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Abstract. We characterize the Fucik spectrum (see [9]) of a class selfadjoint
operators. Our characterization relies on Lyapunov-Schmidt reduction argu-
ments. We use this characterization to establish the existence of solutions for
a semilinear wave equation. This work has been motivated by the authors’ re-
sults in [4] where one dimensional second order ordinary differential equations
are studied.
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Resumen. Se caracteriza el espectro de Fucik (véase [9]) de una clase de oper-
adores autoadjuntos. Basamos esta caracterización en el método de reducción
de Lyapunov-Schmidt. Usamos esta caracterización para demostrar la exis-
tencia de soluciones a una ecuación de onda semilineal. Este trabajo ha sido
motivado por los resultados de los autores en [4] donde se estudian ecuaciones
diferenciales ordinarias de segundo orden.

Palabras y frases clave. Espectro de Fucik, principio de puntos de silla, com-
portamiento asintótico.

1. Introduction

Let Ω be a measurable subset in R
n and L a selfadjoint operator with dis-

crete spectrum acting on L2(Ω), the space of square integrable functions in
Ω. Examples of such operators are the Laplacian (∆) subject to Dirichlet or
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24 ALFONSO CASTRO & CHEN CHANG

Neumann boundary conditions in smooth bounded regions, and the wave op-
erator (� ≡ ∂tt − ∂xx) acting on 2π-periodic functions in the variable t that
also satisfy the Dirichlet boundary condition u(0, t) = u(π, t) = 0 (see [2]).

The Fucik spectrum of L, F , is the set of pairs (a, b) ∈ R
2 for which the

equation

Lu = au+ − bu− in Ω (1)

has a non-zero solution, where u+(x) = max{u(x), 0}, and u−(x) =
max{−u(x), 0}. This concept was introduced by S. Fucik in [9] in the context
of differential equations.

Remark 1. If u 6= 0 satisfies (1) then v = −u satisfies Lv = bv+ − av−. That
is, F is symmetric with respect to the main diagonal in R

2. Since −L also has
discrete spectrum, without loss of generality, we restrict our analysis to the
case b > a. Also by adding to L an adequate multiple of the identity one may
assume b > a > 0.

In order to establish our main result (Theorem 2 below) we recall the fol-
lowing global reduction principle (see [3]).

Theorem 1. Let H be a separable real Hilbert space. Let X,Y be closed sub-
spaces such that H = X ⊕ Y , and J : H → R a functional of class C1. If there
exists m > 0 such that

〈∇J(x1 + y)−∇J(x2 + y), x1 − x2〉 ≤ −m‖x1 − x2‖
2 (2)

for all x1, x2 ∈ X, y ∈ Y , then there exists a continuous function r : Y → X
such that

• J(y + r(y)) = max{J(y + x) | x ∈ X}.

• J̃ : Y → R defined by J̃(y) = J(y + r(y)) is of class C1.

• x+ y is a critical point of J if and only if x = r(y) and y is critical point

of J̃ .

We let 0 < λ1 < λ2 < · · · < λn < · · · and 0 ≥ λ0 > λ−1 > · · · > λ−n > · · ·
denote the eigenvalues of L, and we assume that they do not have accumulation
points in R. That is, if the set {λi | i = 1, . . .} has infinitely many elements
then limi→∞ λi = +∞. Similarly, if the set {λ−i | i = 1, . . .} has infinitely
many elements then limi→∞ λ−i = −∞.

Let {ϕj,k | k = 1, 2, . . .} denote an orthonornal set of functions that span
the set of eigenvectors corresponding to the eigenvalue λj . We will denote by
N(j) the multiplicity of the eigenvalue λj , which need not be finite. We assume
the set {φj,k | j = 0,±1, . . . ; k = 1, . . . , N(j)} to be complete in L2(Ω). Let H
denote the subspace of L2(Ω) of elements of the form
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u =

∞,N(j)∑

j=−∞,k=1

aj,kϕj,k (3)

such that
∞,N(j)∑

j=−∞,k=1

|λj |(aj,k)
2 < ∞. (4)

It is easily seen that H is a Hilbert space under the inner product

〈
∞,N(j)∑

j=−∞,k=1

aj,kϕj,k,

∞,N(j)∑

j=−∞,k=1

bj,kϕj,k

〉

1

=

∞,N(j)∑

j=−∞,k=1

(1 + |λj |)aj,kbj,k. (5)

We denote by ‖ · ‖1 the norm defined by the inner product 〈 , 〉1.

