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Rigidity of the Stable Norm on Tori

Rigidez de la norma estable sobre toros

Osvaldo Osunaa

Universidad Michoacana, Morelia, México

Abstract. Given a closed, orientable Riemannian manifold, we study the

stable norm on the real homology groups. In particular, for n ≥ 2 we prove

that a Riemannian n-torus, which has the same stable norms as a flat n-torus

on the first and n− 1 homology groups, is in fact isometric to the flat torus.
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Resumen. Dada una variedad Riemanniana, cerrada y orientable, estudiamos

la norma estable sobre sus grupos de homoloǵıa real. En particular, para n ≥ 2

demostramos que si un n-toro Riemanniano tiene normas estables iguales a

las normas estables de un n-toro plano sobre el primer y n − 1 grupos de

homoloǵıa; entonces es isométrico a dicho toro plano.
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1. Introduction and Results

The real homology groups of a compact Riemannian manifold (M, g) are nat-
urally endowed with a norm introduced by Federer ([7]). More precisely, we
define the volume volk(σ) of a Lipschitz k-simplex σ : ∆k → M as the integral
over the k-simplex ∆k of the volume form of the pullback σ∗(g). Now, given
h ∈ Hk(M,R), we take

|h|s,g := inf

{

∑

i

|ri|volk(σi)

}

, (1)

aThe author was partially supported by C.I.C.-UMSNH. and thanks the referee for various
comments that helped improving the paper.
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where σi are k-simplexes, ri ∈ R, and
∑

riσi is a real Lipschitz cycle repre-
senting h. Note that this function defines a norm on Hk(M,R) which we call
the stable norm, and by duality it induces a stable norm |h|∗s,g on Hk(M,R).

The stable norm has been studied to some extent (see [3], [6], [11], [10], [12],
[7], [14], [9], [1], [13], [5], [4]) but important questions are still open. The goal
of this note is to study the natural question:

Let g0 and g be two Riemannian metrics on T
n, n ≥ 2. Suppose

that g0 is flat and that the stable norms associated with g0 and g on
the homology group H1(T

n,R) are equal. Are g0 and g isometric?

This question is answered affirmatively under the additional assumption
that the stable norms coincide on the homology group Hn−1(T

n,R). From now,
unless otherwise stated, we will suppose that (M, g) is orientable, volg(M) = 1
and n ≥ 2. Our main result is the following one:

Theorem 1. Let g0 and g be metrics on T
n. If g0 is flat and the stable norms of

g0 and g on H1(T
n,R) and Hn−1(T

n,R) are equal, then g0 and g are isometric.

From Theorem 1, we can recover a result of Bangert [2] (Theorem 6.1),
indeed we have

Corollary 1. Suppose that a Riemannian metric g on the 2-torus T
2 has the

same stable norm on H1(T
2,R) as a flat metric g0, then g0 and g are isometric.

Proof. We have H2−1(T
2,R) = H1(T

2,R), then the corollary follows from the
above theorem. �X

There is extensive literature with results on the stable norm in the case
of surfaces, our main theorem gives in particular a result for dimension > 2
where little is known (with valuable exceptions see [1], [5], [9]), the methods
for proving our results are an adaptation of some ideas that were used for
surfaces in [15]. An key point in our arguments is to study certain relationships
between the stable norm and Poincaré duality with the underlying geometry
of the manifold, which is of independent interest.

2. Preliminaries

Recall a pairing between two finite dimensional vector spaces

〈·, ·〉 : W × V −→ R

is non-degenerate if 〈w, v〉 = 0, ∀w ∈ W ⇒ v = 0 and 〈w, v〉 = 0, ∀v ∈ V ⇒
w = 0, from linear algebra we have W ∗ ∼= V .

Recall that for an oriented, closed manifold M , the exterior product on
forms induces a bilinear map
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Hk(M,R)×Hn−k(M,R) −→ Hn(M,R).

