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Abstract. Let (Mn, g) be a compact manifold with boundary and n ≥ 2. In

this paper we prove the variational characterization of the Neumann eigen-

values of an elliptic operator associated to the problem of conformal deforma-

tion of metrics and we study the uniqueness of metrics in the conformal class

of the metric g having the same scalar curvature of the manifold and the same

mean curvature of its boundary.
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Resumen. Sea (Mn, g) una variedad riemanniana compacta con frontera de di-

mensión n ≥ 2. En este artículo demostramos la caracterización variacional de

los valores propios de Neumann de un operador elíptico asociado al problema

de deformación conforme de métricas y estudiamos la unicidad de métricas en

la clase conforme de la métrica g que tienen la misma curvatura escalar de la

variedad y la misma curvatura media de su frontera.

Palabras y frases clave. Unicidad, métricas conformes, curvatura.

1. Introduction

Let (Mn, g) be an n-dimensional compact Riemannian manifold with boundary.
Let Rg denote its scalar curvature and Hg the trace of the second fundamental

aThis work was supported by the Universidad del Valle, Cali, Colombia, under the project
No.7750.

91



92 GONZALO GARCÍA & JHOVANNY MUÑOZ

form. We let hg =
Hg

n−1 be the mean curvature of the boundary of M , ∂M . In
[3] Jose F. Escobar studied to what extent the scalar curvature and the mean
curvature of the boundary determine the metric within its conformal class,
where the conformal class of the metric g, [g], is the set of metrics of the form
ϕg where ϕ is a smooth positive function defined in M .

In this paper we will investigate the following question: Given g̃ ∈ [g] with
Rg = Rg̃ in M , and hg = hg̃ on ∂M , when is g̃ = g?

When n = 2 and g̃ = e2ug then the function u satisfies the following non-
linear elliptic equation:




∆gu−Kg +Kg̃e

2u = 0, in M ;
∂u

∂ηg
+ kg − kg̃e

u = 0, on ∂M,
(1)

where Kg =
Rg

2 and kg = hg denote the Gaussian curvature and the geodesic
curvature of ∂M of the metric g.

If n ≥ 3 and g̃ = u
4

n−2 g then the function u satisfies the non-linear elliptic
equation: 



∆gu− c(n)Rgu+ c(n)Rg̃u

n+2
n−2 = 0, in M ;

∂u

∂η
+ n−2

2 hgu− n−2
2 hg̃u

n
n−2 = 0, on ∂M,

(2)

where c(n) = n−2
4(n−1) .

Therefore the above geometric question is equivalent to the following unique-
ness question in PDEs: When n = 2 assume that u is the solution of problem
(1) where Kg̃ = Kg and kg̃ = kg. Is the function u the constant function 0? If
n ≥ 3 and u is the solution of problem (2) where Rg̃ = Rg and hg̃ = hg. Is the
function u the constant function 1?

If Rg = Rg̃ = 0, hg = hg̃ = 0, multiplying the first equation of problem (1)
(or problem (2)) by u and integrating by parts we get that g̃ = γg, where γ is
a positive constant. From now on we assume that the functions Rg and hg do
not vanish simultaneously.

The results of Escobar in [3] about non-uniqueness of conformal metrics
show that we can not expect to give a positive answer to our questions in gen-
eral. In [3] Escobar found a class of manifolds where the question of uniqueness
has a positive answer. In this paper we find a similar result to that of Escobar
for another class of manifolds.

In order to describe those classes of manifolds we need to introduce the
operator (L1, B1) defined by

{
L1 = ∆g +

Rg

n−1 , in M ;

B1 = ∂
∂ηg

− hg, on ∂M.
(3)
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Note that (L1, B1) is the linearization at the solution u = 1 when Rg = Rg̃

and hg = hg̃ of problem (1) when n = 2 and problem (2) when n ≥ 3.

Let denote by λ and by β the first Dirichlet eigenvalue and the first Neu-
mann eigenvalue of the operator (L1, B1), respectively. If f is the first Dirichlet
eigenfunction of the operator (L1, B1) then f satisfies the following boundary
value problem

{
L1(f) + λf = ∆gf +

Rg

n−1f + λf = 0, in M ;

B1(f) =
∂f
∂ηg

− hgf = 0, on ∂M.
(4)

Now, if a function f is the first Neumann eigenfunction of the operator
(L1, B1), then f satisfies

{
L1(f) = ∆gf +

Rg

n−1f = 0, in M ;

B1(f) =
∂f
∂ηg

− hgf = βf, on ∂M.
(5)

We will denote with tilde all quantities related to the metric g̃.