We let ga,b ≡ g : R → R be given by

g(t) = at for t ≥ 0 and g(t) = bt for t ≤ 0. (6)

For u as in (3) and v =
∑∞,N(j)

j=−∞,k=1 bj,kϕj,k we define

B(u, v) =

∞,N(j)∑

j=−∞,k=1

λjaj,kbj,k. (7)

With u as in (3), let J : H → R be defined by

Ja,b(u) ≡ J(u) = (1/2)

(
B(u, u)−

∫

Ω

u(x)g
(
u(x)

)
dx

)
. (8)

Note that if L(u) ∈ L2(Ω), i.e. if
∑∞,N(j)

j=−∞,k=1 |λ
2
j |(aj,k)

2 < ∞, then

B(u, v) =
〈
L(u), u

〉
0
, (9)

where 〈 , 〉0 denotes the usual inner product in L2(Ω). Standard calculations

prove that, for u as in (3) and v =
∑∞,N(j)

j=−∞,k=1 bj,kϕj,k,

〈
∇J(u), v

〉
1
= lim

t→0

J(u + tv)− J(u)

t

=

∞,N(j)∑

j=−∞,k=1

λjaj,kbj,k −

∫

Ω

g
(
u(x)

)
v(x) dx

= B(u, v)−

∫

Ω

g
(
u(x)

)
v(x) dx.

(10)
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For a ∈ (λj , λj+1) and b ≥ a, let X denote the closure of the subspace of H
generated by the eigenfunctions corresponding to the eigenvalues λl with l ≤ j,
and Y the closure of the subspace generated by the eigenfunctions generated
by the eigenvalues λl with l > j. Hence, for x1, x2 ∈ X and y ∈ Y , we have

〈
∇J(x1 + y)−∇J(x2 + y), x1 − x2

〉
1

= B(x1 − x2, x1 − x2)−

∫

Ω

(x1 − x2)
(
g(x1 + y)− g(x2 + y)

)
dξ

≤ B(x1 − x2, x1 − x2)− a‖x1 − x2‖
2
0 ≤ −m‖x1 − x2‖

2
1, (11)

where m ≡ m(a) = inf
{
(a− λi)/(1 + |λi|) | i ≤ j

}
> 0. Note that m > 0 since{

(a − λi)/(1 + |λi|)
}
i
is either finite set of positive numbers or a sequence of

positive numbers that converges to +1. Therefore (2) is satisfied and, hence,
for each pair (a, b) there exists a continuous function ra,b ≡ r satisfying the
properties in Theorem 1. For future reference, and using that g is homogeneous
of degree one, we note that for any x ∈ X and λ > 0 we have

0 = λ

(
B(r(y), x) −

∫

Ω

xg
(
y + r(y)

)
dζ

)

= B
(
λr(y), x

)
−

∫

Ω

xg
(
λy + λr(y)

)
dζ.

(12)

Hence

r(λy) = λr(y) for any λ > 0. (13)

In the next two lemmas we prove that the functions ra,b are compact and
depend continuously on (a, b).

Lemma 1. Let N(l) < ∞ for all l > j. If {yn}n converges weakly to y then{
ra,b(yn)

}
n
contains a subsequence that converges to ra,b(y).

Proof. For the sake of simplicity in the notation, throughout this proof we write
r for ra,b, and g for ga,b. Let {yn}n converge weakly to y. Since

m‖r(yn)‖
2
1 ≤ −

〈
∇Ja,b

(
yn + r(yn)

)
−∇Ja,b(yn), r(yn)

〉
1

=
〈
∇Ja,b(yn), r(yn)

〉
1

= −

∫

Ω

g(yn)r(yn) dξ

≤ b‖yn‖0‖r(yn)‖0,

(14)

the sequence
{
r(yn)

}
is bounded. Since N(l) < ∞ for all l > j, the imbedding

of Y into L2(Ω) is compact. Thus, without loss of generality, we may assume
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that {yn} converges in L2(Ω) to y. From the definition of r we have

(a− λj)‖r(yn)− r(ym)‖20 + a‖yn − ym‖20

≤ −B
(
r(yn)− r(ym), r(yn)− r(ym)

)

+

∫

Ω

(
g(yn + r(yn))− g(ym + r(ym))

)(
yn + r(yn)− r(ym)− ym

)
dζ

=

∫

Ω

(
g(yn + r(yn))− g(ym + r(ym))

)
(yn − ym) dζ. (15)

Since {yn} is a Cauchy sequence in L2(Ω) and
{
g
(
yn + r(yn)

)}
is bounded

in L2(Ω), the last term in (15) tends to zero, which proves that {r(yn)} is
a Cauchy sequence in L2(Ω). Let z be the limit of {r(yn)} in L2(Ω). Hence
g(yn + r(yn)) converges to g(y + z), and

0 = B(z, x)−

∫

Ω

g(y + z)x dξ (16)

for any x ∈ X . By the uniqueness of r(y) we conclude that z = r(y), which
proves the lemma. �X

Lemma 2. If {(an, bn)}n converges to (a, b), b > a, bn > an and a, an ∈
(λj , λj+1), then

{
ran,bn(y)

}
n
converges to ra,b(y) for each y ∈ Y , i.e., r depends

continuously on (a, b).