Using the integral we obtain a bilinear, non-degenerate pairing

Hk(M,R)×Hn−k(M,R) −→ R,
(

[ω1], [ω2]
)

:=

∫

M

ω1 ∧ ω2,

and from the above observation Hk(M,R)∗ ∼= Hn−k(M,R), which in turn
defines a linear map P : Hk(M,R) → Hn−k(M,R) (using the non-degenerate
Kronecker pairing) which is called the operator of the Poincaré duality.

We briefly recall an alternative definition of the stable norm which is more
adequate for our objectives. It is based on the notion of comass of a k-form.
Denote by Ωk(M), the space of closed k-forms on (M, g) a closed oriented
Riemannian manifold, and by dvol the volume form induced by the Riemannian
metric g. For ω ∈ Ωk(M) and 1 ≤ p ≤ ∞, we define the Lp-norm as

|ω|p,g =

{

( ∫

M
‖ωx‖

p
g dvol(x)

)
1

p , if 1 ≤ p < ∞

max
{

‖ωx‖g | x ∈ M
}

, if p = ∞,
(2)

where

‖ωx‖g := max
{

ωx(v1, . . . , vk) | |vi|g ≤ 1, 1 ≤ i ≤ k
}

(3)

is the called comass norm of the corresponding multilinear map ωx on TxM .

Now, for α ∈ Hk(M,R) and 1 ≤ p ≤ ∞, we consider

‖α‖∗p,g := inf
{

|ω|p,g | is a closed k-form representing α}. (4)

On the other hand, considering the integration of closed forms over cycles,
we have the non-degenerate Kronecker pairing

〈·, ·〉 : Hk(M,R)×Hk(M,R) −→ R.

So, we can define the dual norm ‖ · ‖p,g on Hk(M,R), more precisely, given
h ∈ Hk(M,R) and 1 ≤ p ≤ ∞, we take

‖h‖p,g := sup
{

〈h, α〉 | α ∈ Hk(M,R), ‖α‖∗p,g ≤ 1
}

. (5)

As was mentioned (see [7], 4.10) we have ‖ · ‖∞,g = | · |s,g and therefore
| · |∗s,g = ‖ · ‖∗∞,g.

Now we consider the L2-product on Hk(M,R) defined as

〈ω, η〉 =

∫

M

ω ∧ ∗η,
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where ∗ is the Hodge star operator of the metric g and we denote by ‖ω‖L2,g

the norm induced. Moreover, if p = 2 and k ∈ {1, n − 1} we have ‖ · ‖L2,g =
‖ · ‖∗2,g. The importance of this result is that it allows us to use the Hodge
theory on harmonic forms [8]. For instance, if p = 2 Hodge theory implies
that every cohomology class α ∈ Hk(M,R) contains a unique harmonic form
ω representing α; moreover, if k ∈ {1, n − 1}, then this harmonic form ω is
characterized by the equality

|ω|2,g = ‖α‖∗2,g,

and the operator of the Poincaré duality P : Hk(M,R) → Hn−k(M,R) is an
L2-isometry. In the next section, we will analyze some results when P is an
| · |s,g-isometry.

3. Proofs and Consequences

Before going to the proof of Theorem 1, we will establish a result with respect
to the norm of the operator of the Poincaré duality, which is of independent
interest.

Lemma 1. Let (Tn, g) be Riemannian torus. The operator of the Poincaré

duality P :
(

H1(T
n,R), | · |s,g

)

→
(

Hn−1(Tn,R), | · |∗s,g
)

is an isometry if and

only if | · |∗s,g = ‖ · ‖∗2,g in H l(Tn,R) for l = 1, n− 1.

Proof. First we will prove that if P : H1(T
n,R) → Hn−1(Tn,R) is an isometry

with respect to the stable norms, then | · |∗s,g = ‖ · ‖∗2,g.

