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Abstract. We shall prove that every κ-torsionless R-module M of cardinality
κ is torsionless whenever κ is weakly compact and |R| < κ. We also provide
some closure properties for ultraproducts and direct products of κ-torsionless
modules. We give an example of a κ-torsionless module which is not torsion-
less, when κ is not weakly compact.

Key words and phrases. Torsionless module, κ-torsionless module, weakly com-
pact cardinal, slender rings.

2000 Mathematics Subject Classification. 03E02,03E55, 16D80, 03E75, 03C20.

Resumen. En este trabajo se demuestra que todo R-módulo κ-sin torsión
M de cardinalidad κ es sin torsión cuando |R| < κ. También establecemos
algunas propiedades de cerradura para ultraproductos y productos directos de
módulos κ-sin torsión. Damos un ejemplo de un módulo κ-sin torsión que no
es sin torsión, cuando κ no es compacto débil.
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1. Introduction

This paper concerns the theory of κ-torsionless modules. In [3] we find the
notion of κ-torsionless group which can be generalized to modules in a natural
way: an R-module M is torsionless if it can be embedded in a product of
copies of R. An R-module M is κ-torsionless if every R-submodule N of M
of cardinality less than κ is torsionless. Clearly, every torsionless module M is
κ-torsionless. It is natural to ask whether the converse is true.

In the above mentioned paper it is shown, among other things, that an
ultraproduct of κ-torsionless abelian groups is κ-torsionless whenever κ is a
strongly compact cardinal. We show in this work that the ultraproduct of
a family of torsionless R-modules is torsionless whenever κ is measurable (a
strongly compact cardinal is measurable, but the converse is not necessarily
true). We prove a similar result for a family of κ-torsionless R-modules.

Wald [10] shows that every κ-torsionless group of cardinality κ, where κ is
a weakly compact cardinal, is torsionless. He also gives a counterxample for κ
not weakly compact.

In this note we further elaborate this result in the following way. If M is
a κ-torsionless module M of cardinality κ and κ is weakly compact, then M
is torsionless. Finally, we construct an example of a κ-torsionless R-module
of cardinality κ which is not torsionless, where κ is not weakly compact. The
latter result holds for slender rings, a large class of rings which contains Z.

In section 2 we gather some auxiliary results about weakly compact cardi-
nals, measurable and ℵ0-measurable, that will be used throughout this paper.
§3 is devoted to some characterizations and properties of torsionless modules.

Section 4 has a study of cartesian products and ultraproducts of torsionless
and κ-torsionless modules. In §5 we say how to prove the afore mentioned
result. Namely: if M is a κ-torsionless R-module, with κ weakly compact,
|M | = κ and |R| < κ, then M is torsionless. Finally, in section 6, the men-
tioned counterexample is constructed when κ is not a weakly compact cardinal
following the example of Wald.

We have attempted to make this paper accessible both to algebraists and
to set-theoreticians. Thus we have included some well known results with their
full proofs, mainly those of set-theoretical nature.

2. Preliminaries

As usual ℵ0 denotes the first infinite cardinal and Z the set of all integers.
If X is a set, ℘(X) will denote the set of all subsets of X. If f : X → Y is

a function, its image Im(f) is f [X] = {f(x) : x ∈ X}.
If f is a module homomorphism, Ker f is its kernel. If R is an associative

ring which is not necessarily commutative, RR means we think of R as of a
right R-module. For every set x, |x| denotes its cardinality. ZFC represents
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κ-TORSIONLESS MODULES 141

the usual axiomatization of set theory, namely the Zermelo-Fraenkel-Axiom
of Choice system, which is the framework for this paper. The von Neumann
hierarchy {Vα : α ∈ Or}, where Or is the class of all the ordinals, is defined by
transfinite recursion as:

V0 = ∅
Vα+1 = ℘(Vα)

Vλ =
⋃

β<λ

Vβ if λ is a limit ordinal

V =
⋃

α∈Or

Vα,

where V is the class (or universe) of all sets. If M is an R-module, K ⊆ Y , we
denote by 〈Y 〉 the R-submodule of M generated by Y .

Given a family {Xα : α ∈ I} of sets, we form its cartesian product X =∏
α∈I Xα, where every element b ∈ X can be written componentwise as b =

(b(α) : α ∈ I) and b(α) ∈ Xα for every α ∈ I.
A crucial notion in this work is that of weakly compact cardinal, which we

now define.

Definition 1. Let κ be a cardinal. The language Lκκ generalizes the first order
formal language: it contains predicate, function and constant symbols. It has
κ variables and allows conjunction and disjunction of less than κ formulas and
quantification of less than κ variables. We say that a set of Lκκ-formulas is
κ-satisfiable if every subcollection of less than κ of these formulas is satisfiable.
Finally, the cardinal κ is weakly compact if and only if when a collection of
Lκκ-predicates is κ-satisfiable, then it is satisfiable, provided the collection has
at most κ nonlogical symbols.

Among the various characterizations for weakly compact cardinals the fol-
lowing two will be those we shall use.

Theorem 2 (Keisler). The cardinal κ is weakly compact if and only if κ has
the extension property: for each R ⊆ Vκ there exists a transitive set X 6= Vκ

and S ⊆ X such that
〈Vκ,∈, R〉 ≺ 〈X,∈, S〉,

where κ ∈ X.

Proof. See, for instance, [6, Theorem 4.5]. ¤X

Definition 3. We recall that for x ⊆ Or, [x]γ = {y ⊆ x : y has ordinal type γ}.
The partition relation:

β −→ (α)γ
δ ,

assures that for any f : [β]γ → δ there exists a set H ∈ [β]α homogeneous for
f . That is, |f [[H]γ ]| ≤ 1.
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Theorem 4. The cardinal κ is weakly compact if and only if κ −→ (κ)22.

Proof. See, for instance, [6, Theorem 7.8]. ¤X

We must pay attention to other large cardinals: the measurable ones.

Definition 5. An ultrafilter U is κ-complete if for each λ < κ and every family
{Uα : α < λ} ⊆ U, we have that

⋂
α<λ Uα ∈ U.

Definition 6. An uncountable cardinal κ is measurable if there exists a non-
principal ultrafilter which is κ-complete in κ.

Proposition 7. If κ is measurable, then κ is weakly compact.

Proof. See, for instance, [6, Proposition 4.3]. ¤X

Lemma 8. ([6, Exercise 2.7]) An ultrafilter U in κ is κ-complete if and only if
for every λ < κ and

⋃{Uα : α < λ} ∈ U, there exists α < λ such that Uα ∈ U.