Proof. Letting z = ran,bn(y)− ra,b(y), from the definition of r we have

0 = B(z, z)−

∫

Ω

(
gan,bn

(
y + ran,bn(y)

)
− ga,b

(
y + ra,b(y)

))
z dξ

= B(z, z)−

∫

Ω

(
gan,bn

(
y + ran,bn(y)

)
− gan,bn

(
y + ra,b(y)

))
z dξ

−

∫

Ω

(
gan,bn

(
y + ra,b(y)

)
− ga,b

(
y + ra,b(y)

))
z dξ. (17)

From (11), (17), and the fact that (gan,bn(t)− gab(t))/t converges to 0 uni-
formly for t ∈ R as n → ∞, we have

m‖z‖21 ≤
∥∥gan,bn

(
y + ra,b(y)

)
− ga,b

(
y + ra,b(y)

)∥∥
0
‖z‖0. (18)

Hence, given ǫ > 0 there exists N such that if n ≥ N then

m‖z‖1 ≤
∥∥gan,bn

(
y + ra,b(y)

)
− ga,b

(
y + ra,b(y)

)∥∥
0
≤ ǫ, (19)

which proves the lemma. �X

Our main result is the following.
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Theorem 2. If a ∈ (λj , λj+1), N(l) < ∞ for l ≥ j + 1, and b1(a) ≡ b1 =

sup
{
b ≥ a | J̃a,β(y) = Ja,β

(
y + ra,β(y)

)
> 0 for all β ∈ (a, b), y ∈ Y − {0}

}
,

then

a) (a, b1) is in the Fucik spectrum when b1 < +∞.

b) If b ∈ [a, b1) then (a, b) is not in the Fucik spectrum.

c) For b > a, (a, b) is in the Fucik spectrum if and only if the restric-

tion of J̃a,b to {y ∈ Y | ‖y‖1 = 1} has a critical point on {y ∈ Y |

‖y‖1 = 1, J̃a,b = 0}.

d) The function b1 : (λj , λj+1) → [0,+∞], a → b1(a) is non-increasing and
continuous.

Remark 2. In general, even when X is finite dimensional, b1(a) need not be
finite for all a ∈ (λj , λj+1). For example, it is easily seen that for a ∈ (0, 0.25]
the equation

−u′′ = au+ − bu− in (0, π), u′(0) = u′(π) = 0 (20)

has no non-trivial solution. That is, b1(a) = +∞ for all a ∈ (0, 0.25]. In this
case λ0 = 0 and λ1 = 1.

In Lemma 7 we present a sufficient condition for b1(a) to be finite for all
a ∈ (λj , λj+1). See Remark 3 for an application of Lemma 7.

For recent results on variational characterizations of the Fucik spectrum the
reader is referred to [10] and [11] where a different variational characterization
of the Fucik spectrum is provided. Unlike the results of [10] and [11], Theorem 2
includes operators L with infinitely many positive and infinitely many negative
eigenvalues which may have infinite multiplicity. This allows for applications
to non-elliptic problems such as the wave equation (21) below. Theorem 2 was
motivated by the authors’ work in [4] where the existence of periodic solutions
for a semilinear ordinary differential equation is established using that the
corresponding potential is asymptotically equal to uga,b(u)/2 with (a, b) not
in the Fucik spectrum. For other results on the Fucik spectrum the reader is
referred to [1, 6, 5, 8, 7, 12]; none of which study (1) in the generality presented
here.

As an application of Theorem 2 we establish the existence of weak solutions
for the semilinear wave equation

utt(x, t) − uxx(x, t) = h
(
u(x, t)

)
+ p(x, t), for x ∈ (0, π), t ∈ R

u(x, t) = u(x, t+ 2π), for x ∈ (0, π), t ∈ R,

u(0, t) = u(π, t) = 0, for t ∈ R.

(21)
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where h : R → R is a continuous function, p ∈ L2
(
(0, π) × (0, 2π)

)
, and p is

2π-periodic in the variable t. The spectrum of � = ∂tt − ∂xx, D’Alembert’s
operator is given by {k2 − j2 | k = 1, 2, . . . , j = 0, 1, . . .}. Thus λ0 = 0, λ1 = 1.
We assume that h′(t) ≥ ǫ > 0 for all t ∈ R. We let H(s) =

∫ s

0 h(t) dt, and
assume that that there exists positive real numbers a, b such that

lim sup
s→+∞

2H(s)

s2
= a, lim sup

s→−∞

2H(s)

s2
= b, (22)

a ∈ (0, 1) and b ∈
(
a, b1(a)

)
, (23)

where b1 ≡ b1(a) is as in Theorem 2.

Using Theorem 2 we prove the following result.

Theorem 3. If (22) and (23) hold, then the equation (21) has a weak solution.

