A MEAN VALUE ITERATION FOR A HÖLDER MAP

ŞTEFAN M. ŞOLTUZ

ABSTRACT. We give a convergence result in an arbitrary Banach space for the Mann iteration when applied to a Hölder map. 2000 AMS Mathematics Subject Classification: 47H10 Key words: Mann-iteration, Hölder map.

1. Introduction

Let X be a real Banach space, B be a nonempty convex subset of X and $T: B \to B$ be a map. In [3], the following iteration, known as the Mann iteration, is introduced:

(1)
$$x_1 \in B,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n,$$

where the sequence $(\alpha_n)_{n\geq 1}\subset (0,1)$, which we maintain fixed throughout the paper, is such that $\lim_{n\to\infty}\alpha_n=0$, and $\sum_{n=1}^{\infty}\alpha_n=\infty$. Observe that $(x_n)_{n\geq 1}$ is a sequence of B.

Definition 1. The map $T: B \to B$ verifies the Hölder condition if the following relation is true for a fixed $k \in (0,1)$ and all $x.y \in B$:

$$||Tx - Ty|| \le k ||x - y||^2.$$

Let us remark that T satisfying (2) can be a nonconstant map. For B a nonempty, convex, bounded set and $T: B \to B$ satisfying (2), there exists M > 0 such that:

$$(3) ||x - y|| \le M,$$

$$(4) ||Tx - Ty|| \le k ||x - y||^2 \le k M ||x - y||,$$

for all $x, y \in B$. Our aim is to prove convergence results for iteration (1) and for T a map which satisfies (2).

For this purpose we need the following lemma from [7].

Lemma 1. [7] Let $(\beta_n)_{n\geq 1}$ be a sequence such that $\beta_n \in (0,1]$, for all $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} \beta_n = \infty$, then $\prod_{n=1}^{\infty} (1 - \beta_n) = 0$.

2. Main result

We are now able to establish the following result:

Theorem 1. Let X be a Banach space, B be a nonempty convex subset of X, let $T: B \to B$ be a Hölder map with constant $k \in (0,1)$ and $F(T) := \{x^* \in B: Tx^* = x^*\}$ be the set of fixed points of T. Then for all $x^* \in F(T)$ and all $x_1 \in B$ such that

$$||x_1 - x^*|| < \frac{1}{k},$$

the sequence $(x_n)_{n\geq 1}$ given by (1) strongly converges to x^* . Thus, for all $x_1 \in B$ there is at most one fixed point x^* of T for which (5) holds.

Proof. Because of (1) and (2), we have

$$||x_{n+1} - x^*|| = ||(1 - \alpha_n)(x_n - x^*) + \alpha_n(Tx_n - Tx^*)||$$

$$\leq (1 - \alpha_n) ||x_n - x^*|| + \alpha_n ||Tx_n - Tx^*||$$

$$\leq (1 - \alpha_n) ||x_n - x^*|| + \alpha_n k ||x_n - x^*||^2$$

$$= ||x_n - x^*|| [1 - \alpha_n (1 - k ||x_n - x^*||)].$$

Let $a_n := ||x_n - x^*||, \forall n \in \mathbb{N}$. Then

(6)
$$a_{n+1} \le a_n \left[1 - \alpha_n \left(1 - k a_n \right) \right], \forall n \in \mathbb{N}.$$

We intend to prove that $\lim_{n\to\infty} a_n = 0$. From (6) we obtain

$$a_n \le a_{n-1} [1 - \alpha_{n-1} (1 - ka_{n-1})]$$
...
 $a_2 \le a_1 [1 - \alpha_1 (1 - ka_1)]$

Hence

(7)
$$a_{n+1} \le a_1 \prod_{i=1}^{n} [1 - \alpha_i (1 - ka_i)].$$

now, from (5) we have $a_1 < \frac{1}{k}$. We then suppose that $a_n < \frac{1}{k}$ and prove that $a_{n+1} < \frac{1}{k}$. But, from (6), we have

$$a_{n+1} \le a_n [1 - \alpha_n (1 - ka_n)] < \frac{1}{k} [1 - \alpha_n + \alpha_n k a_n]$$

 $< \frac{1}{k} \left[1 - \alpha_n + \alpha_n k \frac{1}{k} \right] = \frac{1}{k}.$

and the assertion follows. Thus $0 < 1 - ka_n \le 1$ for all $n \in \mathbb{N}$, and it follows from (6) that $a_{n-1} \le a_n$, $n \in \mathbb{N}$. Hence $q = \inf_{n \in \mathbb{N}} (1 - ka_n) > 0$ and we have

$$(8) 1 - \alpha_n(1 - ka_n) \le 1 - \alpha_n q, \ n \in \mathbb{N}.$$

From (7) and (8) we get

(9)
$$a_{n+1} \le a_1 \prod_{i=1}^n (1 - \alpha_n q),$$

and fom Lemma 1 we have, since $\sum_{n=1}^{\infty} q\alpha_n = \infty$, that $\Rightarrow \prod_{n=1}^{\infty} (1 - q\alpha_n) = 0$. Thus, (9) ensures that $\lim_{n \to \infty} a_n = 0$, i.e., $\lim_{n \to \infty} x_n = x^*$, and the proof is complete. \square

Corollary. Let X be a Banach space, let B be a nonempty convex bounded subset of X and $T: B \to B$ be a Hölder map with constant $k \in (0,1)$. Let $F(T) := \{x^* \in B: Tx^* = x^*\}$ be the set of fixed points of T and assume that

(10)
$$\operatorname{diam}(B) = d < \frac{1}{k}.$$

Then, if $x^* \in F(T)$, the sequence $(x_n)_{n\geq 1}$ given by (1) strongly converges to x^* for all $x_1 \in B$, and x^* is the unique fixed point of T.

Proof. Convergence of (x_n) to x^* follows from Theorem 1 above by observing that (5) holds for x^* and x_1 . Uniqueness of x^* follows from this or from the fact under the assumptions T is a contraction map. \square

Remark. If B is also closed, the Banach contraction principle ensures the existence of $x^* \in F(T)$.

In papers dealing with Mann's iteration, the space X is usually a uniformly convex or a smooth real Banach space. In our results, X is an arbitrary Banach space.

3. Acknowledgements

References

- [1] S.S. Chang, J.Y. Park, Y.J. Cho, Iterative approximations of fixed points for asymptotically nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 37 (2000), 109-119.
- [2] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- [3] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [4] J. A. Park, Mann-iteration for strictly pseudocontractive maps, J. Korean Math. Soc. 31 (1994), 333-337.
- [5] B.E. Rhoades, Fixed points iterations using infinite matrices, Trans. Amer. Math. Soc. 196 (1974), 161-176.
- [6] B. E. Rhoades, Comments on two fixed point iteration procedures, J. Math. An. Appl. 183 (1994), 118-120.
- [7] Ştefan M. Şoltuz, Some sequences supplied by inequalities and their applications, Revue d'analyse numérique et de théorie de l'approximation, Tome 29, No. 2, (2000).
- [8] K.K. Tan, H.K. Xu, The nonlinear ergodic theorem for assymptotically nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 114 (1992), 339-404.
- [9] K.K. Tan, H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 732-739.
- [10] H.K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146.

Ştefan M. Şoltuz str. Avram Iancu 13, ap. 1, 3400 Cluj-Napoca, Romania. e-mail: ssoltuz@ictp-acad.math.ubbcluj.ro

ssoltuz@yahoo.com