Proof. We first assume that U is κ-complete, that λ < κ and
⋃{Uξ : ξ < λ} ∈

U. Suppose that Uξ 6∈ U for every ξ < λ. Since U is an ultrafilter, κ−Xξ ∈ U

for every ξ < λ. Therefore,
⋂

ξ<λ

(κ− Uξ) = κ−
⋃

ξ<κ

Uξ = U ∈ U.

But then U ∩⋃
ξ<λ Uξ = ∅ ∈ U, a contradiction.

Conversely, suppose that the condition holds. We prove that U is κ-complete.
To reach a contradiction let us suppose that there are λ < κ and {Uα : α <
λ} ⊆ U such that

⋂
α<λ Uα 6∈ U. Then,

κ−
⋂

α<λ

Uα =
⋃

ξ<λ

(κ− Uξ) = U ∈ U.

But, according to the lemma’s condition, κ−Uξ ∈ U, for some ξ < λ, and this
yields a contradiction. ¤X

Definition 9. The uncountable cardinal κ is ℵ0-measurable if there exists a
nonprincipal ultrafilter which is ℵ1-complete in κ.

It is clear that every measurable cardinal κ is ℵ0-measurable. In case there
were ℵ0-measurable cardinals, we identify the least of them as κ.

The following are well known results, but we prove them for the sake of
completeness.

Theorem 10. Let U be an ℵ1-complete utrafilter on the uncountable cardinal
κ. Then, U is κ-complete.
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κ-TORSIONLESS MODULES 143

Proof. Let λ < κ. We shall prove that
⋂

α<λ Uα ∈ U. Let’s suppose this is not
true, then, according to Theorem 8, there exists a family W = {Xα : α < λ}
whose union belongs to U, but Xα 6∈ U for every α < λ. Without loss of
generality we can assume that the Xα are pairwise disjoint.

Set
V =

{
A ⊆ W :

⋃
A ∈ U

}
.

It is clear that W ∈ V and that no finite subset of W belongs to V. Let’s
suppose that A ∈ V and that A ⊆ B ⊆ W . Then

⋃
A ∈ U and

⋃
A ⊆ ⋃

B, so
that

⋃
B ∈ U; hence, B ∈ V. If A ⊆ W , then

⋃
A∪⋃

(W −A) = κ. Therefore,⋃
A ∈ U or

⋃
(W −A) ∈ U. Thus, A ∈ V or W −A ∈ V.

Finally, suppose that An ∈ V, for each n ∈ ω. Then, for each n ∈ ω, we
have that

⋃
An ∈ U, which implies, by virtue of the ℵ1-completeness of U, that

⋂
n∈ω

(⋃
An

)
∈ U.

Since the sets in W are pairwise disjoint, we obtain that

⋂
n∈ω

(⋃
An

)
=

⋃ ( ⋂
n∈ω

An

)
,

from which it follows that
⋂

n∈ω An ∈ V.

We have proved that V is a nonprincipal ultrafilter which is ℵ1-complete in
W . Since W has cardinality λ and λ < κ, we have a contradiction due to the
definition of κ. Consequently, U is λ-complete. ¤X

Lemma 11. Every cardinal λ > κ is ℵ0-measurable.

Proof. Let λ > κ and let U be an ultrafilter that is ℵ1-complete in κ. Take
the family

F = {W ⊆ λ : ∃X ∈ U(X ⊆ W )}.

Let V be the ultrafilter generated by F. Then, V is an ultrafilter which is
ℵ1-complete in λ. Therefore, λ is ℵ0-measurable. ¤X

We know that if κ is weakly compact, then it is regular and a strong limit.
That is, for every λ < κ we have that 2λ < κ. Besides, if H(κ) represents the
set of sets whose transitive closure has cardinality less than κ, then Vκ = H(κ),
where Vκ is the κ-th level in von Neumann’s hierarchy.

Revista Colombiana de Matemáticas



144 JUAN A. NIDO V., PABLO MENDOZA I. & LUIS M. VILLEGAS S.

3. Torsionless Modules

In this section we provide the definitions and some important results about
torsionless modules.

Definition 12. Let R be a ring with 1 and let M be a unitary right R-module.
The dual of M is the left R-module M∗ = HomR(M,R). If M is a left R-
module, its dual is a right R- module. The dual of M∗ is a right R-module M∗∗

and there is a natural homomorphism σ : M → M∗∗ given by σ(m)(f) = f(m)
for every f ∈ M∗. If the homomorphism σ is an isomorphism we say that M
is a reflexive module, while if σ is injective we say that M is semirreflexive or
a right torsionless R-module.

The following is a well known result (see [7]).

Theorem 13. For every right R-module M the sequence

0 −→ M∗ σ−→ M∗∗∗

is exact and splits, where σ is the natural homomorphism from M∗ to its double
dual. In particular, M∗ is a torsionless module.

Let X ⊂ M . We denote by l(X) the set l(X) = {f ∈ M∗ : f(x) = 0,∀x ∈
X}. If X ⊂ M∗, r(X) is the set r(X) = {x ∈ M : f(x) = 0, ∀ f ∈ X}.

We now give several characterizations for torsionless modules.

Proposition 14. The following conditions for a right R-module M are equi-
valent.

(i) M is a torsionless module.

(ii) r(M∗) = 0.

(iii) If 0 6= a ∈ M , then there is an f ∈ M∗ such that f(a) 6= 0.

(iv) M can be embedded in a direct product of copies of RR.

(v) For every nontrivial homomorphism of right R-modules M0 −→ M , there
is a homomorphism M −→ R such that the composite homomorphism
M0 −→ M −→ R is not zero.

(vi) M is a submodule of a dual module.

Proof. (i) ⇒ (ii). Let x ∈ r(M∗). That is, f(x) = 0 for every f ∈ M∗, so
x ∈ ⋂

f∈M∗ Ker f = (0), since M is a torsionless module. Therefore, x = 0.
(ii) ⇒ (iii). Let a ∈ M , a 6= 0, then a /∈ r(M∗). Therefore, there is at least

one f ∈ M∗ such that f(x) 6= 0.
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κ-TORSIONLESS MODULES 145

(iii) ⇒ (iv). Let us consider the product
∏

f∈M∗ Rf with Rf = R, and
define the homomorphism λ : M → ∏

f∈M∗ Rf given by λ(m)f = f(m) ∈ Rf .
Observe that

λ(m) = 0 ⇔ f(m) = 0, ∀ f ∈ M∗.

By (iii):
λ(m) = 0 ⇐⇒ m = 0.