For the version of Theorem 3 to ordinary differential equations see [4]. The
reader is invited to compare this result with Theorem 1 of [2] where an ex-
istence result for (21) is established when (a, b) is restricted to the rectangle
(0, 1) × (0, 1).

2. Proof of Theorem 2

Without loss of generality we may assume that a > 0.

First we note that b1 ≥ λj+1. In fact, if b ∈ [a, λj+1) then, for y 6= 0,

J̃a,b(y) = Ja,b
(
y + r(y)

)

≥ Ja,b(y)

= B(y, y)−

∫

Ω

y(ξ)ga,b
(
y(ξ)

)
dξ

≥ B(y, y)− b

∫

Ω

y2(ξ) dξ

≥
λj+1 − b

λj+1
B(y, y)

> 0.

(24)

Next we relate the Fucik spectrum of L with the critical points of Ja,b.

Lemma 3. The pair (a, b) ∈ F if and only if Ja,b has a nonzero critical point.
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Proof. If u 6= 0 is a solution to (1) then multiplying (1) by v and using (9) we
have

0 = 〈L(u), v〉0 −

∫

Ω

ga,b(u)v dζ

= B(u, v)−

∫

Ω

ga,b(u)v dζ

= 〈∇Ja,b(u), v〉1.

(25)

Thus u is a critical point of Ja,b.

On the other hand, if u =
∑∞,N(j)

j=−∞,k=1 aj,kϕj,k 6= 0 is a critical point of Ja,b
letting

ul− =

0,min{N(j),l}∑

j=−l,k=1

aj,kϕj,k and ul+ =

l,min{N(j),l}∑

j=1,k=1

aj,kϕj,k, (26)

we see that L(ul−), L(ul+) ∈ H and {ul−+ul+}l converges to u in H , hence in
L2(Ω). Thus 0 = 〈∇Ja,b(u), L(ul+) − L(ul−)〉1. This and the fact that L(ul+)
and L(ul−) are in orthogonal subspaces give

‖L(ul+) + L(ul−)‖
2
0 = ‖L(ul+)− L(ul−)‖

2
0

=

0,min{N(j),l}∑

j=−l,k=1

λ2
j,ka

2
j,k +

l,min{N(j),l}∑

j=1,k=1

λ2
j,ka

2
j,k

= B
(
u, L(ul+)− L(ul−)

)

=

∫

Ω

(
L(ul+)− L(ul−)

)
ga,b(u)

≤ ‖L(ul+)− L(ul−)‖0‖ga,b(u)‖0.

(27)

Thus
{
‖L(ul+) + L(ul−)‖

2
0

}
l
is bounded, which implies that

{
L(ul− + ul+)

}
l

defines a Cauchy sequence in L2(Ω). Since L si assumed to be selfadjoint, hence
closed, u is in the domain of L. That is L(u) ∈ L2(Ω). Hence for all v ∈ L2(Ω)

∫

Ω

vga,b(u) = B(u, v) = 〈L(u), v〉0. (28)

Thus L(u) = ga,b(u) = au+ − bu−, which proves the lemma. �X

Lemma 4. If b ∈ [a, b1) then (a, b) /∈ F .
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Proof. By the definition of b1, if b ∈ [a, b1) then J̃a,b(y) > 0 for any y ∈ Y with
‖y‖ = 1. Hence

〈
∇Ja,b

(
y + r(y)

)
, y + r(y)

〉
1

= B
(
y + r(y), y + r(y)

)
−

∫

Ω

(
y + r(y)

)
ga,b
(
y + r(y)

)
dζ

= 2Ja,b
(
y + r(y)

)

= 2J̃a,b(y)

> 0.

(29)

Thus, by Theorem 1, ∇J(y+x) 6= 0 for y+x 6= 0, which proves the lemma. �X

Lemma 5. If b1(a) < ∞ and N(l) < ∞ for all l ≥ j + 1, then there exists
y0 ∈ Y with ‖y0‖1 = 1 and such that

J̃a,b1(y0) = 0 = min
{
J̃a,b1(y) | ‖y‖1 = 1

}
.

Proof. By the definition of b1 there exists a sequence {βi}i converging to b1
and a sequence {yi}i with ‖yi‖1 = 1 such that J̃a,βi

(yi) ≤ 0. Using again that
λj → +∞ as j → ∞, one sees that {yi} has a subsequence that converges
strongly in L2(Ω). For the sake of simplicity in the notations we denote by {yi}
such a subsequence and denote by ŷ its weak limit in H which is its strong
limit in L2(Ω). Since, by the definition of X,Y , the functional Ja,βi

satisfies (2)
we have

m‖ra,βi
(yi)‖

2
1 ≤ −

〈
∇Ja,βi

(
yi + ra,βi

(yi)
)
−∇Ja,βi

(yi), ra,βi
(yi)

〉
1

=
〈
∇Ja,βi

(yi), ra,βi
(yi)

〉
1

= −

∫

Ω

ra,βi
(yi)ga,βi

(yi) dζ.