In [3] Escobar proved the following uniqueness theorem:

Theorem 1. Let (Mn, g) be a compact Riemannian manifold with boundary

and hg ≤ 0. Suppose that g̃ ∈ [g], Rg = Rg̃ and hg = hg̃. If both λ and λ̃ are

positive or none of them is equal to zero then g̃ = g.

The following corollary follows from this theorem using the variational char-
acterization of the first eigenvalue.

Corollary 1. Let (Mn, g) be a compact Riemannian manifold with boundary.

Assume that g̃ ∈ [g], Rg̃ = Rg ≤ 0 and hg̃ = hg ≤ 0. Then g̃ = g.

This work has two main results: in the first one we find a variational char-
acterization of the Neumann eigenvalues and in the second one we prove some
similar theorems to the Escobar’s uniqueness theorem obtained firstly chang-
ing the hypothesis of non-positive mean curvature for one of nonnegative scalar
curvature and secondly using a hypothesis about the first Neumann eigenvalue
instead of the hypothesis about the first Dirichlet eigenvalue.

This paper is organized as follows: in Section 2 we will find a necessary and
sufficient condition for β being finite and in this case we will give the variational
characterization of the Neumann eigenvalues and in Section 3 we will prove our
uniqueness theorems.

2. Variational Characterization of the Neumann Eigenvalues

Let us consider the operator (L̂, B̂) defined by
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L̂(ψ) = ∆gψ −Hψ, in M ;

B̂(ψ) =
∂ψ

∂η
+ fψ, on ∂M,

(6)

where H and f are functions from M to R and from ∂M to R, respectively.

We will say that β̂ is an eigenvalue of the operator (L̂, B̂) with Neumann
boundary condition if there exists a non-trivial function ϕ that satisfies




L̂(ϕ) = ∆gϕ−Hϕ = 0, in M ;

B̂(ϕ) =
∂ϕ

∂η
+ fϕ = β̂ϕ, on ∂M,

(7)

and the function ϕ is an eigenfunction associated to the eigenvalue β̂.

Let us define in H1,2(M) the functionals

E(ϕ) =

∫

M

|∇ϕ|2 +

∫

M

Hϕ2 +

∫

∂M

fϕ2 (8)

and

G(ψ) =

∫

∂M

ψ2. (9)

Set

C =

{
ϕ ∈ H1,2(M)

∣∣∣ G(ϕ) =
∫

∂M

ϕ2 = 1

}

and

β = inf
ϕ∈H1,2(M)
ϕ6=0 in ∂M

E(ϕ)∫
∂M

ϕ2
= inf

ϕ∈C
E(ϕ). (10)

Let φ and ρ be the first eigenfunction and the first eigenvalue of the problem
with Dirichlet boundary condition

{
∆gφ−Hφ+ ρφ = 0, in M ;

φ = 0, on ∂M.
(11)

Escobar in [2] observed that β = inf
ϕ∈C

E(ϕ) = −∞ when ρ < 0. In this

direction we get the following result.

Proposition 1. β is finite if and only if ρ > 0.

Proof. Assume ρ ≤ 0. Let φ be the first eigenfunction of problem (11). By the
variational characterization of ρ,

ρ = inf
ϕ∈H

1,2
0 (M)

∫
M

|∇ϕ|2 +
∫
M
Hϕ2

∫
M
ϕ2

, (12)
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where H1,2
0 (M) denotes the closure of the space of compact support smooth

functions in H1,2(M), we can choose φ ≥ 0. Using the minimum principle it
can be shown that φ > 0 in M \ ∂M .

Let us define ψt =
tφ+ 1

Vol(∂M)
and observe that

∫
∂M

ψt = 1 on ∂M .

If ρ < 0 following the arguments of Escobar in [2] we arrive to

E(ψt) =
1

Vol(∂M)2

[
t2
(
ρ

∫

M

φ2
)
+ 2t

(∫

M

Hφ

)
+

∫

M

H +

∫

∂M

f

]
→ −∞

when t→ ∞.