That is Ker λ = (0). So λ is injective.
(iv) ⇒ (v). Let ϕ : M0 −→ M be a nonzero homomorphism and m0 ∈ M0

such that ϕ(m0) = m 6= 0. Then, 0 6= λ(m) ∈ ∏
f∈M∗ Rf . We take a nonzero

component of λ(m), say λ(m)(f0) ∈ Rf0 . Then, the homomorphism ψ : M −→
Rf0 given by ψ = πf0 ◦ λ, is such that ψ ◦ ϕ is nonzero.

(v) ⇒ (i) Let us suppose that M is not torsionless. That is, M0 := Ker σ 6=
(0), where σ is the homomorphism from Definition 12. So, the inclusion M0 ↪→
M is a nonzero homomorphism. Then, by (v), there is a homomorphism ϕ :
M −→ R (ϕ ∈ M∗) such that ϕ ¹ M0 : M0 −→ R is nonzero. That is, there
exists m0 ∈ M0 such that ϕ(m0) 6= 0; but this contradicts the fact that m0 ∈
Ker ϕ, because in that case ϕ(m0) = 0 ∈ M∗∗ and σ(m0)(ϕ) = ϕ(m0) = 0.

(i) ⇒ (vi) . If M is a torsionless module, M is isomorphic to σ(M) which
is a submodule of the dual of M∗.

(vi) ⇒ (i). If M is a submodule of N∗, then invoking Theorem 13 we con-
clude that M is a submodule of a torsionless module. Hence, M is a torsionless
module. ¤X

It is now an easy matter to prove the following properties.

(1) If M is a right R-module, we have that Ker σ =
⋂

b∈M∗ Ker b, where σ
is the homomorphism from Definition 12.

(2) M is a torsionless module if and only if
⋂

f∈M∗ Ker f = (0).

(3) If N is a submodule of M and M is a torsionless module, then N is a
torsionless module.

(4) R is a torsionless R-module since R∗∗ = R.

(5) Quotients of torsionless modules are not necessarily torsionless modules:

Example 15. The Z-module Z is torsionles. However, Z/nZ is not a torsion-
less group. Indeed, (Z/nZ)∗ = (0) from which σ = 0 follows. That is, σ is not
injective.

The following proposition tells us when a quotient module is a torsionless
module.
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Proposition 16. Let M be a right R-module and N a submodule of M . Then
the following conditions are equivalent:

(i) M/N is a torsionless module.

(ii) If m ∈ M −N , then there is f ∈ M∗ such that f(m) 6= 0, and f [N ] = 0.

(iii) r(l(N)) = N .

Proof. (i) ⇒ (ii). Since M/N is torsionless for a ∈ M − N , that is, 0 6= ā =
a + N ∈ M/N , there is a homomorphism f : M/N → R with f(a) 6= 0. We
define f(m) = f̄(m̄). It is clear that f ∈ M∗. Then, f(a) = f̄(ā) 6= 0. Besides,
f(n) = f̄(n̄) = 0 for every n ∈ N . Therefore, f [N ] = 0.

(ii) ⇒ (iii). In general we have that N ⊆ r(l(N)). We shall show that
r(l(N)) ⊆ N . Let x ∈ r(l(N)). If x /∈ N , then, by (ii), there is f ∈ M∗ such
that f(x) 6= 0 and f [N ] = 0. This contradicts the fact that x ∈ r(l(N)) since
f ∈ l(N).

(iii) ⇒ (i) Let us suppose that M/N is not a torsionless module, hence
there exists m̄ = m + N , with m /∈ N such that for every f∗ ∈ (M/N)∗,
f∗(m̄) = 0.
Claim. m ∈ r(l(N)).

Indeed, if f ∈ l(N), we define f∗ ∈ (M/N)∗ by f∗(x + N) = f(x). This
function is well defined since f ∈ l(N). Then, f∗(m̄) = f(m) = 0. That is,
m ∈ r(l(N)), in oposition to (iii), since m ∈ r(l(N))−N . ¤X

4. κ-torsionless modules

In this section we investigate some properties of torsionless and κ-torsionless
modules mainly related with cartesian products and with ultraproducts module
κ-complete ultrafilters.

Definition 17. Let κ be a regular cardinal and M an R-module. We say
that M is a κ-torsionless module if every submodule N of M with |N | < κ is
torsionless.

If λ is a singular cardinal, we say that an R-module M is λ-torsionless if
M is κ-torsionless for every regular cardinal κ < λ.

Clearly, if M is torsionless, then it is κ-torsionless. The converse, does not
necessarily hold as we shall see later on. However, the answer depends on a
large cardinal. Namely, on a weakly compact cardinal.

Note that κ-torsionless is not preserved under homomorphic images, since
every R-module is the image of a free R-Module, which, being torsionless, is
κ-torsionless.

However this class behaves well with respect to cartesian products:
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Theorem 18. Let {Mα : α < κ} be a family of R-modules that are κ-
torsionless. Then M =

∏
α<κ Mα is κ-torsionless.

Proof. Let L < M be a submodule of M with |L| < κ and b ∈ L, b 6= 0. Since
b 6= 0, there is α < κ such that b(α) 6= 0. Take the projection pα : M → Mα

and note that pα[L] ≤ Mα and that |p[L]| < κ. Then there is, by hypothesis,
an fα : Mα → R such that f(b(α)) 6= 0. Let f = fα ◦ pα ¹ L : L → R. We have
that f(b) 6= 0, as we require, and so M is κ-torsionless. ¤X

An appeal to this proof establishes a similar result for torsionless modules.
We now turn to ultraproducts of modules. We first investigate the ultra-

product of torsionless modules. In the following result we use ideas from [9]:

Theorem 19. Let {Mα : α < κ} be a family of torsionless R-modules with
|R| = λ < κ, where κ is a measurable cardinal. If U is a κ-complete ultrafilter
on κ, then

M =
∏
α<κ

Mα/U

is a torsionless R-module.

Proof. Let M =
∏

α<κ Mα, M =
∏

α<κ Mα/U, a ∈ M , a 6= 0 and let f : M →
M be a function that chooses representatives. That is, if m ∈ M , then f(m)
chooses a representative m ∈ M , in such a way that if π : M → M/U is the
canonical homomorphism, then π(m) = m. Since π is an R-homomorphism
and a 6= 0, we infere that f(a)(α) 6= 0 for κ coordinates. Actually,

I = {α < κ : f(a)(α) 6= 0} ∈ U.