(30)

Since |ga,βi
(t)| ≤ c|t| for some constant c independent of i and t, we see that

{ra,βi
(yi)} is bounded in H . Let us also see that {ra,βi

(yi)}i is also a Cauchy
sequence in H . In fact, letting zk = ra,bk(yk) we have

m‖zi − zj‖
2
1 ≤ −

〈
∇Ja,βi

(yi + zi)−∇Ja,βi
(yi + zj), zi − zj

〉
1

= B(zj , zi − zj)−

∫

Ω

(zi − zj)
(
ga,βi

(yi + zj)
)
dζ

=

∫

Ω

(zi − zj)
(
ga,βj

(yj + zj)− ga,βi
(yi + zj)

)
dζ

=

∫

Ω

(zi − zj)
(
ga,βj

(yj + zj)− ga,βj
(yi + zj)

)
dζ

+

∫

Ω

(zi − zj)
(
ga,βj

(yi + zj)− ga,βi
(yi + zj)

)
dζ

≡ I1 + I2.

(31)
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An elementary calculation shows that |ga,βj
(s) − ga,βj

(t)| ≤ βj |s − t| for any
s, t ∈ R. Hence

∥∥(ga,βj
(yj + zj)− ga,βj

(yi+ zj)
)∥∥

0
converges to 0 as i, j tend to

infinity. This and the fact that {zi}i is bounded in L2(Ω) (see (30)) prove that
the integral I1 in (31) converges to zero as i, j → +∞. The term I2 converges
to zero as i, j → +∞ because {zi}i is bounded in L2(Ω) and {βi}i converges.
Let lim zi = z ∈ X . Therefore, for any x ∈ X , we have

0 = lim
i→∞

(
B(zi, x)−

∫

Ω

xga,βi
(yi + zi) dζ

)

= B(z, x)−

∫

Ω

xga,b1(ŷ + z) dζ,

(32)

which implies that z = ra,b1(ŷ).

From (30) we see that if ŷ = 0, limi→∞ ‖zi‖ = 0. On the other hand, since

J̃a,βi
(yi) ≤ 0 we have

0 ≥ lim sup
i→∞

2J̃a,βi
(yi)

= lim
i→∞

(
B(yi, yi) +B(zi, zi)−

∫

Ω

(yi + zi)ga,βi
(yi + zi) dζ

)
,

(33)

which contradicts that B(yi, yi) ≥
(
λj+1/(λj+1+1)

)
‖yi‖

2
1 = λj+1/(λj+1+1) >

0 and limi→∞

(
B(zi, zi)−

∫
Ω
(yi + zi)ga,βi

(yi + zi) dζ
)
= 0. Thus ŷ 6= 0.

From the definition of r we have 0 = B(zi, zi)−
∫
Ω
ziga,βi

(yi + zi) dζ. Thus

2J̃a,b1(ŷ) = B(ŷ, ŷ) +B
(
r(ŷ), r(ŷ)

)
−

∫

Ω

(
ŷ + r(ŷ)

)
ga,b1

(
ŷ + r(ŷ)

)
dζ

≤ lim inf
i→∞

B(yi, yi)−

∫

Ω

ŷga,b1
(
ŷ + r(ŷ)

)
dζ

= lim inf
i→∞

(
B(yi, yi)−

∫

Ω

yiga,βi
(yi + zi) dζ

)

≤ 0.

(34)

Since J̃(λy) = J
(
λy + r(λy)

)
= λ2J(y + r(y)) we have J̃a,b1

(
(1/‖ŷ‖)ŷ

)
≤ 0,

which proves that
inf
{
J̃a,b1(y) | ‖y‖1 = 1

}
≤ 0. (35)

Assuming that J̃a,b1(y) < 0 for some y with ‖y‖1 = 1, by the continuity of r for

ǫ > 0 close to zero we have J̃a,b1−ǫ(y) < 0. Since this contradicts the definition

of b1 we have inf
{
J̃a,b1(y) | ‖y‖1 = 1

}
= 0. Taking y0 = (1/‖ŷ‖1)ŷ the lemma

is proven. �X

Lemma 6. For y0 as in Lemma 5 we have ∇J̃(y0) = 0.
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Proof. Since y0 is a critical point of J̃a,b1 restricted to the unit sphere in H , by

the Lagrange multipliers rule there exists λ ∈ R such that ∇J̃a,b1(y0) = λy0.
Thus

0 = 2J̃a,b1(y0)

= B(y0, y0) +B
(
r(y0), r(y0)

)
−

∫

Ω

(
y0 + r(y0)

)
ga,b1

(
y0 + r(y0)

)
dζ

=
〈
∇J̃a,b1(y0), y0

〉
1

= λ〈y0, y0〉1,

(36)

which implies that λ = 0 since ‖y0‖1 = 1. Hence y0 is a critical point of J̃a,b1
which proves the lemma. �X

Proof. (Theorem 2)

• Part a) of Theorem 2 follows from Lemmas 5-6.

