-associative nilalgebra is solvable. The solvability of these algebras for dimension 4, 5 and 6, are proved in [8], [4] and [2] respectively.

Let A be a commutative power-associative nilalgebra. In [6], is proved that when A is of nilindex n and dimension $\leq n + 2$, then A is solvable. In [5], we prove that if A is of nilindex 4 and dimension ≤ 8 , then A is solvable. In [7], is proved that if A is of nilindex 5 and dimension 8, then A is solvable. Therefore, if A is of dimension ≤ 8 , then A is solvable.

We will use the following results which we demonstrated in [5]:

Theorem 1. Let A be a commutative power-associative nilalgebra (of characteristic $\neq 2,3$) such that $x^4 = 0$ for all x in A.

a) If exist elements $y, x \in A$ such that $(yx^2)x^2 \neq 0$, then $y, yx, (yx)x, ((yx)x)x, (yx^2)x^2, x, x^2, x^3, yx^2$ are linearly independent.

Volumen 44, Número 2, Año 2010

b) If A is of dimension ≤ 8 , then $((A^2)^2)^2 = 0$. That is, A is solvable.

2. Solvability

In this section, A is a commutative power-associative algebra over a field K with characteristic $\neq 2, 3$ such that the identity $x^4 = 0$ is valid in A. Linearizing the identities $(x^2)^2 = 0$ and $x^4 = 0$, we obtain that for all $y, x, z, v \in A$:

$$(yx)x^{2} = 0, \qquad 2(xy)^{2} + x^{2}y^{2} = 0$$
(1)

$$(yz)x^{2} + 2(yx)(zx) = 0, \qquad (yx^{2})(vx^{2}) = 0$$
 (2)

$$(xy)(zv) + (xz)(yv) + (xv)(yz) = 0$$
(3)

$$2((yx)x)x + (yx^{2})x + yx^{3} = 0$$
(4)

$$2((yx)x)z + 2((zx)x)y + 2((yz)x)x + (yx^{2})z + (zx^{2})y + 2((yx)z)x + 2((zx)y)x = 0$$
(5)

It is known that the following identities are valid in A:

$$4(((yx)x)x)x = (yx^{2})x^{2} = -2(yx)x^{3}$$
(6)

$$\left(\left(\left((yx)x\right)x\right)x\right)x = 0\tag{7}$$

$$\left(\left(\cdots\left(yx^{m_t}\right)\cdots\right)x^{m_2}\right)x^{m_1}=0\tag{8}$$

where m_1, \ldots, m_t are positive integers such that $m_1 + \cdots + m_t \ge 5$. This last identity is proved in [3].

Lemma 1. If there exist elements $y, x \in A$ such that $(y^3x^2)x^2 \neq 0$, then A is of dimension ≥ 11 .

Proof. We consider the subspace U of A generated by $y^3, y^3x, (y^3x)x, ((y^3x)x)x, (y^3x^2)x^2, x, x^2, x^3, y^3x^2$. By Theorem 1(a), U is a subspace of dimension 9.

Using (8) and (6) we get that (Ux)x is generated by $(y^3x)x$, $((y^3x)x)x$, $(y^3x^2)x^2, x^3, ((y^3x^2)x)x$.

We observe that using (2), (1) and (8) we get

$$\begin{split} \left((yx)x\right)\left((y^2x)x\right) &= -\frac{1}{2}\big((yx)(y^2x)\big)x^2 = \frac{1}{4}(y^3x^2)x^2,\\ \left(\left((yx)x\right)x\right)\left((y^2x)x\right) &= \frac{1}{4}\big(((yx)y^2)x^2\big)x^2 = 0,\\ \left((y^3x)x\right)\left((y^2x)x\right) &= \frac{1}{4}(y^5x^2)x^2 = 0,\\ \left(((y^3x)x)x\right)\left((y^2x)x\right) &= \frac{1}{4}\big(((y^3x)y^2)x^2\big)x^2 = 0,\\ \left((yx^2)x^2\big)x^3 &= 0 & \text{and}\\ \left(((y^3x^2)x)x\right)\left((y^2x)x\right) &= \frac{1}{4}\big(((y^3x^2)y^2)x^2\big)x^2 = 0. \end{split}$$

Using the previous relations, we obtain that $((Ux)x)((y^2x)x)$ is generated by $((y^3x^2)x^2)((y^2x)x)$.