If ρ = 0 then

E(ψt) =
1

Vol(∂M)2

[
2t

(∫

M

Hφ

)
+

∫

M

H +

∫

∂M

f

]
,

where H is a nonzero function.

Since φ = 0 on ∂M , by Hopf’s lemma,
∂φ

∂η
< 0. Integrating the first equation

of (11), we get ∫

M

Hφ =

∫

∂M

∂φ

∂η
< 0.

Letting t→ ∞, we find that E(ψt) → −∞.

Now assume β = inf
ϕ∈C

E(ϕ) = −∞, then H is a nonzero function. Let us

take a minimizing sequence {ϕi} with

E(ϕi) =

∫

M

Hϕ2
i +

∫

∂M

fϕ2
i +

∫

M

|∇ϕi|
2 < −i, i ∈ N,

hence ∫

M

Hϕ2
i < −i+ ‖f‖∞

and therefore ∫

M

ϕ2
i → ∞ as i→ ∞.

Let us define the functions ψi =
ϕi

(
∫
M
ϕ2
i )

1
2

. Then
∫
M
ψ2
i = 1,

∫
∂M

ψ2
i → 0

as i→ ∞ and E(ψi) < 0. Consequently,
∫
M

|∇ψi|
2 < K for some constant K.

Hence the sequence {ψi} is bounded in H1,2(M), and a subsequence of {ψi}
converges weakly to a function ψ in H1,2(M). Now observe that the function
ψ belongs to H1,2

0 (M). From here we get

ρ ≤

∫

M

|∇ψ|2 +

∫

M

Hψ2 ≤ lim
i→∞

inf E(ψi) ≤ 0. �X
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Let us recall that λ̂ is a Dirichlet eigenvalue of the operator (L̂, B̂) if there
exists a nontrivial function ϕ that satisfies




L̂(ϕ) = ∆gϕ−Hϕ+ λ̂ϕ = 0, in M ;

B̂(ϕ) =
∂ϕ

∂η
+ fϕ = 0, on ∂M.

(13)

In this case, the function ϕ is an eigenfunction associated to the eigen-
value λ̂. Now let

λ = inf
ϕ∈H1,2(M),ϕ 6=0 in M

E(ϕ)∫
M
ϕ2
.

It is known that λ is finite and there exists a positive function ϕ that satisfies

λ =
E(ϕ)∫
M
ϕ2
.

λ is the first eigenvalue and ϕ is the first eigenfunction of problem (13). In
the following, we will find a similar result for β being the first eigenvalue of
problem (7).

Theorem 2. Let (Mn, g) be a compact manifold with boundary and dimension

n ≥ 2. If β is finite then there exists a positive function ϕ ∈ C such that

β = E(ϕ), and ϕ and β satisfy (7).

Proof. We will prove first that there exists a function ϕ ∈ C such that β = E(ϕ).
We need to consider two cases:

First assume β ≥ 0, then λ ≥ 0. If λ = 0 then there exists a positive function

ϕ0 such that 0 =
E(ϕ0)∫
M
ϕ2
0

; setting ϕ =
ϕ0

(
∫
∂M

ϕ2
0)

1
2

we get β = 0 = E(ϕ).

If λ > 0, let {ϕi} be a minimizing sequence of functions in C; that is,
E(ϕi) → β when i→ ∞.

Given ǫ > 0 small, there exists N ∈ N such that if i ≥ N then

β ≤ E(ϕi) ≤ β + ǫ, (14)

hence

λ ≤
E(ϕi)∫
M
ϕ2
i

≤
β + ǫ∫
M
ϕ2
i

,

and therefore ∫

M

ϕ2
i ≤

β + ǫ

λ
.
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Using inequalities (14), we have
∫

M

|∇ϕi|
2 ≤ −

∫

M

Hϕ2
i −

∫

∂M

fϕ2
i + β + ǫ

≤ |H |∞

∫

M

ϕ2
i + |f |∞

∫

∂M

ϕ2
i + β + ǫ

≤ |H |∞
β + ǫ

λ
+ |f |∞ + β + ǫ.

Consequently, the functions ϕi are uniformly bounded in H1,2(M).