• Part b) was proved in Lemma 4.

• Since also
〈
∇Ja,b(x + y), x + y

〉
= 2J(x + y) = J̃(y) we have that the

critical points of J are the critical points of J̃ restricted to the unit sphere
with J̃(y) = 0, which proves part c).

• Now we prove part d). Let ŷ be such that

0 = J̃a,b1(a)(ŷ) = Ja,b1(a)
(
ŷ + ra,b1(a)(ŷ)

)

= min
{
Ja,b1(a)(y + ra,b1(a)(y)) | y ∈ Y, ‖y‖1 = 1

}
.

(37)

Since L
(
ŷ+ra,b1(a)(ŷ)

)
= ga,b1(a)

(
ŷ+ra,b1(a)(ŷ)

)
and a is not an eigenvalue

of L, ŷ + ra,b1(a)(ŷ) is not a positive function. Hence, letting Ga,b(u) =
(1/2)uga,b(u), for any δ > 0 we have

2J̃a,b1(a)+δ(ŷ)

= max
x∈X

{
B(x+ ŷ, x+ ŷ)−

∫

Ω

Ga,b1(a)+δ(x+ ŷ)

}

= max
x∈X

{
B(x+ ŷ, x+ ŷ)−

∫

Ω

Ga,b1(a)(x+ ŷ)−

∫

Ω

G0,δ(x+ ŷ)

}

= B
(
ra,b1(a)+δ(ŷ) + ŷ, ra,b1(a)+δ(ŷ) + ŷ

)

−

∫

Ω

Ga,b1(a)

(
ra,b1(a)+δ(ŷ) + ŷ

)
−

∫

Ω

G0,δ

(
ra,b1(a)+δ(ŷ) + ŷ

)

< 0,

(38)
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where we have used that if ra,b1(a)+δ(ŷ) 6= ra,b1(a)(ŷ), then

B
(
ra,b1(a)+δ(ŷ) + ŷ, ra,b1(a)+δ(ŷ) + ŷ

)

−

∫

Ω

Ga,b1(a)

(
ra,b1(a)+δ(ŷ) + ŷ

)
dζ < 0, (39)

while if ra,b1(a)+δ(ŷ) = ra,b1(a)(ŷ) then −
∫
Ω G0,δ

(
ra,b1(a)+δ(ŷ)+ ŷ

)
dζ < 0

since ra,b1(a)(ŷ) + ŷ is not a positive function.

Arguing as in (38) we see that for any δ ∈ (0, λj+1 − a),

J̃a+δ,b1(a)(ŷ) ≤ 0. (40)

Hence b1(a+δ) ≤ b1(a), which proves that b1 is a non-increasing function.

Let {an}n be a sequence in (λj , λj+1) converging to a. Suppose that
b1(an) ≤ b1(a) − δ for some δ > 0. By the definition of b1(an) there

exists yn ∈ Y with ‖yn‖1 = 1 such that J̃an,b1(an)(yn) = 0. Since Y is
compactly imbedded in L2(Ω), we may assume without loss of generality
that {yn} converges weakly to y in Y and that {yn} converges strongly
to y in L2(Ω). Since

B(yn − ym, yn − ym)

=

∫

Ω

(yn − ym)
(
gn
(
yn + rn(yn)

)
− gm

(
ym + rm(ym)

))
dζ, (41)

where gn = gan,b1(an), rn = ran,b1(an), similarly gm, rm. Hence {yn}n con-
verges strongly to y in H . Let c ≤ b1(a)− δ be a limit point of {b1(an)}n.
Without loss of generality we may assume that {b1(an)}n converges to c.
Thus

J̃a,c(y) = Ja,c
(
y + ra,c(y)

)

= lim
n→∞

Jan,b1(an)

(
y + ran,b1(an)(y)

)

= lim
n→∞

Jan,b1(an)

(
yn + ran,b1(an)(yn)

)

= 0,

(42)

which contradicts the definition of b1(a). Hence

lim inf
t→a

b1(t) ≥ b1(a). (43)

From (38) we have

lim sup
n→∞

J̃an,b1(a)+δ(y) = lim sup
n→∞

Jan,b1(a)+δ

(
y + ran,b1(a)+δ(y)

)

= Ja,b1(a)+δ

(
y + ra,b1(a)+δ(y)

)

= J̃a,b1(a)+δ(y)

< 0.