Let $\alpha y + \beta y x \in U$. We will prove that $\alpha = \beta = 0$.

For this we see that $(((\alpha y + \beta yx)x)x)((y^2x)x) \in ((Ux)x)((y^2x)x)$ and hence $\alpha((yx)x)((y^2x)x)+\beta(((yx)x)x)((y^2x)x) = \gamma((y^3x^2)x^2)((y^2x)x)$. Therefore $\frac{1}{4}\alpha(y^3x^2)x^2 = \gamma((y^3x^2)x^2)((y^2x)x)$. If we suppose that $\alpha \neq 0$, then $\gamma \neq 0$ and so we obtain that $uv = \frac{1}{4}\alpha\gamma^{-1}u$ where $u = (y^3x^2)x^2$ and $v = (y^2x)x$. Using (7), we get that $(\frac{1}{4}\alpha\gamma^{-1})^5u = 0$, which is a contradiction. Therefore $\alpha = 0$.

We have now that $\beta yx \in U$ and hence $\beta yx = \alpha_1 y^3 + \alpha_2 y^3 x + \alpha_3 (y^3 x)x + \alpha_4 ((y^3 x)x)x + \alpha_5 (y^3 x^2)x^2 + \alpha_6 x + \alpha_7 x^2 + \alpha_8 x^3 + \alpha_9 y^3 x^2$. Multiplying by x^2 and using (1) we obtain $\alpha_1 y^3 x^2 + \alpha_6 x^3 + \alpha_9 (y^3 x^2)x^2 = 0$, which implies that $\alpha_1 = \alpha_6 = \alpha_9 = 0$. Therefore $\beta yx = \alpha_2 y^3 x + \alpha_3 (y^3 x)x + \alpha_4 ((y^3 x)x)x + \alpha_5 (y^3 x^2)x^2 + \alpha_7 x^2 + \alpha_8 x^3$ and so $\beta (yx)x = \alpha_2 (y^3 x)x + \alpha_3 ((y^3 x)x)x + \frac{1}{4}\alpha_4 (y^3 x^2)x^2 + \alpha_7 x^3$. Multiplying by $(y^2 x)x$, we get that $\frac{1}{4}\beta (y^3 x^2)x^2 = \frac{1}{4}\alpha_4 ((y^3 x^2)x^2)((y^2 x)x)$. Using the same argument earlier we conclude that $\beta = 0$ and therefore $\dim_K(A) \geq 11$.

Theorem 2. If A is of dimension ≤ 10 , then $(y^2x^2)x^2 = 0$ is an identity in A.

Proof. Suppose that there exist $y, x \in A$ such that $(y^2x^2)x^2 \neq 0$. By Lemma 1 we can suppose that $(y^3x^2)x^2 = 0$ and Theorem 1(a) implies that $y^2, y^2x, (y^2x)x, ((y^2x)x)x, (y^2x^2)x^2, x, x^2, x^3, y^2x^2$ are linearly independent.

Let $\alpha yx + \beta(yx)x = \alpha_1 y^2 + \alpha_2 y^2 x + \alpha_3(y^2 x)x + \alpha_4((y^2 x)x)x + \alpha_5(y^2 x^2)x^2 + \alpha_6 x + \alpha_7 x^2 + \alpha_8 x^3 + \alpha_9 y^2 x^2$. Multiplying by x^2 we obtain $\alpha_1 y^2 x^2 + \alpha_6 x^3 + \alpha_9(y^2 x^2)x^2 = 0$, which implies $\alpha_1 = \alpha_6 = \alpha_9 = 0$.

