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Abstract. In this note we give an elementary proof of the Wed-

derburn decomposition of rational quaternion and rational dihe-
dral group algebras.

Key words and phrases. Rational group algebras, Wedderburn.

2000 Mathematics Subject Classification. Primary 20C05. Sec-
ondary 16S34 .
Resumen. En esta nota se da una demostración elemental de
la descomposición de Wedderburn de las álgebras de grupo
racionales diedras y cuaterniónicas.

Let K be a field and G be a finite group. A group algebra KG over K
is a free K-module with a basis consisting of the elements of G, and with
multiplication induced by the given multiplication in G. We say that
KG is a semisimple algebra if KG =

⊕
i∈J Ni where each Ni is a simple
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right KG-module. It is well known by the theorem of Maschke (see
[4]) that KG is a semisimple algebra if and only if the characteristic of
K does not divide the order of G. In this case, by the Wedderburn’s
structure theorem we have

KG � Mn1(D1) ⊕ · · · ⊕ Mnr(Dr).

where n1, . . . , nr ∈ N and D1, . . . , Dr are division algebras over K.
However, for an arbitrary finite group it is not easy to find explicitly

its Wedderburn decomposition. In the case K = Q this decomposition
is known for groups whose orders are less or equal than 32 (see [1]), or
for some especial families of groups.

In this note we obtain explicitly the Wedderburn decomposition for
the rational dihedral algebras, and, as a consequence, the decomposition
for the rational quaternion algebras.

Our first result is the following:

Theorem 1. Let G be the dihedral group of order 2n, i.e.,

G = Dn = 〈x, y : xn = 1, y2 = 1, xy = yx−1〉.
Then

QG ∼=
⊕
d|n

Ad

where Ad
∼= Q⊕Q if d = 1, 2, and Ad

∼= M2(Q[ζd +ζ−1
d ]) if d > 2, where

ζq denotes a qth primitive root of the unit.

Proof. Let d be a positive divisor of n and ζd be a primitive d-th root
of unity. Let

τd : QG −→ Q ⊕ Q,

for d=1,2, the homomorphisms defined by τ1(x) = (1, 1) and τ1(y) =
(1,−1); τ2(x) = (−1,−1) and τ2(y) = (1,−1). If d > 2, let

τd : QG −→ M2(Q[ζd]), if (d > 2),

be defined by

τd(x) =
[

ζd 0
0 ζ−1

d

]
, τd(y) =

[
0 1
1 0

]
.
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It is clear that (τd(x))n = 1, (τd(y))2 = 1 and τd(y)−1τd(x)τd(y)−1 =
τd(x)−1. Thus τd is a well defined homomorphism for every d | n.

Let us remark that τd(QG) has dimension less than or equal to 2φ(d).
In fact, for d = 1, 2 the result is trivial. For d > 2, we consider the
matrix

Zd =
[
1 −ζd

1 −ζd−1

]
and define

σ : M2(Q[ζd]) −→ M2(Q[ζd])

by

σ(A) = Zd−1AZd , A ∈ M2(Q[ζd]).

It is not difficult to see that σ is an automorphism. Thus, both

στd(x) = Z−1
d τd(x)Zd =

[
0 1
−1 ζd + ζ−1

d

]

, στd(y) = Z−1
d τd(y)Zd =

[
1 −(ζd + ζ−1

d )
0 −1

]
,

belong to M2(Q[ζd + ζ−1
d ]). Then, the dimension of the image of τd is

less than or equal to

dim(M2(Q[ζd + ζ−1
d ])) = 4

φ(d)
2

= 2φ(d).