For each i ∈ I we choose R-homomorphisms gα : Mα → R, such that gα(a(α)) 6=
0. Thus,

{α < κ : gα(a(α)) 6= 0} ∈ U. (1)

We define an R-homomorphism g : M → Rκ, by:

(g(m)(α)) : α < κ) = (gα(m(α)) : α < κ),

for every m ∈ M . Letting g(a) be the class in Rκ/U of (gα(a(α)) : α < κ) ∈ Rκ

and invoking (1) we obtain that g(a) 6= 0.
We have the maps:

(1) f : M → M ;

(2) g : M → Rκ;

(3) ν : Rκ → Rκ/U, the canonical R-homomorphism.
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Hence, h1 = ν◦g◦f : M → Rκ/U, is a well defined R-homomorphism such that
h1(a) 6= 0. We need an R-homomorphism h2 : Rκ/U → R with h2(h1(a)) 6= 0.

For each x ∈ Rκ/U, we let f(x) = ~x ∈ Rκ, so that ~x = (x(α) : α < κ)
and every x(α) ∈ R, where f is a function that chooses a representative, like
f . Now let

U~x
r = {α < κ : x(α) = r},

hence,
{
U~x

r : r ∈ R
}
is a partition of κ with less than κ elements, since |R| < κ.

By Lema 8, there exists r ∈ R such that U~x
r ∈ U. We now define h2(f(x)) = r.

It suffices to show that h2 is an R-homomorphism. Let x, y ∈ Rκ/U. We
must verify that h2(f(x + y)) = h2(f(x)) + h2(f(y)). So, let us suppose that
h2(f(x)) = rx and h2(f(y)) = ry. It is enough to prove that U~x+~y

rx+ry
∈ U, for

which it is sufficient to prove that

U~x
rx
∩ U~y

ry
⊆ U~x+~y

rx+ry
.

If α ∈ U~x
rx
∩ U~y

ry
, then x(α) = rx and y(α) = ry, so that (x + y)(α) = rx + ry.

Hence, α ∈ U~x+~y
rx+ry

.
Now let s ∈ R and x ∈ Rκ/U, we will show h2(sf(x)) = sh2(f(x)). Assume

that h2(f(x)) = rx. If α ∈ h2(x), then x(α) = rx, so sx(α) = srx, therefore
α ∈ Us~x

srx
. Then, Us~x

srx
∈ U, from which it follows, by definition of h2, that

h2(sf(x)) = srx = sh2(f(x)).

Consequently, h2 is an R-homomorphism. Therefore, we have found an R-
homomorphism h : M → R such that h(a) 6= 0. We apply h1 and h2 consecu-
tively to a and get h2 ◦ h1(a) 6= 0. ¤X

We can obtain a similar result for κ-torsionless modules.

Theorem 20. Let κ be a measurable cardinal and let {Mα : α < κ} be a family
of κ-torsionless R-modules with |R| = λ < κ. If U is a κ-complete ultrafilter
on κ, then

M =
∏
α<κ

Mα/U

is a κ-torsionless R-module.

Proof. Let M =
∏

α<κ Mα, and let N be an R-submodule of M of cardinality
less than κ, take a ∈ N , with a 6= 0, let π : M → M be the canonical
homomorphism, and let f : N → M be a function that chooses representatives
in M for each n ∈ N . Then f(a)(α) 6= 0 for κ coordinates. Otherwise, a = 0,
since U is a κ-complete ultrafilter, hence, its members U ∈ U have cardinality
κ.
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κ-TORSIONLESS MODULES 149

Consider the following family of sets:

Aα = {f(n)(α) : n ∈ N},

for each α < κ. Then |Aα| < κ and so, every R-module Nα = 〈Aα〉 in Mα

has cardinality less than κ. Since every Mα is κ-torsionless, it follows that
each Nα (α < κ) is torsionless. For each α < κ we have an R-homomorphism
gα : Nα → R such that gα(f(a)(α)) 6= 0 whenever α < κ with a(α) 6= 0.

We define a function g : N → Rκ, where N =
∏

α<κ Nα, in the fol-
lowing way: if x ∈ N , g(x) = (gα(x(α)) : α < κ) ∈ Rκ. Clearly, g is
an R-homomorphism. We now define h1 = ν ◦ g ◦ f : N → Rκ/U, where
ν : Rκ → Rκ/U is the canonical quotient R-homomorphism. We can easily
verify that h1 is a well defined R-homomorphism.

We still have to construct an R-homomorphism h2 : Rκ/U → R with
h2(h1(a)) 6= 0. But this can be achieved as in the proof of Theorem 18. We
apply h1 and h2 consecutively to a and get h2 ◦ h1(a) 6= 0. ¤X

5. κ is a weakly compact cardinal

We aim to prove that every κ-torsionless R-module of cardinality κ is torsion-
less, whenever |R| < κ and κ is weakly compact. To start with, we recall several
notions for the benefit of the reader. We begin with the notion of elementary
substructure.

Let A and B be L-structures for some first order language L. We say that
A is an elementary substructure of B, in symbols A ≺ B, if A is a substructure
of B and for any L-formula ϕ(v0, . . . , vn) and any elements x0, . . . , xn from the
universe of A the following condition holds

A |= ϕ[x0, . . . , xn] ⇔ B |= ϕ[x0, . . . , xn].

Recall the definition of ordered pair of sets: if a, b are sets, then

(a, b) = {{a}, {a, b}}.

We can define the following functions

(a, b)0 = a

(a, b)1 = b.

Hence,
z = (x)0 ⇔ ∃ y(x = (z, y));

in a similar way we can define z = (x)1.
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We also require to describe an ordinal. That is, a transitive set which is
well ordered by ∈:

Or(x) ⇔∀ y∀ z(y ∈ x ∧ z ∈ y → z ∈ x)∧
∀ y ∈ x∀ z ∈ x(z = y ∨ z ∈ y ∨ y ∈ z)∧
∀ z(z ⊆ x ∧ ¬(z = ∅) → ∃ y ∈ z∀u ∈ z(y = u ∨ y ∈ u)),

while a limit ordinal is described as:

Lim(x) ⇔ Or(x) ∧ ∀ z ∈ x∃ y ∈ x(z < y).

To continue, we describe a homomorphism between an R-module N and
the ring R. We first observe that being a function is described as:

Fun(f) ⇔ ∀x ∈ f∃ y∃ z(x = (y, z) ∧ ((y1, z) ∈ f ∧ (y2, z) ∈ f → y1 = y2)).

As usual we use the notation f(x) = y for (x, y) ∈ f .
We have the following relations associated to the concept of function:

dom(f) = z ⇔Fun(f) ∧ [∀x ∈ z∃ y((x, y) ∈ f) ∧ ((x, y) ∈ f → x ∈ z)],
ran(f) = z ⇔Fun(f) ∧ [∀ y ∈ z∃x((x, y) ∈ f) ∧ ((x, y) ∈ f → y ∈ z)].