Now we have $\alpha yx + \beta(yx)x = \alpha_2 y^2 x + \alpha_3(y^2 x)x + \alpha_4((y^2 x)x)x + \alpha_5(y^2 x^2)x^2 + \alpha_7 x^2 + \alpha_8 x^3$. Multiplying by x we get $\alpha(yx)x + \beta((yx)x)x = \alpha_2(y^2 x)x + \alpha_3((y^2 x)x)x + \alpha_4(((y^2 x)x)x)x + \alpha_7 x^3)$ and therefore $(\alpha(yx)x - \alpha_2(y^2 x)x)^2 = (-\beta((yx)x)x + \alpha_3((y^2 x)x)x + \alpha_4(((y^2 x)x)x)x + \alpha_7 x^3)^2$. Using the identities (1), (2) and (8), we obtain $\frac{1}{4}\alpha^2(y^2 x^2)x^2 - \frac{1}{2}\alpha\alpha_2(y^3 x^2)x^2 = 0$. Since $(y^3 x^2)x^2 = 0$, then $\alpha = 0$.

Now $\beta(yx)x = \alpha_2 y^2 x + \alpha_3 (y^2 x)x + \alpha_4 ((y^2 x)x)x + \alpha_5 (y^2 x^2)x^2 + \alpha_7 x^2 + \alpha_8 x^3$. Multiplying three times by x we obtain that $\alpha_2 = 0$. Now $(\beta(yx)x - \alpha_3(y^2 x)x)^2 = (\alpha_4 ((y^2 x)x)x + \alpha_5(y^2 x^2)x^2 + \alpha_7 x^2 + \alpha_8 x^3)^2 = (\alpha_4 ((y^2 x)x)x + 4\alpha_5 (((y^2 x)x)x + \alpha_7 x^2 + \alpha_8 x^3)^2$, implies that $\frac{1}{4}\beta^2(y^2 x^2)x^2 = 0$ and so $\beta = 0$. Therefore dimension of $A \ge 11$, which is a contradiction.

Lemma 2. If $(y^2x^2)x^2 = 0$ for all $x, y \in A$, then the following identities are valid in A:

$$x^{2}((xz)(yu)) + (xz)((yu)x^{2}) = 0, \qquad (yx)^{3} = 0$$
(9)

Volumen 44, Número 2, Año 2010

$$\left(\left((xy)^2(uv)^2\right)x^2\right)(uv)^2 = 0, \qquad \left(\left((xy)^2(uv)^2\right)(uv)\right)(xy)^2 = 0 \qquad (10)$$

$$(((xy)(uv))(xy))(uv)^2 = 0, \qquad (((xy)(uv))(uv))(xy)^2 = 0$$
(11)

$$(((xy)(uv)^2)(xy))(uv)^2 = 0, \qquad (((xy)(uv)^2)(uv))(xy)^2 = 0.$$

Proof. Linearizing the identity $(y^2x^2)x^2 = 0$ we obtain that $x^2((xz)(yu)) + (xz)((yu)x^2) = 0$. Substituting z by y, u by y and using (1), we obtain $(yx)^3 = 0$. So we obtain (9).

Replacing x by $(uv)^2$, y by $(xy)^2$, z by x^2 in (5) and using (1) and (2) we get the next expressions $(((xy)^2(uv)^2)x^2)(uv)^2 = -(x^2(uv)^2(xy)^2)(uv)^2 = \frac{1}{2}(x^2(uv)^2)(x^2y^2)(uv)^2 = 0.$

Replacing x by $(xy)^2$, y by $(uv)^2$, z by uv in (5) and using (1) we get that $(((xy)^2(uv)^2)(uv))(xy)^2 = -(((xy)^2(uv))(uv)^2)(xy)^2 = 0$. Therefore, we get (10).