Indeed, given h ∈ H1(T
n,R), by hypothesis |Ph|∗s,g = |h|s,g. Now, as it was

mentioned P is an L2-isometry, i.e., ‖Ph‖∗2,g = ‖h‖2,g.

Using the Hölder’s inequality, for α ∈ Hk(Tn,R) and 1 ≤ r ≤ t ≤ ∞ we
have

‖α‖∗r,g ≤ ‖α‖∗t,g (6)

Therefore

{〈h, α〉 | α ∈ Hk(Tn,R), ‖α‖∗2,g ≤ 1} ⊇

{〈h, α〉 | α ∈ Hk(Tn,R), ‖α‖∗∞,g ≤ 1}. (7)

By duality this yields
‖h‖2,g ≥ ‖h‖∞,g.

Now, combining the above inequalities we have

|h|s,g ≡ ‖h‖∞,g ≤ ‖h‖2,g = ‖Ph‖∗2,g ≤ ‖Ph‖∗∞,g ≡ |Ph|∗s,g. (8)

Therefore ‖Ph‖∗2,g = |Ph|∗s,g. This finishes the proof in one direction.
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Now, if

|Ph|∗s,g = ‖Ph‖∗2,g, ∀h ∈ Hl(T
n,R), l = 1, n− 1,

then the converse follows from the fact that P is an L2-isometry. The proof of
the lemma is complete. �X

Proof of the Theorem 1:

Proof. First note that:

Remark 1. if (Tn, ρ) is flat, then any differential k-form on T
n can be written

as

η =
∑

i1,...,ik

ηi1,...,ik dxi1 ∧ · · · ∧ dxik .

Since T
n is flat, then η is harmonic if and only if the functions ηi1,...,ik are

harmonic, and therefore constant. So the comass norm of ηx is constant for all
x ∈ T

n, then from the definition of Lp-norm, and the hypothesis volρ(T
n) = 1,

we have
∥

∥[η]
∥

∥

∗

p,ρ
=
∥

∥[η]
∥

∥

∗

∞,ρ
, ∀[η] ∈ Hk(Tn,R), ∀p ≥ 1.

So, by the above lemma P : H1(T
n,R, | · |s,ρ) → Hn−1(Tn,R, | · |∗s,ρ) is an

isometry.

Remark 2. The converse also is valid i.e., if for every cohomology class on
H1(Tn,R) the L2 norm coincides with its stable norm, then (Tn, ρ) is flat, see
[16], Corollary 2 or [13], Proposition 5, for a proof

Now, using Remark 1 and Lemma 1, the operator of the Poincaré duality
P is an isometry with respect to the stable norm of g0, thus

1 = |P |g0 := sup
h 6=0

{

|Ph|∗s,g0
|h|s,g0

}

= sup
h 6=0

{

|Ph|∗s,g
|h|s,g

}

=: |P |g,

the second relation follows from the equality of the stable norms, therefore P

is an | · |s,g-isometry, then by applying Lemma 1 and Remark 2 g is flat.

On the other hand, taking an orthogonal basis of harmonic 1-forms ω1, . . . , ωn

for the metric g0, this is an orthogonal basis of harmonic 1-forms for the flat
metric g, moreover the comass norms satisfy

‖ωi,x‖g = ‖ωi,x‖g0

for i = 1, . . . , n, ∀x ∈ T
n.

If we denote by
{

Xi(x) := (x, ui)
}

the vector fields induced by {ωi} via

g0 and likewise we take vector fields
{

Yi(x) := (x, vi)
}

induced by {ωi} via g,
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then the function h : (Tn, g0) → (Tn, g) defined as

h

(

n
∑

i=1

xiui

)

=

n
∑

i=1

xivi, (xi mod 1),

is an isometry. This completes the proof. �X

Of course it is of interest to know if it is possible or not to remove the
additional condition of the stable norms on Hn−1(T

n, g0) in this proposition.
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