Since also the embeddings from H1,2(M)→L2(∂M) and H1,2(M)→L2(M)
are compact there exists a subsequence of the sequence {ϕi}, named also {ϕi},
that converges weakly to ϕ in H1,2(M) and satisfies

1 =

∫

∂M

ϕ2
i →

∫

∂M

ϕ2,

∫

M

Hϕ2 = lim
i→∞

∫

M

Hϕ2
i

and ∫

∂M

fϕ2 = lim
i→∞

∫

∂M

fϕ2
i

the lower semicontinuity of the Dirichlet integral implies that
∫

M

|∇ϕ|2 ≤ lim
i→∞

inf

∫

M

|∇ϕi|
2,

hence

E(ϕ) ≤ lim
i→∞

inf

∫

M

Hϕ2
i +

∫

∂M

fϕ2
i +

∫

M

|∇ϕi|
2 = β

and therefore β = E(ϕ).

Now assume β < 0. Let ϕi be a minimizing sequence with
∫
∂M

ϕ2
i = 1.

Suppose that
∫
M
ϕ2
i → ∞ as i → ∞. Then there exists ǫ > 0 such that

β < E(ϕi) < β + ǫ < 0.

Let us define the functions ψi =
ϕi

( ∫
M
ϕ2
i

) 1
2

. Arguing as in the previous

proposition we find that a subsequence {ψi} converges weakly to a function ψ

in H1,2
0 (M).

Since β is finite then the first eigenvalue of the problem (11) is ρ > 0. From
here we get

0 < ρ ≤

∫

M

|∇ψ|2 +

∫

M

Hψ2 ≤ lim
i→∞

inf E(ψi),

which is a contradiction with E(ψi) < 0 and consequently the sequence
∫
M
ϕ2
i

is bounded. Reasoning as in the case β ≥ 0 we find a function ϕ with β = E(ϕ).
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Since ϕ is the minimum of the functional E constrained to C, using Lagrange
multipliers we have

E′(ϕ)(ψ) = γG′(ϕ)(ψ)

for some real number γ and for all ψ in H1,2(M). Hence

∫

M

∇ϕ · ∇ψ +

∫

M

Hϕψ +

∫

∂M

fϕψ = γ

∫

∂M

ϕψ.

If ψ = ϕ then β = E(ϕ) = γG(ϕ) = γ, and consequently ϕ is a weak
solution of the problem (7). By the regularity Theorem of Cherrier [1] the
function ϕ satisfies (7). We can choose the function ϕ ≥ 0 taking |ϕ| instead of
ϕ if necessary. Using the maximum principle we find that ϕ > 0. �X

3. Uniqueness Theorems

The purpose of this section is to show the validity of our uniqueness theorems.
In Lemma 1, the inequality g̃ > g means that g̃ = ϕg where ϕ is a smooth
function greater than one.

Lemma 1. Let (Mn, g) be a compact Riemannian manifold with boundary and

Rg ≥ 0. Suppose that g̃ ∈ [g], Rg = Rg̃ in M and hg = hg̃ on ∂M . If λ = 0
then g̃ = g and if λ > 0 then g̃ = g or g̃ > g.

Proof. First consider the case n ≥ 3. Let g̃ = u
4

n−2 g and v = u
−2
n−2 − 1. A

straightforward calculation shows that





∆v =
2n

(n− 2)2
u−

2(n−1)
n−2 |∇u|2 −

Rg

2(n− 1)
v
(
u

2
n−2 + 1

)
, in ∂M ;

∂v

∂η
= hgv, on ∂M.

(15)

Let f be a positive eigenfunction associated to the first Dirichlet eigenvalue
of the operator (L1, B1). Thus f satisfies the boundary value problem (4).

Setting w =
v

f
, since Rg ≥ 0 we get

wRg

2(n− 1)

(
1− u

2
n−2

)
=
u−

2
n−2Rg

2(n− 1)f

(
1− u

2
n−2

)2
≥ 0, (16)

and therefore





∆w + 2
f
∇f · ∇w − λw =

2nu
−

2(n−1)
n−2

f(n−2)2 |∇u|2 +
wRg

2(n−1)

(
1− u

2
n−2

)
≥ 0, in M ;

∂w

∂η
= 0, on ∂M.