Replacing x by uv, z by xy, u by x in (9) and using (2) and (9), we get that $(((xy)(uv))(xy))(uv)^2 = -((xy)(uv))((xy)(uv)^2) = \frac{1}{2}(xy)^2(uv)^3 = 0.$ Similarly, we prove that $(((xy)(uv))(uv))(xy)^2 = 0.$

Replacing x by $(uv)^2$, y by xy and z by xy in (5), we get the next expression $(((xy)(uv)^2)(xy))(uv)^2 = 0.$

Replacing x by xy, z by $(uv)^2$, y by v in (9) and using (3), (1) and (9), we obtain the next expression $(((xy)(uv)^2)(uv))(xy)^2 = -((xy)(uv)^2)((uv)(xy)^2) = ((xy)(uv))((xy)^2(uv)^2) = -2((xy)(uv))((xy)(uv))^2 = -2((xy)(uv))^3 = 0$. So, we prove (11).

Lemma 3. If the identity $(y^2x^2)x^2 = 0$ is valid in A and $((A^2)^2)^2 \neq 0$, then there exist elements $y, x, u, v \in A$ such that $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2,$ $(xy)^2(uv)^2$ are linearly independent. Therefore, A is of dimension ≥ 9 .

Proof. Since $((A^2)^2)^2 \neq 0$, then there exist elements $y, x, u, v \in A$ such that $(x^2y^2)(u^2v^2) \neq 0$. From (1), $(x^2y^2)(u^2v^2) = 4(xy)^2(uv)^2 = -8((xy)(uv))^2 \neq 0$.

We will prove first that $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2$ are linearly independent. Let $\alpha x^2 + \beta y^2 + \gamma xy + \delta(xy)^2 + \alpha_0 u^2 + \beta_0 v^2 + \gamma_0 uv + \delta_0 (uv)^2 = 0$. Multiplying by y^2 , afterwards by $u^2 v^2 = -2(uv)^2$ and using (1), (2) we obtain $\alpha(x^2y^2)(u^2v^2) = 0$, which implies $\alpha = 0$. Similarly, we get $\beta = \alpha_0 = \beta_0 = 0$. Now we have $\gamma xy + \delta(xy)^2 = -(\gamma_0 uv + \delta_0 (uv)^2)$. Using (9), $(\gamma xy + \delta(xy)^2)^2 = (-(\gamma_0 uv + \delta_0 (uv)^2))^2$ implies $\gamma^2(xy)^2 = \gamma_0^2(uv)^2$. Since $(xy)^2, (uv)^2$ are linearly independent, then $\gamma = \gamma_0 = 0$. Now $\delta(xy)^2 = -\delta_0(uv)^2$ implies $\delta = \delta_0 = 0$. We conclude that $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2$ are linearly independent.

Now we will prove that $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2, (xy)^2(uv)^2$ are linearly independent.

Suppose that $(xy)^2(uv)^2 = \alpha x^2 + \beta y^2 + \gamma xy + \delta(xy)^2 + \alpha_0 u^2 + \beta_0 v^2 + \gamma_0 uv + \delta_0(uv)^2$. Multiplying by x^2 , afterwards by $(uv)^2 = -\frac{1}{2}u^2v^2$ and using (10), we obtain $\beta(x^2y^2)(uv)^2 = -2\beta(xy)^2(uv)^2 = 0$ and hence $\beta = 0$. Using the same argument and the Identities (10), it is possible to demonstrate that $\alpha = \alpha_0 = \beta_0 = 0$.

Now we have that $(xy)^2(uv)^2 = \gamma xy + \delta(xy)^2 + \gamma_0 uv + \delta_0(uv)^2$. Multiplying by xy, afterwards by $(uv)^2$ and using (10), we get $\gamma(xy)^2(uv)^2 = 0$. Therefore $\gamma = 0$. Similarly we prove that $\gamma_0 = 0$.

Now $(xy)^2(uv)^2 = \delta(xy)^2 + \delta_0(uv)^2$. Multiplying by $(uv)^2$ (also by $(xy)^2$), we obtain that $\delta = \delta_0 = 0$, which is a contradiction. This completes the proof.