Our aim now is to describe an R-homomorphism. We suppose that R is a
ring and that N is a left R-module.

Let Hom(f, R) be the formula:

Hom(f,R, N) ⇔Fun(f) ∧ dom(f) = N ∧ ran(f) ⊆ R∧
[∀n1, n2 ∈ N(f(n1 + n2) = f(n1) + f(n2))∧
∀ r ∈ R∀n ∈ N(f(rn) = rf(n))].

Now, let us suppose that M is an R-module of cardinality κ, a regular
cardinal. We can enumerate M as

M = {mα : α < κ}.

With this we can now define a family of submodules of M in the following way
(recall that κ is regular): we define, by transfinite recursion,

M0 =〈{m0}〉,
Mα+1 =〈{mβ} ∪Mα〉,

Mα =
⋃

β<α

Mβ if β is a limit ordinal,
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where mβ in the second equation is the least element, in our enumeration of
M , in M −Mα.

If β < α then Mβ is a submodule of Mα. If M is a κ-torsionless R-module,
we know that for each α < κ and for each m ∈ Mα, m 6= 0M there is an
R-homomorphism f : Mα → R such that f(m) 6= 0R.

We are ready to prove our main result of this section:

Theorem 21. Suppose that κ is a weakly compact cardinal, and that M is a
κ-torsionless R-module of cardinality κ, where R is a ring of cardinality less
than κ. Then, M is torsionless.

Proof. Without loss of generality we may assume that R ∈ Vκ, where Vκ is the
κ-th level in von Neumann’s hierarchy, and that M = Vκ. Now consider the
following structure in the language L = {∈, T}, where T is a unary predicate.

W = 〈Vκ,∈, {(α,Mα) : α < κ}〉.

Let
M = {(α, Mα) : α < κ}.

Thus, W |= Mx means that x ∈ Vκ and x ∈ M , according to W .
The following claims are easily verified:

The second coordinates of the elements of M are R-modules:

W |=∀x(Mx → “(x)1 is an R-module” (2)

The first coordinates of the elements of M are ordinals:

W |=∀x(Mx → Or((x)0)) (3)

If α < β, then Mα < Mβ :

W |=∀x∀ y(Mx ∧My ∧ (x)0 < (y)0 → (x)1 ≤ (y)1) (4)

If β is limit, Mβ is the union of the previous Mα:

W |=∀x(Mx ∧ Lim((x)0) →
∀ z ∈ (x)1∃ y(My ∧ (y)0 < (x)0 ∧ z ∈ (y)1). (5)

Every ordinal in W enumerates some Mα:

W |=∀α∃x(Or(α) ∧Mx → (x)0 = α). (6)
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Every Mα is torsionless:
W |= ψ1, (7)

where

ψ1 ≡ ∀x∀ y(Mx∧y ∈ (x)1∧y 6= 0(x)1 → ∃ f(Hom(f, R, (x)1)∧¬(f(y) = 0R))).

We now use Keisler’s extension property (Theorem 2). Note that M =⋃
α<κ Mα. We know that there exists 〈X,∈, N〉 with X transitive, κ ∈ X,

N ⊆ X, Vκ ⊆ X and
〈Vκ,∈,M〉 ≺ 〈X,∈, N〉.

Since κ ∈ X we have that M = Mκ, by (5) and (6), because κ is limit. From
(7) we conclude that M is torsionless, which is what we wanted to prove. ¤X

6. κ is not a weakly compact cardinal

In this section we construct an example of an R-module M of cardinality κ
which is κ-torsionless, but not torsionless. For that we require a cardinal κ
which is neither weakly compact, nor ℵ0-measurable. The reason for κ not to
be weakly compact is clear from the result from the previous section. While
the reason for it not to be ℵ0-measurable will be a consequence of the theorem
stated below. We shall use a nice Wald’s example ([10]), but we need several
additional facts, because the original example works for abelian groups and we
will deal with R-modules.

We recall that if {Mα : α < λ} is a family of torsionless R-modules, the
cartesian product M =

∏
α<λ Mα is torsionless, so its dual M∗ is different from

0 (the 0 homomorphism). However, if f ∈ M∗ is such that f ¹
⊕

α<λ Mα = 0,
would it be true that f = 0? The following result gives a negative answer
to this question, when κ is ℵ1-measurable. In fact, we have the answer for
f ¹

⊕(κ)
α<κ Mα = 0, where

(κ)⊕
α<κ

Mα =

{
m ∈

∏
α<κ

Mα : |{α < κ : m(α) 6= 0}| < κ

}
.

To prove our theorem we use an idea of Fuchs ([4]).

Theorem 22. Let {Mα : α < κ} be a family of torsionless R-modules, where
κ is a cardinal that is ℵ1-measurable and such that |R| < κ. Then, there is an
R-homomorphism f :

∏
α<κ Mα → R such that f ¹

⊕(κ)
α<κ Mα = 0 but f 6= 0.

In particular, M∗ 6= 0.

Proof. Every factor Mα is torsionless, so we can choose an R-homomorphism
fα : Mα → R that is not the zero homomorphism. Since κ is ℵ0-measurable,
there exists an ℵ1-complete ultrafilter U in κ.
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We enumerate R as R = {rα : rα < λ}, where λ = |R|. We can assume
r0 = 0. For x ∈ M and for each α < λ we define

Ux
rα

= {ν < κ : fν(x(ν)) = rα}.

The sets Ux
rα

form a partition of κ. So, according to Theorem 8 there is α < λ
such that Ux

rα
∈ U. We make f(x) = rα. This defines a function f : M → R.

Claim 1. f is an R-homomorphism.
Proof of Claim 1. Let x, y ∈ ∏

α<κ Mα and suppose that f(x) = rα and
f(y) = rβ . Observe that

Ux
rα
∩ Uy

rβ
⊆ Ux+y

rα+rβ
,

because if ν ∈ Ux
rα
∩Uy

rβ
, we can conclude that fν(x(ν)) = rα and fν(y(ν)) = rβ ,

so that fν(x(ν) + y(ν)) = rα + rβ and, hence, ν ∈ Ux+y
rα+rβ

. Then f(x + y) =
f(x) + f(y).

Next we shall prove that f(rαx) = rαf(x) for every rα ∈ R and every
x ∈ M . Let f(x) = rβ . It follows that

Ux
rβ
⊆ Urαx

rαrβ
,

since if ν ∈ Ux
rβ
, we get fν(x(ν)) = rβ , so that fν(rαx(ν)) = rαfν(x(ν)) = rαrβ

and, hence, ν ∈ Urαx
rαrβ

, we obtain that f(rαx) = rαf(x).