(44)

Volumen 44, Número 1, Año 2010



A VARIATIONAL CHARACTERIZATION OF THE FUCIK SPECTRUM 35

Hence, for n sufficiently large, b1(an) ≤ b1(a)+δ. Since δ > 0 is arbitrary,

lim sup
t→a

b1(t) ≤ b1(a). (45)

From (43) and (45) we conclude that b1 is continuous, which concludes
the proof of Theorem 2 �X

3. A Sufficient Condition for b1(a) < ∞

Lemma 7. If Y r {0} contains a non-negative function then b1(a) < +∞ for
all a ∈ (λk, λk+1).

Proof. Let y ∈ Y r {0} be a non-negative function. Assuming that

infx∈X

∫
Ω

(
(−y + x)−

)2
= 0, there exists a sequence {xk} ∈ X such that

0 = inf
x∈X

∫

Ω

(
(−y + x)−

)2
= lim

k→∞

∫

Ω

(
(−y + xk)−

)2
. (46)

Writing 2xk = (−y + xk) + (xk + y) = (−y + xk)+ − (−y + xk)− + (y + xk),
and using (46) we have

0 = 2

∫

Ω

xky

= lim
k→∞

∫

Ω

(
(−y + xk)+y + (y + xk)y

)
dζ

≥ ‖y‖20

> 0.

(47)

This contradiction proves that c = infx∈X

∫
Ω

(
(−y + x)−

)2
> 0. Now, for any

x ∈ X ,
2J(−y + x) = B(−y,−y)− a‖y‖20 +B(x, x) − a‖x‖20

− (b− a)

∫

Ω

(
(−y + x)−

)2
dξ

≤ B(y, y)− a‖y‖20 − c(b− a)

< 0,

(48)

for b > a+
(
B(y, y)− a‖y‖20

)
/c. Hence J̃(−y) = max{J(−y + x) | x ∈ X} < 0

and b1(a) ≤ a+
(
B(y, y)− a‖y‖20

)
/c < +∞, which proves the lemma. �X

4. Proof of Theorem 3

Let W = (0, π) × (0, 2π) and H be the vector space of elements u ∈ L2(W )
with

u(x, t) =

∞,∞∑

k=1,j=0

ak,j sin(kx) cos(jt) + bk,j sin(kx) sin(jt) (49)
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and
∞,∞∑

k=1,j=0

(
1 + |j2 − k2|

)
(a2k,j + b2k,j) < ∞. (50)

This vector space is a Hilbert space under the inner product defined by

〈u, v〉1 =

∞,∞∑

k=1,j=0

(
1 + |j2 − k2|

)
(ak,jαk,j + bk,jβk,j) δkj , (51)

where δk0 = π2, δkj = π2/2 for j > 0, u is as in (49), and v is given by

v(x, t) =

∞,∞∑

k=1,j=0

αk,j sin(kx) cos(jt) + βk,j sin(kx) sin(jt). (52)

For u, v as above, let

B(u, v) =

∞,∞∑

k=1,j=0

δkj(k
2 − j2)(ak,jαk,j + bk,jβk,j). (53)

Note that if u is a function of class C2 and �u ∈ L2(Ω) then B(u, v) =
〈�u, v〉0. Let

I(u) =

∞,∞∑

k=1,j=0

δkj
2

(k2 − j2)
(
a2k,j + b2k,j

)
−

∫

W

(Γ(u) + pu) dx dt, (54)

where Γ(t) =
∫ t

0 h(s) ds. We say that u ∈ H is a weak solution to (21) if u is a
critical point of I. Let X be the closure of the subspace of H generated by func-
tions of the type sin(kx) cos(jt), sin(kx) sin(jt) such that k2−j2 ≤ 0, and Y the
closure of the subspace of H generated by functions of the type sin(kx) cos(jt),
sin(kx) sin(jt) such that k2 − j2 ≥ 1. A straightforward calculation shows that

〈∇I(u), v〉 = B(u, v)−

∫

W

(h(u) + p)v dx dt. (55)

Since B(z, z) ≤ 0 for any z ∈ X , for y ∈ Y, z1, z2 ∈ X we have

〈
∇I(y + z1)−∇I(y + z2), z1 − z2

〉
=

B(z1 − z2, z1 − z2)−

∫

W

(
h(y + z1)− h(y + z2)

)
(z1 − z2) dx dt

≤ −ǫ‖z1 − z2‖
2
1, (56)

where ‖·‖1 denotes the norm inH . Thus by Theorem 1 there exists a continuous
function ρ : Y → X such that u ∈ H is a critical point I if and only if
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u = y + ρ(y) with y a critical point of Ĩ(y) ≡ I
(
y + ρ(y)

)
. By the continuity

of the function b1 (see Theorem 2) there exists δ > 0 such that a+ δ < 1 and
b+ δ < b1(a+ δ). By (22), there exists a real number C such that

Γ(t) ≤
1

2
tga+δ,b+δ(t) + C, for all t ∈ R. (57)

For x ∈ X and y ∈ Y , let

Ja+δ,b+δ(x + y) =
1

2

(
B(x+ y, x+ y)−

∫

W

(x+ y)ga+δ,b+δ(x + y)