Lemma 4. If the identity $(y^2x^2)x^2 = 0$ is valid in A and $((A^2)^2)^2 \neq 0$, then there exist elements y, x, u, v in A such that $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2,$ $(xy)^2(uv)^2, (xy)(uv)$ are linearly independent or $x^2, y^2, xy, (xy)^2, u^2, v^2, uv,$ $(uv)^2, (xy)^2(uv)^2, (xy)(uv)^2$ are linearly independent. Therefore A is of dimension ≥ 10 .

Proof. By Lemma 3, we know that there exist x, y, u, v in A such that the subspace U of A generated by $x^2, y^2, xy, (xy)^2, u^2, v^2, uv, (uv)^2, (xy)^2(uv)^2$ has dimension 9.

We will prove that $(xy)(uv) \notin U$ or $(xy)(uv)^2 \notin U$. Suppose that (xy)(uv) and $(xy)(uv)^2$ are elements in U. Then

- (a) $(xy)(uv) = \alpha_1 x^2 + \alpha_2 y^2 + \alpha_3 xy + \beta_1 u^2 + \beta_2 v^2 + \beta_3 uv + z$ where $z = \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$, and
- (b) $(xy)(uv)^2 = \gamma_1 x^2 + \gamma_2 y^2 + \gamma_3 xy + \delta_1 u^2 + \delta_2 v^2 + \delta_3 uv + \gamma_4 (xy)^2 + \delta_4 (uv)^2 + \lambda_2 (xy)^2 (uv)^2.$

Multiplying (a) by xy and afterwards by $(uv)^2 = -\frac{1}{2}u^2v^2$ and using (1), (2), (9) and (10), we obtain that $\alpha_3(xy)^2(uv)^2 = 0$ and therefore $\alpha_3 = 0$. Similarly, multiplying (a) by uv and afterwards by $(xy)^2 = -\frac{1}{2}x^2y^2$, we obtain $\beta_3 = 0$.

Now in (a) we have $(xy)(uv) - z = \alpha_1 x^2 + \alpha_2 y^2 + \beta_1 u^2 + \beta_2 v^2$ and hence $((xy)(uv) - z)^2 = (\alpha_1 x^2 + \alpha_2 y^2 + \beta_1 u^2 + \beta_2 v^2)^2$. Thus $2\alpha_4\beta_4(xy)^2(uv)^2 + ((xy)(uv))^2 = 2\alpha_1\alpha_2 x^2 y^2 + 2\alpha_1\beta_1 x^2 u^2 + 2\alpha_1\beta_2 x^2 v^2 + 2\alpha_2\beta_1 y^2 u^2 + 2\alpha_2\beta_2 y^2 v^2 + 2\beta_1\beta_2 u^2 v^2$, which implies (multiplying by $(uv)^2 = -\frac{1}{2}u^2v^2$, multiplying by $(xy)^2$) that $\alpha_1\alpha_2 = 0$ and $\beta_1\beta_2 = 0$. Therefore in (a) we may have the possibilities following:

(i)
$$(xy)(uv) = \alpha_1 x^2 + \beta_1 u^2 + \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$$
,

Volumen 44, Número 2, Año 2010

SOLVABILITY OF COMMUTATIVE POWER-ASSOCIATIVE NILALGEBRAS

125

- (ii) $(xy)(uv) = \alpha_1 x^2 + \beta_2 v^2 + \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$,
- (iii) $(xy)(uv) = \alpha_2 y^2 + \beta_1 u^2 + \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$,
- (iv) $(xy)(uv) = \alpha_2 y^2 + \beta_2 v^2 + \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$.