Claim 2. f ¹
⊕(κ)

α<κ Mα = 0.

Proof of Claim 2. Let x ∈ ⊕(κ)
α<κ Mα. So, the support of x

Supp(x) = {α < κ : x(α) 6= 0},

has cardinality less than κ. Therefore,

Ux
0 = {ν < κ : x(ν) = 0},

has cardinality κ. Moreover, its complement has cardinality less than κ, hence
it cannot be a member of U. It follows that Ux

0 ∈ U, so f(x) = 0.
Claim 3. f is not the zero homomorphism.
Proof of Claim 3. We must exhibit an element x ∈ M such that f(x) 6= 0.
Now, for each α < κ we know that fα : Mα → R is not zero, so there is an
element x(α) ∈ Mα, with x(α) 6= 0. Note that, with any of these elements
x ∈ M ,

Ux
0 = {ν < κ : x(ν) = 0}

is empty. So f(x) 6= 0, as required.
From these three claims the theorem follows at once. ¤X
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Now we turn to construct the announced example at the beginning of this
section. Consider a not weakly compact cardinal κ. According to Theorem 7, κ
is not measurable. We will construct an example of an R-module of cardinality
κ which is κ-torsionless but U∗ = 0. Invoking previous results we can assume
that κ is not ℵ0-measurable.

We will use the following filter: let B = {X ⊆ κ : |κ−X| < κ}. It is clear
that B has the finite intersection property. So it generates a filter F.

Theorem 23. Let {Mα : α < κ} be a family of κ-torsionless R-modules, where
κ is a cardinal and let F be the filter described above . Then

∏
α<κ

Mα/F

is a κ-torsionless R-module.

Proof. Let M =
∏

α<κ Mα, M = M/F and let π : M → M be the canonical
homomorphism. Now let N be an R-submodule of M of cardinality less than
κ and take a ∈ N , with a 6= 0. We will give an R-monomorphism

h : N → Rκ.

Let f : N → M be a function that chooses representatives in M for each n ∈ N .
For n1, n2 ∈ N and r ∈ R, we define

An1,n2 ={α < κ : f(n1 + n2)(α)− f(n1)(α)− f(n2)(α) 6= 0},
Bn,r ={α < κ : rf(n)(α)− f(rn)(α) 6= 0}.

Let A =
⋃

n1,n2∈N An1,n2 and let B =
⋃

r∈R,n∈N Bn,r. Since |R|, |N | < κ,
it follows that |A ∪B| < κ. We let C = A ∪B and define h : N → M by

h(n) =

{
f(n)(α), if α ∈ (κ− C)
0, if α ∈ C.

Claim 1. h is an R-homomorphism.
Proof of Claim 1. It is easily verified that h is well defined. Let n1, n2 ∈ N .
We shall show that

h(n1 + n2)(α) = h(n1)(α) + h(n2)(α) (8)

If α ∈ C, (8) does hold. If α ∈ κ− C, then

h(n1 + n2)(α) =f(n1 + n2)(α),
h(n1)(α) =f(n1)(α),

h(n2) =f(n2)(α),
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and, since α ∈ κ− C,

f(n1 + n2)(α) = f(n1)(α) + f(n2)(α).

So, (8) is true.
Now let n ∈ N and r ∈ R. We must certify that

h(rn)(α) = rh(n)(α). (9)

If α ∈ C, (9) is immediate. If α ∈ κ− C,

h(rn)(α) =f(rn)(α),
rh(n)(α) =rf(n)(α),

and, since α ∈ κ − C, it follows that f(rn)(α) = rf(n)(α). Therefore (9) is
valid.
Claim 2. h is a monomorphism.
Proof of Claim 2. Let n1 and n2 be two different elements in N .

Consider the following subset of κ:

Diff = {α < κ : f(n1)(α) 6= f(n2)(α)}.

This set has cardinality κ. Since we have that |C| < κ we can find α∗ ∈ Diff−C,
so that f(n1)(α∗) 6= f(n2)(α∗). Hence h(n1)(α∗) 6= h(n2)(α∗), from which we
conclude that h(n1) 6= h(n2).

We have given an embedding h : N → Rκ, so N is a torsionless R-module.
¤X

Let us recall the notion of weak sum:

Definition 24. Let κ and λ be cardinals. We define:

κ
λ
^ =

∑

ρ<λ

κρ,

where the sum runs over the cardinals ρ < κ.

The following is a well known result, but we did not find an appropriate
reference.

Recall that µ is a strong limit cardinal if for every cardinal λ < µ, 2λ < µ
holds. It follows that every strong limit cardinal is a limit cardinal.

Theorem 25. Let κ be a cardinal. Then, κ = 2
κ
^ if and only if κ = κ

κ
^ or κ

is a strong limit cardinal.
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Proof. If κ = κ
κ
^ or κ is a strong limit cardinal, it is clear that κ = 2

κ
^.

Conversely, let us supposse that κ = 2
κ
^. If κ is regular, then

κ
κ
^ ≤

(
2

κ
^

)κ
^ = 2

κ
^ = κ.

We wish to prove that κ is strong limit, assume that κ is singular. If this
were not the case, there would be a cardinal µ < κ with cf(κ) ≤ µ < κ and
κ ≤ 2µ. In which case, 2µ = κ and

κ < κcf(κ) ≤ κµ = (2µ)µ = 2µ = κ.

¤X

We will use as a ring R a slender ring. This notion is due to J. Loś.

Definition 26. An R-module M is slender if for every R-homomorphism f :
Rℵ0 → M it satisfies the condition that f(ml(i)) = 0 for every l ∈ N except for
finitely many l’s, where

ml(i) =

{
0, if l 6= i

1, if l = i.

As examples of slender R-modules we have Z and every countable integer
domain that is not a field (see [8]). Even more can be said: If R is a pid, R is
slender whenever R is not a complete valuation domain, which follows from [5,
Lemma 6.6, p.555].

In order to build our example we require the following result which can be
obtained from [2] together with [1].

Theorem 27. Let M be a slender R-module and let κ be a cardinal that is not
ℵ0-measurable. For every family {Mα : α < κ} and for every f :

∏
α<κ Mα →

M , if f ¹
⊕

α<κ Mα = 0, then f = 0. ¤X

As we already mentioned the example that we develop here originated in
[10]. However, me make it more general, since it shall work for a broader class
of rings not only for Z.

Example 28. There exists an R-module M of cardinality κ, where κ is neither
weakly compact nor ℵ0-measurable but weakly inaccessible, such that M is κ-
torsionless but not torsionless.