(17)
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Let w(x0) = max{w(x) | x ∈ M}. If x0 ∈ ∂M , since
∂w(x0)

∂η
= 0, by

Hopf’s Lemma we get w(x0) < 0 or w is a nonnegative constant. If w(x0) < 0
then g̃ > g. If w is a nonnegative constant, from the equations (17) and the
hypothesis λ ≥ 0, we get

0 ≥ −λw =
2n

f(n− 2)2
u−

2(n−1)
n−2 |∇u|2 +

u−
2

n−2Rg

2(n− 1)f

(
1− u

2
n−2

)2
≥ 0, (18)

that is,

2n

f(n− 2)2
u−

2(n−1)
n−2 |∇u|2 +

u−
2

n−2Rg

2(n− 1)f

(
1− u

2
n−2

)2
= 0, (19)

hence ∇u = 0 and u is a constant. From equations (2), using that Rg and hg
do not vanish simultaneously we conclude that u = 1 and g̃ = g.

If x0 ∈ M r ∂M and λ = 0 the maximum principle implies that w is a
constant, therefore we get again the equation (19) and as before, we conclude
that g̃ = g.

Finally, if x0 ∈Mr∂M and λ > 0, applying the maximum principle we get
that w is a nonnegative constant or w < 0. In the case that w is a nonnegative
constant, we conclude that g̃ = g, as before. If w < 0 then u > 1 and g̃ > g.
In the case n = 2, set g̃ = e2ug, Kg = Kg̃, kg = kg̃ and v = e−u − 1. Then v

satisfies




∆v = e−u|∇u|2 −Kgv(1 + eu), in M ;
∂v

∂η
= −hgv, on ∂M.

(20)

Let f be a positive eigenfunction associated to the first Dirichlet eigenvalue
of the operator (L1, B1). Since f is a solution of the boundary value problem (4),

the function w =
v

f
satisfies





∆w +
2

f
∇f · ∇w − λ1(L1, B1)w =

e−u

f
|∇u|2 +Kg

e−u

f
(1− eu)2 ≥ 0, in M ;

∂w

∂η
= 0, on ∂M.

(21)

Let w(x0) = max{w(x) | x ∈M}. Arguing as in the case n ≥ 3, if x0 ∈ ∂M

then w(x0) < 0 or w is a nonnegative constant. If w(x0) < 0 then g̃ > g. If w
is a nonnegative constant, from the equations (21) and the hypothesis λ ≥ 0,
we get

0 ≥ −λw =
e−u

f
|∇u|2 +Kg

e−u

f
(1 − eu)2 ≥ 0, (22)
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that is,

e−u

f
|∇u|2 +Kg

e−u

f
(1 − eu)2 = 0, (23)

hence ∇u = 0 and u is a constant. From equations (1), using that Kg and kg
do not vanish simultaneously we conclude that u = 0 and g̃ = g.

If x0 ∈ M r ∂M and λ = 0 the maximum principle implies that w is a
constant, therefore we get again the equation (23) and as before, we conclude
that g̃ = g.

Finally, if x0 ∈Mr∂M and λ > 0, applying the maximum principle we get
that w is a nonnegative constant or w < 0. In the case that w is a nonnegative
constant, we conclude that g̃ = g, as before. If w < 0 then u > 0 and g̃ > g. �X

Theorem 3. Let (Mn, g) be a compact Riemannian manifold with boundary

and Rg ≥ 0. Suppose that g̃ ∈ [g], Rg = Rg̃ and hg = hg̃. If both λ and λ̃ are

positive or none of them is equal to zero then g̃ = g.

Proof. If either λ or λ̃ vanishes then the previous lemma yields to g = g̃. If
both λ and λ̃ are positive, the previous lemma implies that g > g̃ or g = g̃ and
g < g̃ or g = g̃. Hence, the only possibility is g̃ = g. �X

It is clear that β ≥ 0 if and only if λ ≥ 0 and β = 0 if and only if λ = 0.
This fact and Theorems 1 and 3 yield, respectively, to the followings theorems:

Theorem 4. Let (Mn, g) be a compact Riemannian manifold with boundary

and hg ≤ 0. Suppose that g̃ ∈ [g], Rg = Rg̃ and hg = hg̃. If both β and β̃ are

positive or none of them is equal to zero then g̃ = g.

Theorem 5. Let (Mn, g) be a compact Riemannian manifold with boundary

and Rg ≥ 0. Suppose that g̃ ∈ [g], Rg = Rg̃ and hg = hg̃. If both β and β̃ are

positive or none of them is equal to zero then g̃ = g.
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