We will prove that actually $\alpha_1\beta_1 \neq 0$ in (i). If we suppose that $\alpha_1 = 0$, then $(xy)(uv) - \alpha_4(xy)^2 - \lambda_1(xy)^2(uv)^2 = \beta_1 u^2 + \beta_4(uv)^2$. Now $((xy)(uv) - \alpha_4(xy)^2 - \lambda_1(xy)^2(uv)^2)^2 = (\beta_1 u^2 + \beta_4(uv)^2)^2$ implies that $((xy)(uv))^2 = 0$, which is a contradiction. Similarly, we obtain that $\alpha_1\beta_2 \neq 0$ in (ii), $\alpha_2\beta_1 \neq 0$ in (iii) and $\alpha_2\beta_2 \neq 0$ in (iv).

Multiplying (b) by xy and afterwards by $(uv)^2 = -\frac{1}{2}u^2v^2$ and using (11) and (10) we obtain that $\gamma_3(xy)^2(uv)^2 = 0$ and therefore $\gamma_3 = 0$. Similarly, multiplying (b) by uv and afterwards by $(xy)^2 = -\frac{1}{2}x^2y^2$, we obtain that $\delta_3 = 0$.

Multiplying (b) by v^2 and afterwards by $(xy)^2 = -\frac{1}{2}x^2y^2$, we obtain that $(((xy)(uv)^2)v^2)(xy)^2 = \delta_1(u^2v^2)(xy)^2 = -2\delta_1(uv)^2(xy)^2$. Replacing in (9), x by xy, z by $(uv)^2$, y by v, u by v and using (3), we obtain that $(((xy)(uv)^2)v^2)(xy)^2 = -((xy)(uv)^2)(v^2(xy)^2) = ((xy)v^2)((xy)^2(uv)^2)$ and hence $((xy)v^2)((xy)^2(uv)^2) = -2\delta_1(uv)^2(xy)^2$. Replacing x by $(xy)v^2$ and y by $(xy)^2(uv)^2$ in (7), we obtain that $-32\delta_1^5 = 0$ and so $\delta_1 = 0$. Similarly, multiplying (b) by u^2 and afterwards by $(xy)^2$, we obtain $\delta_2 = 0$.

In (b), we have $(xy)(uv)^2 = \gamma_1 x^2 + \gamma_2 y^2 + \gamma_4 (xy)^2 + \delta_4 (uv)^2 + \lambda_2 (xy)^2 (uv)^2$. Multiplying by $(xy)^2$, we get $\delta_4 (uv)^2 (xy)^2 = 0$ and so $\delta_4 = 0$. Therefore

(c)
$$(xy)(uv)^2 = \gamma_1 x^2 + \gamma_2 y^2 + \gamma_4 (xy)^2 + \lambda_2 (xy)^2 (uv)^2$$
 with $\gamma_1 \gamma_2 = 0$

In fact, $((xy)(uv)^2 - \gamma_4(xy)^2 - \lambda_2(xy)^2(uv)^2)^2 = (\gamma_1 x^2 + \gamma_2 y^2)^2$ implies that $\gamma_1 \gamma_2 x^2 y^2 = 0$.

Suppose the case (i), that is,

$$(xy)(uv) = \alpha_1 x^2 + \beta_1 u^2 + \alpha_4 (xy)^2 + \beta_4 (uv)^2 + \lambda_1 (xy)^2 (uv)^2$$

with $\alpha_1\beta_1 \neq 0$. Multiplying (i) by y^2 and afterwards by $(uv)^2$, we obtain that $(((xy)(uv))y^2)(uv)^2 = \alpha_1(x^2y^2)(uv)^2 = -2\alpha_1(xy)^2(uv)^2$. But, $(((xy)(uv))y^2)(uv)^2 = -((xy)(uv))(y^2(uv)^2) = ((xy)(uv)^2)((uv)y^2)$ and therefore $((xy)(uv)^2)((uv)y^2) = -2\alpha_1(xy)^2(uv)^2$.