Recall that a weakly compact cardinal must satisfy the arrow relation:

κ −→ (κ)22,
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(Theorem 4), so in our case, given that κ is not weakly compact, there must
be a map p : [κ]2 → 2 for which there is no subset of κ of cardinality κ that is
homogeneous with respect to p.

Let {Mα : α < κ} be an arbitrary family of torsionless R-modules with
|Mα| ≤ κ for every α < κ, where R is a slender ring (viewed as an R-module)
and such that |{α < κ : |Mα| = κ}| = κ. We form the product

M =
∏
α<κ

Mα.

Let F be the filter in κ described above, and let

M = M/F

be the reduced product of M module F. The canonical quotient function is
denoted by π, that is to say, π : M → M . We will build an R-module L such
that it is a submodule of M , with |L| = κ, and such that L is κ-torsionless,
but L∗ = 0.

For α < κ and i ∈ {0, 1}, let
Ai

α = {β < κ : p({α, β}) = i}.
If µ < κ and f : µ → {0, 1}, set

Nf =
⋂

α<µ

Af(α)
α .

If f : µ → {0, 1} and g : ν → {0, 1}, f ⊆ g occurs when g extends f . We say
that f and g are noncomparable when f 6⊆ g and g 6⊆ f .
Claim 1. If f ⊆ g, then Ng ⊆ Nf .

Proof of Claim 1. Let β ∈ Ng, then β ∈ A
g(α)
α for every α ∈ dom(g). We must

show that β ∈ A
f(α)
α for any α ∈ dom(f). If g(γ) = i, then f(γ) = i, since g

extends f . We know that p({α, β}) = i. Since A
f(α)
α = A

g(α)
α , we have that

β ∈ A
f(α)
α . Therefore, β ∈ Nf .

Claim 2. If f, g are noncomparable, then Nf ∩Ng = ∅.
Proof of Claim 2. Let us assume, to get a contradiction, that γ ∈ Nf ∩ Ng,
then γ ∈ A

f(α)
α . That is, p({α, γ}) = f(α), for every α ∈ dom(f) and for

every γ ∈ A
g(α)
α . Hence, p({α, γ}) = g(α) for every α ∈ dom(g). Suppose that

dom(f) ≤ dom(g). Thus f(α) = g(α) for any α ∈ dom(f), so f ⊆ g, which is
a contradiction.
Claim 3. Nf ∩ µ = ∅ if µ = dom(f).
Proof of Claim 3. Otherwise, there would be a γ ∈ µ ∩Nf . That is, we could
calculate p({γ, γ}) = p({γ}), which is not possible.
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We will use the following notation: if B ⊆ κ, we define the unitary vector
uB ∈ M by:

uB(α) =

{
1, if α ∈ B

0, another case.

We write uf to mean uNf
.

Given f : µ → κ and ν ∈ µ, we define the function fν : ν + 1 → {0, 1} by

fν(α) =





f(α), si α < ν

0, si α = ν ∧ f(ν) = 1
1, si α = ν ∧ f(ν) = 0.

We let fµ = f . By the definition of these functions it is clear that the Nfν

are pairwise disjoint for any ν ∈ µ. We now define a homomorphism Ff :∏
α≤µ Mα →

∏
α<κ Mα by

Ff (x) =
∑

ν∈µ+1

x(ν)ufν
.

The composition Ff ◦ π is an R-homomorphism F f :
∏

α≤µ Mα → M .
Claim 4. Let λ ∈ µ, then

Nf¹λ =
⋃

ν∈[λ,µ+1)

Nfν ∪ (Nf¹λ ∩ (µ− λ)) , (10)

where ν ∈ [λ, µ + 1) means that the union runs over the ordinals ν ≥ λ and
ν < µ + 1.
Proof of Claim 4. Since ν ≥ λ, we have that f ¹ λ ⊆ fν and, hence, that
Nfν ⊆ Nf¹λ. Consequently, the right hand side of (10) is contained in the left
hand side.

Now, let α ∈ Nf¹λ. First recall that, by definition,

Nfµ = Nf =
⋂
ν∈µ

Af(ν)
ν .

Let us suppose that α 6∈ Nfµ , then there is ν ∈ µ (we can choose the least
possible) so that α 6∈ A

f(ν)
ν . By definition of fν and from the fact that κ =

A0
ν ∪ {ν} ∪ A1

ν , it follows that α = ν or α ∈ Nfν . Given that α 6∈ A
f(ν)
ν , α ∈

A
fν(ν)
ν (if α 6= ν). If α = ν, we have that ν < µ, ν > λ. So, α ∈ Nf¹λ ∩ (µ−λ).

Claim 5.

F f


 ∑

ν∈[λ,µ+1)

uν


 = uf¹λ.
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Proof of Claim 5. Note that µ ∈ κ, therefore Nf¹λ ∩ (µ − λ) has cardinality
less than κ. Then, by construction of M and by the definition of F f , we get

F f


 ∑

ν∈[λ,µ+1)

uν


 =

∑

ν∈[λ,µ+1)

ufν
= uf¹λ,

where uf¹λ is the class of uf¹λ in M .

Given the function f : µ → {0, 1}, we develope the functions f0 and f1:

f0 =f ∪ {(µ, 0)}
f1 =f ∪ {(µ, 1)},

so that f1 ¹ µ = f0 ¹ µ = f and f i(µ) = i for i ∈ {0, 1}. We already mentioned
that κ = A0

µ ∪ {µ} ∪A1
µ thus Nf = Nf0 ∪ (Nf ∩ {µ}) ∪Nf1 . Then,

uf = uf0 + uf1

in M .
We now define our R-submodule L < M as the R-submodule generated by

all the images of the homomorphisms F f :

L =

〈∑

f

Im(F f )

〉
,

where f varies over all the functions f : µ → {0, 1} for µ ∈ κ. For each κ we
have 2|µ| functions f : µ → 2. So, we have 2

κ
^ functions f : ν → {0, 1} for some

ν < κ.
Notice that

∣∣Im(F f )
∣∣ ≤ ∣∣dom(F f )

∣∣ =

∣∣∣∣∣∣
∏

α≤µ

Mα

∣∣∣∣∣∣
≤ κµ ≤ κ

κ
^ = κ.

Therefore,
|L| ≤ 2

κ
^

∑
µ<κ

κµ = κ
κ
^ = κ.

By hypothesis, we have at least κ R-modules Mα of cardinality κ. This, to-
gether with the definition of the R-homomorphisms F f , gives |L| ≥ κ. We
conclude that |L| = κ.