If Ed
∼= Q ⊕ Q for d = 1, 2, and Ed

∼= M2(Q[ζd]) for d > 2, we define
τ : QG −→ ⊕

d|n
Ed as τ =

⊕
τd. We claim that τ is a injective homo-

morphism. Indeed, suppose that u is in the kernel of τ . If we rewrite u
as

u = (a0 + a1x + · · · + an−1x
n−1) + (b0 + b1x + · · · + bn−1x

n−1)y ,

and define F1(z) = a0 + a1z + · · · + an−1z
n−1 and F2(z) = b0 + b1z +

· · · + bn−1z
n−1, then for each d | n, d > 2, we have

τd(u) =
[

F1(ζd) F2(ζd)
F2(ζ−1

d ) F1(ζ−1
d )

]
=
[

0 0
0 0

]
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Thus, F1(ζd) = 0 and F2(ζd) = 0. For d = 1, we have

τ1(u) = (F1(1) + F2(1), F1(1) − F2(1)) = 0,

and for d = 2 have

τ2(u) = (F1(−1) + F2(−1), F1(−1) − F2(−1)) = 0.

Then the roots of F1 and F2 are roots of the polynomial zn − 1. So F1

and F2 are null polynomials, and ai = bi = 0 for every i, which shows
that u = 0.

Let now
θ : QG −→

⊕
d|n

Ad ,

be the homomorphism defined by θ =
⊕

d|n θd, where θd is obtained
from τd for conjugating by Zd if d > 2, and θd = τd if d = 1, 2 and
Ad

∼= Q ⊕ Q if d = 1, 2, and Ad
∼= M2(Q[ζd + ζ−1

d ]) if d > 2. Let us
remark that that θ is injective. Furthermore, the dimension of

⊕
d|n

Ad

equals 2
∑

d|n φ(d) = 2n. Since the dimension of QG is 2n, the above
implies that θ is the isomorphism. ��

Using theorem 1, we find the Wedderburn decomposition of rational
quaternion algebras, i.e.

Theorem 2. If G is the quaternion group of order 4n, i.e.,

G = Qn = 〈x, y : x2n = 1, y2 = xn, xy = yx−1〉 .

Then
QG ∼= QDn

⊕
d=2kr
r|m

Q[ζ2d, j],

where k and m are non negative integers with m odd, such that n = 2km,
j2 = −1 and αj = jα for all α ∈ Q[ζ2d].

Before proving this theorem, we make the following remark:

Remark. Denote by
(

a, b

K

)
the quaternion algebra over the field K,

generated for i, j, where i2 = a, j2 = b and ij = −ji. Then, if d = 1,
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Q[ζ2d, j] ∼= Q(i), and if d �= 1 and writing w2d = ζ2d + ζ−1
2d , we have

Q[ζ2d, j] ∼= Q[w2d][ζ2d − ζ−1
2d , j]

∼=
(

(ζ2d − ζ−1
2d )2,−1

Q[w2d]

)
=
(

w2
2d − 4,−1
Q[w2d]

)
.

Proof. Since 〈xn〉 is a normal subgroup of G, then
1 + xn

2
and

1 − xn

2
are idempotent orthogonal elements of QG. Thus,

QG ∼= QG

(
1 + xn

2

)
⊕ QG

(
1 − xn

2

)
,

and xn plays the role of identity in QG

(
1 + xn

2

)
, so

QG

(
1 + xn

2

)
∼= QDn ,

where Dn is the dihedral group of order 2n.

Let us suppose now that n = 2km where m is odd. We intend to show
that

QG

(
1 − xn

2

)
∼=
⊕

d=2kr
r|m

Q[ζ2d, j],

where j2 = −1 and αj = jα for all α ∈ Q[ζ2d].
Let us consider the homomorphism

τ2d : QG

(
1 − xn

2

)
−→ Q[ζ2d, j] ,

where d = 2kr with r | m, defined by τ2d(x) = ζ2d and τ2d(y) = j.
It is clear that, (τ2d(x))n = ζn

2d = ζ2km
2d = −1 = j2 = (τ2d(y))2,

τ2d(y−1xyx) = 1 and τ2d

(
1 − xn

2

)
= 1. Thus τ2d is a well defined

homomorphism. Furthermore, the dimension of Q[ζ2d, j] over Q equals
2φ(2d).
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Let now

τ : QG

(
1 − xn

2

)
−→

⊕
d=2kr
r|m

Q[ζ2d, j],

where τ =
⊕
d

τ2d. Now we claim that τ is an injective homomorphism.