Multiplying (c) by $(uv)y^2$, we get that $((xy)(uv)^2)((uv)y^2) = \gamma_1 x^2((uv)y^2) + \lambda_2((xy)^2(uv)^2)((uv)y^2)$ and therefore $\gamma_1 x^2((uv)y^2) + \lambda_2((xy)^2(uv)^2)((uv)y^2) = -2\alpha_1(xy)^2(uv)^2$. If we suppose that $\gamma_1 = 0$, then as $\alpha_1 \neq 0$, we get that $\lambda_2 \neq 0$ and so $((xy)^2(uv)^2)((uv)y^2) = -2\alpha_1\lambda_2^{-1}(xy)^2(uv)^2$. Replacing x by $(uv)y^2$ and y by $(uv)^2(xy)^2$ in (7), we obtain that $(-2\alpha_1\lambda_2^{-1})^5 = 0$, which is a contradiction. Therefore $\gamma_1 \neq 0$ and so $\gamma_2 = 0$. Now we have in (c),

$$(xy)(uv)^{2} = \gamma_{1}x^{2} + \gamma_{4}(xy)^{2} + \lambda_{2}(xy)^{2}(uv)^{2}.$$

So we obtain $\gamma_1(xy)(uv) - \alpha_1(xy)(uv)^2 = \gamma_1\beta_1u^2 + (\gamma_1\alpha_4 - \alpha_1\gamma_4)(xy)^2 + \gamma_1\beta_4(uv)^2 + (\gamma_1\lambda_1 - \alpha_1\lambda_2)(xy)^2(uv)^2$. Since $(\gamma_1(xy)(uv) - \alpha_1(xy)(uv)^2 - (\gamma_1\alpha_4 - \alpha_1\gamma_4)(xy)^2 - (\gamma_1\lambda_1 - \alpha_1\lambda_2)(xy)^2(uv)^2)^2 = (\gamma_1\beta_1u^2 + \gamma_1\beta_4(uv)^2)^2$, then $\gamma_1^2((xy)(uv))^2 = -\frac{1}{2}\gamma_1^2(xy)^2(uv)^2 = 0$, a contradiction.

Considering the same argument, it is possible to obtain contradictions in the cases (ii), (iii) and (iv). $\hfill eq$

Corollary 1. If A is of dimension ≤ 9 , then $((A^2)^2)^2 = 0$. That is, A is solvable.

Theorem 3. If A is of dimension ≤ 10 , then $((A^2)^2)^2 = 0$. That is, A is solvable.

Proof. Theorem 2, implies that $(y^2x^2)x^2 = 0$ is an identity in A. Suppose that $((A^2)^2)^2 \neq 0$. By Lemma (4), there exist elements y, x, u, v in A and $w \in \{(xy)(uv), (xy)(uv)^2\}$ such that $\{x^2, y^2, (xy), (xy)^2, u^2, v^2, uv, (uv)^2, (xy)^2(uv)^2, w\}$ is a basis of A. This implies that $A^2 = A$.

Since $A^2 = A$, then using the identities (1), (2), (9) and the Theorem (2), we obtain that A is generated also by the elements $(xy)^2, (xu)^2, (xv)^2, x^2(uv), x^2(uv)^2, x^2(uv)^2), x^2(uv)^2, (yv)^2, (yv)^2, y^2(uv)^2, y^2((xy)^2(uv)^2), y^2w, (xy)u^2, (xy)u^2, (xy)(uv), (xy)(uv)^2, (xy)((xy)^2(uv)^2), (xy)w, (xy)^2u^2, (xy)^2v^2, (xy)^2(uv), (xy)^2(uv)^2, (uv)^2, u^2((xy)^2(uv)^2), u^2w, v^2((xy)^2(uv)^2), (uv)w.$

Now using the identities of Lemma 2, we obtain that $(xy)^2 A$ is generated by $(xy)^2(uv)^2$, $(xy)^2(u^2w)$, $(xy)^2(v^2w)$ and $(uv)^2 A$ is generated by $(xy)^2(uv)^2$, $(uv)^2(x^2w)$, $(uv)^2(y^2w)$.