Note that L is a κ-torsionless R-module, according to Theorem 23. So,
it only remains to be proved that L is not torsionless. In fact, we will prove
that L∗ = 0. That is, that there are no homomorphisms, other than the zero
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homomorphism, from L to R. So, toward a contradiction suppose that f ∈ L∗

and that f is not the zero homomorphism.
We construct a function h : κ → {0, 1} such that for some µ∗ ∈ κ

f(uh¹µ∗) 6= 0,

for every µ ≥ µ∗, with µ ∈ κ.
By hypothesis there must be a µ ∈ κ and some g : µ → {0, 1} such that

h[Im(F g)] 6= 0.

Assume that h(ugν ) = 0 for every ν ∈ µ + 1. Consider the homomorphism
h ◦ F g :

∏
α≤µ Mα → R.

Claim 6. h ◦ F g(uν) = h(egν
) = 0 for every ν ∈ µ + 1.

Proof of Claim 6. Recall that all the coordinates of uν are zero except for the
ν-th one which is 1. Therefore, in

Fg(uν) =
∑

γ∈µ+1

uν(γ)ugγ

only uν(ν) = 1 survives and, hence, Fg(uν) = ugν , from which it follows that
F g(uν) = ugν and h ◦ F g(uν) = h(uν) = 0 for every ν ∈ µ + 1.

Given that µ + 1 < κ, we have that |µ + 1| < κ. In order to apply Theorem
27 we must verify that

h ◦ F g ¹
⊕

ν<µ+1

Mν = 0.

Let z ∈ ⊕
ν<µ+1 Mν , then z = z1uν1 + · · · + znuνn , for certain zi ∈ R and

νi < µ + 1. In this case

h ◦ F g(z) =z1h ◦ F g(uν1) + · · ·+ znh ◦ F g(uνn)
=0.

So, by theorem 27 (µ + 1 < κ), h ◦ F g = 0 holds. This contradicts the
fact that h[Im(F g)] 6= 0. We can, thus, conclude that h(ugν ) 6= 0 for some
ν ∈ µ + 1. With this ν we make µ∗ = dom(gν) and h ¹ µ∗ = gν .

Let us suppose that µ > µ∗ and that k = h ¹ µ is already defined. Under
these conditions,

g(uk) 6= 0,

since uk = uk0 + uk1 , there is an i ∈ {0, 1} such that g(uki) 6= 0. We make
h(µ) = i. That is,

h ¹ µ + 1 = ki.
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Suppose k = h ¹ µ is already defined and let µ be a limit ordinal. We know
that

g(uh¹ν) 6= 0, ∀ ν < µ, µ∗ ≤ ν.

We must show that
g(uh¹µ) 6= 0.

So, let us consider the R-homomorphism g ◦ F k :
∏

α<µ+1 Mα → R. Since
R is slender, almost all the uν (ν ∈ µ + 1) are mapped into zero under this
R-homomorphism. Consequently, there is a µ1 ∈ µ such that

g ◦ F k(uν) = 0 ∀ ν ≥ µ1, ν < κ.

Moreover, if g ◦ F k(uµ) = 0, from

F k


 ∑

µ1∈[ν,µ+1)

uν


 = uh¹µ1

(Claim 5), together with Theorem 27, it follows that

g (uh¹µ1) = (g ◦ F k)


 ∑

µ1∈[ν,µ+1)

uν


 = 0,

which contradicts the hypothesis that g(uh¹ν) 6= 0 for every ν ≥ µ∗, with ν ∈ µ.
Therefore one gets, just as before,

0 6= g ◦ F k(uµ) = g(ukµ).

But, kµ = k = h ¹ µ and, thus, g(uh¹µ) 6= 0. Notice that if X ⊆ κ, then uX 6= 0
if and only if |X| = κ. Otherwise, if |X| < κ then uX is in the class of zero.
From this it follows that for every µ ∈ κ, |Nh¹µ| = κ: if g(uh¹µ) 6= 0, then
uh¹µ 6= 0 because g is an R-homomorphism. Therefore,

|Nh¹µ| = κ.

To finish, we describe an injective function b : κ → κ having the property
that

b(µ) =
⋂
ν∈µ

A
h(b(ν))
b(ν) ,

for each µ ∈ κ. Suppose b ¹ µ is already defined and let

ρ = sup{b(ν) : ν ∈ µ}.

Then, ρ < κ since κ is regular.
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We can choose b(µ) ∈ Nh¹ρ − (ρ + 1) since we know that |Nh¹µ| = κ for
every µ ∈ κ.
Claim 7.

Nh¹ρ − (ρ + 1) ⊆
⋂
ν∈µ

A
h(b(ν))
b(ν) .

Proof of Claim 7. Let ξ ∈ Nh¹ρ − (ρ + 1), then ξ ∈ Nh¹ρ and ξ > ρ; besides,
ξ ∈ A

h(η)
η for every η ∈ ρ. We must show that ξ ∈ A

h(b(ν))
b(ν) for every ν ∈ µ.

Note that b ¹ µ : µ → ρ is injective. Hence,

ξ ∈
⋂
ν∈µ

A
h(b(ν))
b(ν) .

We are now able to define a subset H ⊆ κ of cardinality κ, homogeneous with
respect to p. We choose i ∈ {0, 1} such that

∣∣(h ◦ b)−1(i)
∣∣ = κ.

Let H = b
(
(h ◦ b)−1(i)

)
. In this situation |H| = κ and for any ν, µ ∈ H,

ν 6= µ there are ξ, ζ ∈ (h ◦ b)−1(i) such that b(ξ) = ν and b(ζ) = µ. Without
loss of generality we can assume ξ < ζ and get

b(ζ) ∈ A
h(b(ξ))
b(ξ) = Ai

b(ξ);

this yields p ({b(ζ), b(ξ)}) = i for every ξ, ζ ∈ (h ◦ b)−1(i). Therefore, H is
homogeneous of cardinality κ for p, which is a contradiction. We conclude that
g = 0 and L∗ = 0. ¤X

To finish we mention some open problems.

Problem 29. Under V = L, can we take κ Mahlo instead of weakly compact
in Theorem 21?

Problem 30. Does there exist an R-module M which is κ-torsionless but not
torsionless and with M∗ 6= 0?

Problem 31. An R-module M is locally projective if for each element m ∈ M ,
there exist x1, . . . , xn ∈ M and f1, . . . , fn ∈ M∗ such that m =

∑
j [xj , fj ]m,

where [m, f ] = mf(·) (for more on locally projective modules see [11]). It
is easy to see that every locally projective module is torsionless. Is there an
example of a torsionless R-module that is not locally projective?

Problem 32. Is it possible to extend example 28 to non-slender rings?
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