)
(58)

Therefore, letting w = ra+δ,b+δ(y) we have

Ĩ(y) = I
(
y + ρ(y)

)

≥ I(y + w)

=
1

2
B(y + w, y + w)−

∫

W

(
Γ(y + w) + p(x, t)(y + w)

)
dx dt

≥
1

2

(
B(y + w, y + w)

−

∫

W

(
ga+δ,b+δ(y + w) + p(x, t)

)
(y + w) dx dt − 2π2C

)

≥ ‖y + w‖21

(
J̃a+δ,b+δ(y)

‖y + w‖21
−

‖p‖0
‖y + w‖1

−
2π2C

‖y + w‖21

)
.

(59)

Let us see that inf
{
J̃a+δ,b+δ(y) | ‖y‖ = 1

}
≡ A > 0. Let m = m(a+ δ) > 0

be as in (11). Assuming that {yk}k is a sequence in {y ∈ Y | ‖y‖1 = 1} such that

limk→∞ J̃(yk) = 0, by the compact imbedding of Y in L2(Ω) we may assume
that {yk}k converges weakly in H and strongly in L2(Ω). Let ŷ be such a limit
and, for the sake of simplicity in the notations, let Ja+δ,b+δ = J , r = ra+δ,b+δ,

and J̃a+δ,b+δ = J̃ . Arguing as in (31) we see that {r(yk)}k converges in H . Let
x̂ be such a limit. Hence, for any z ∈ X ,

〈
J(ŷ + x̂), z

〉
1
= B(x̂, z)−

∫

W

(
ga+δ,b+δ(ŷ + x̂)

)
z

= lim
k→∞

B
(
r(yk), z

)
−

∫

W

(
ga+δ,b+δ

(
yk + r(yk)

))
z

= 0.

(60)
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Thus x̂ = r(ŷ) and

2J(x̂+ ŷ) = B(x̂, x̂) +B
(
ŷ, ŷ
)
−

∫

W

(
ga+δ,b+δ(ŷ + x̂)

)
(ŷ + x̂)

≤ lim inf
k→∞

B
(
r(yk), r(yk)

)
+B(yk, yk)

−

∫

W

(
ga+δ,b+δ

(
yk + r(yk)

))(
yk + r(yk)

)

= lim inf
k→∞

J̃(yk)

= 0.

(61)

Since (a+ δ, b+ δ) is not in the Fucik spectrum of �, we have x̂ = ŷ = 0. Thus
limk→∞ B

(
r(yk), r(yk)

)
−
∫
W

(
ga+δ,b+δ(yk + r(yk))

)(
yk + r(yk)

)
= 0. On the

other hand, from the definition of B (see (53)), B(yk, yk) ≥ ‖yk‖
2
1 = 1, which

contradicts that limk→∞ J̃(yk) = 0. Thus A > 0.

Now for y ∈ Y and ρ(y) = w ∈ X ,

Ĩ(y) =
1

2
B(y + w, y + w) −

∫

W

(
Γ(y + w) + p(x, t)(y + w)

)
dx dt

≥
1

2

(
B(y + w, y + w)

−

∫

W

(
ga+δ,b+δ(y + w) + p(x, t)

)
(y + w) dx dt − 2π2C

)

≥ ‖y + w‖21

(
J̃a+δ,b+δ(y)

‖y + w‖21
−

‖p‖0
‖y + w‖1

−
2π2C

‖y + w‖21

)
.

(62)

From (14) we see that there exists c > 0, independent of y such that ‖w‖1 ≤

c‖y‖1. These and the fact that J̃ is homogeneous of degree 2 (see (13)) yield

Ĩ(y) ≥ ‖y + w‖21
(
A‖y‖21/‖y + w‖21 − ‖p‖0/‖y + w‖1 − 2π2C/‖y + w‖21

)

≥ ‖y + w‖21
(
A/(1 + c2)− ‖p‖0/‖y + w‖1 − 2π2C/‖y + w‖21

)

→ +∞ as ‖y‖ → +∞.

(63)

Arguing as in Lemma 1 we see that

N(y) =
1

2
B
(
ρ(y), ρ(y)

)
−

∫

Ω

(
Γ
(
y + ρ(y)

)
+ pρ(y)

)
dζ (64)

defines a weakly lower semicontinuous function. Thus Ĩ is the sum of a convex
function (y → B(y, y)/2−

∫
Ω pydζ) with a weakly lower semicontinuous function

(y → N(y)). Hence, by (63), Ĩ achieves its minimum at some point y0. By
Theorem 1 we conclude that y0+ρ(y0) is a critical point of I, hence a solutions
to (21). This proves Theorem 3.
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Remark 3. Since sin(x) ∈ Y , by Lemma 7, b1(a) < ∞ for all a ∈ (0, 1).
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