Indeed, suppose that u is in the kernel of τ . If now we rewrite u as

( 2n−1∑
i=0

aix
i +

2n−1∑
i=0

bix
iy

)(
1 − xn

2

)
=

1
2

( n−1∑
i=0

(ai − ai+n)(xn − xi+n) +
n−1∑
i=0

(bi − bi+n)(xn − xi+n)y
)

=

( n−1∑
i=0

(ai − ai+n)xi +
n−1∑
i=0

(bi − bi+n)xiy

)(
1 − xn

2

)
,

and define F1(z) = c0 +c1z+ · · ·+cn−1z
n−1 and F2(z) = d0 +d1z+ · · ·+

dn−1z
n−1, where ci = ai − ai+n and di = bi − bi+n with i = 0, . . . , n− 1,

then for each d we get

τ2d(u) = F1(ζ2d) + F2(ζ2d)j = 0.

Thus, F1(ζ2d) = 0 and F2(ζ2d) = 0. Then F1 and F2 have all the
roots of the polynomial zn + 1 as roots. Therefore, F1 and F2 are null
polynomials. Thus, ci = di = 0 for every i = 0, . . . , n− 1, implies u = 0,
i.e., τ is injective. Moreover, the dimension of⊕

d=2kr
r|m

Q[ζ2d, j]

equals

2
∑
r|m

φ(2k+1r) = 2k+1
∑
r|m

φ(r) = 2k+1m = 2n.

Since the dimension of QG
(

1−xn

2

)
is 2n, we conclude that τ is an iso-

morphism. ��
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In the following tables we exhibit the Wedderburn decomposition of
the rational quaternion and dihedral algebras of dimensions in the range
comprised between 16 and 32.

Group Wedderburn Decomposition
D8 QD8

∼= 4Q ⊕ M2(Q) ⊕ M2(Q[
√

2])
D9 QD9

∼= 2Q ⊕ M2(Q) ⊕ M2(Q[ζ9 + ζ−1
9 ])

D10 QD10
∼= 4Q ⊕ 2M2(Q[

√
5])

D11 QD11
∼= Q ⊕ Q ⊕ M2(Q[ζ11 + ζ−1

11 ])
D12 QD12

∼= 4Q ⊕ 3M2(Q) ⊕ M2(Q[
√

3])
D13 QD13

∼= Q ⊕ Q ⊕ M2(Q[ζ13 + ζ−1
13 ])

D14 QD14
∼= 4Q ⊕ M2(Q[ζ7 + ζ−1

7 ]) ⊕ M2(Q[ζ14 + ζ−1
14 ])

D15 QD15
∼= 2Q ⊕ M2(Q) ⊕ M2(Q[

√
5]) ⊕ M2(Q[ζ15 + ζ−1

15 ])
D16 QD16

∼= 4Q ⊕ M2(Q) ⊕ M2(Q[
√

2]) ⊕ M2(Q[
√

2 +
√

2])

Group Wedderburn Decomposition

Q4 QQ4
∼= 4Q ⊕ M2(Q) ⊕

(
−1,−1

Q[
√

2]

)
Q5 QQ5

∼= 2Q ⊕ 2Q ⊕ Q(i) ⊕ M2(
√

5]) ⊕
(

−5+
√

5
2

,−1

Q[
√

5]

)
Q6 QQ6

∼= 4Q ⊕ 2M2(Q) ⊕
(
−2,−1
Q

)
⊕
(
−1,−1

Q[
√

3]

)
Q7 QQ7

∼= 2Q ⊕ Q(i) ⊕ M2(Q[ζ7 + ζ−1
7 ]) ⊕

(
(ζ14−ζ−1

14 )2,−1

Q[ζ14+ζ−1
14 ]

)
Q8 QQ8

∼= 4Q ⊕ M2(Q) ⊕ M2(Q[
√

2]) ⊕
(

2−√
2,−1

Q[

√
2+
√

2+
√

2]

)
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