We will prove that $((xy)^2 A)((uv)^2 A) = 0.$

If w = (xy)(uv), then $w^2 = -\frac{1}{2}(xy)^2(uv)^2$ and $((xy)^2(u^2w))((uv)^2(x^2w)) = -((xy)^2(uv)^2)((u^2w)(x^2w)) = -w^2((u^2x^2)w^2) = 0$. In a similar way we prove that the other products are zero.

Now, if $w = (xy)(uv)^2$, then $w^2 = 0$ and hence $((xy)^2(u^2w))((uv)^2(x^2w)) = -((xy)^2(uv)^2)((u^2w)(x^2w)) = \frac{1}{2}((xy)^2(uv)^2)((u^2x^2)w^2) = 0$. In a similar way we prove that the other products are zero.

We will prove that $((xy)^2(uv)^2)A = 0$. Observe that it is sufficient to prove that $((xy)^2(uv)^2)(z_1z_2) = 0$ for all $z_1, z_2 \in A$. Now $((xy)^2(uv)^2)(z_1z_2) = -((xy)^2z_1)((uv)^2z_2) - ((xy)^2z_2)((uv)^2z_1) = 0$. Therefore $J = \langle (xy)^2(uv)^2 \rangle$ is an ideal of A. Now $\overline{A} = A/J$ is a commutative power-associative in which $x^4 = 0$ for all x in \overline{A} . Corollary 1 and dim $(\overline{A}) = 9$ imply that \overline{A} is solvable. Thus dim $(\overline{A}^2) < 9$. Finally we conclude that $\overline{A}^2 = A^2/J = A/J = \overline{A}$, which is a contradiction. Therefore $((A^2)^2)^2 = 0$, as desired.

Volumen 44, Número 2, Año 2010

Acknowledgment. The authors thank the referee for many useful remarks.

References

- A. A. Albert, *Power-Associative Rings*, Trans. Amer. Math. Soc. 64 (1948), 552–593.
- [2] I. Correa, I. R. Hentzel, and L. A. Peresi, On the Solvability of the Commutative Power-Associative Nilalgebras of Dimension 6, Linear Alg. Appl. 369 (2003), 185–192.
- [3] L. Elgueta, J. C. Gutiérrez Fernández, and A. Suazo, Nilpotence of a Class of Commutative Power-Associative Nilalgebras, Journal of Algebra 291 (2005), 492–504.
- [4] L. Elgueta and A. Suazo, Jordan Nilalgebras of Nilindex n and Dimension n+1, Communications in Algebra 30 (2002), 5547–5561.
- [5] _____, Solvability of Commutative Power-Associative Nilalgebras of Nilindex 4 and Dimension ≤ 8, Proyectiones 23 (2004), no. 2, 123–129.
- [6] J. C. Gutiérrez Fernández, On Commutative Power-Associative Nilalgebras, Communications in Algebra 32 (2004), no. 6, 2243–2250.
- [7] J. Carlos Gutiérrez Fernández and Avelino Suazo, Commutative Power-Associative Nilalgebras of Nilindex 5, Results in Mathematics 47 (2005), 296–304.
- [8] M. Gerstenhaber and H. C. Myung, On Commutative Power-Associative Nilalgebras of Low Dimension, Proc. Amer. Math. Soc. 48 (1975), 29–32.
- [9] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, United States, 1966.
- [10] D. A. Suttles, Counterexample to a Conjecture of Albert, Notices Amer. Math. Soc. 19 (1972), A–566, Abstract 72T- A169.
- [11] K. A. Zhevlakov, A.M. Slinko, I. P. Shestakov, and A. I. Shirshov, *Rings that are Nearly Associative*, Academic Press, New York, United States, 1982.

(Recibido en abril de 2010. Aceptado en agosto de 2010)

LUISA ELGUETA & AVELINO SUAZO

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DE LA SERENA CISTERNAS 1200 LA SERENA, CHILE *e-mail:* lelgueta@userena.cl *e-mail:* asuazo@userena.cl

Volumen 44, Número 2, Año 2010