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On some properties of the solutions of
the problem modelling stratified ocean
and atmosphere flows in the half-space

Sobre algunas propiedades asintóticas de las soluciones del
problema de modelado estratificado de los flujos del océano y de la

atmósfera en el semi-espacio
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Abstract. We obtain a solution of the initial boundary value problem in the
3-dimensional half-space for a system of an exponentially stratified fluid in
the gravity field. We prove the uniqueness of the weak solution in the class
of growing functions. We also investigate the asymptotic behavior for the
solution as t →∞.
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Resumen. Para el sistema de ecuaciones en derivadas parciales que modela el
movimiento del líquido exponencialmente estratificado en el campo gravita-
cional, se soluciona el problema de frontera de valor inicial para el semi-espacio
tridimensional. Se prueba la unicidad de la solución débil en una clase de fun-
ciones crecientes. También se investiga el comportamiento asintótico de la
solución cuando t →∞.
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1. Introduction

The objective of this paper is to study the qualitative properties of the solutions
of the system which describes small motions of stratified fluid in the homoge-
neous gravity field, such as existence, uniqueness and asymptotic behavior. We
consider a system of equations of the form





ρ∗ ∂v1
∂t + ∂p

∂x1
= 0 ,

ρ∗ ∂v2
∂t + ∂p

∂x2
= 0 ,

ρ∗ ∂v3
∂t + gρ + ∂p

∂x3
= 0 ,

∂ρ
∂t − N2ρ∗

g v3 = 0 ,
∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

= 0 ,

(1)

in the domain
{{

x = (x1, x2, x3) : (x1, x2) ∈ R2, x3 ≥ 0
}

, t > 0
}
, where−→v (x, t)

is a velocity field with components v1(x, t), v2(x, t), v3(x, t), p(x, t) is the scalar
field of the dynamic pressure, ρ(x, t) is the dynamic density and ρ∗, g, N are
positive constants. The function ρ(x, t) describes the deviations of the density
from the stationary distribution which are caused by the motion of the fluid.
The same is also valid for p(x, t) . The equations (1) are deduced in [1] under the
assumption that the function of stationary distribution of density is performed
by the function ρ∗e−Nx3 . The system (1) can be considered as describing
linearized motions of three-dimensional fluid in a homogeneous gravity field
(atmosphere or ocean). This paper is inspired by the works [7] and [10], where
the mathematical properties of rotating (not stratified) fluid were studied. The
solutions for a Cauchy problem for (1), for the viscous case of intrusion were
constructed in [8], and the uniqueness of the Cauchy problem for the viscous
case was studied in [4]. The spectral properties of the differential operator
of (1) were studied in [3], [5]. And, the Cauchy problem for system (1) was
considered in [6]. In this work, we consider the system (1) in the semi-space

R3
+ =

{
(x1, x2, x3) : (x1, x2) ∈ R2, x3 ≥ 0

}
,

together with the initial conditions
{ −→v |t=0 = −→v 0(x) ,

ρ|t=0 = 0 ,
(2)

and the boundary conditions

∂v1

∂x3

∣∣∣∣
x3=0

=
∂v2

∂x3

∣∣∣∣
x3=0

= v3|x3=0 = 0 . (3)

We will construct explicitly the solution of the problem (1)-(3), prove its unique-
ness in a class of increasing functions, and establish its velocity of decay for
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t →∞. Without loss of generality, we may assume ρ∗ = g = N = 1. This can
be achieved by the following change of scale, where we modify the unknown
functions of velocity and density and use the same notation for modified func-
tions:

→
v = ρ∗

→
v , ρ = gρ. In that way, instead of system (1), we will consider

the following system:




∂v1
∂t + ∂p

∂x1
= 0 ,

∂v2
∂t + ∂p

∂x2
= 0 ,

∂v3
∂t + ρ + ∂p

∂x3
= 0 ,

∂ρ
∂t − v3 = 0 ,

∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

= 0 .

(1′)

2. Construction of the solutions

First, we would like to recall some properties of the “unilateral” Fourier trans-
forms, which can be found, for example, in [9]. For the functions f(x) ∈
C2 ∩ L([0,∞)), x ≥ 0, we can define sine- and cosine-Fourier transforms

Fsin[f ](ξ) =

∞∫

0

f(x) sin xξdx ,

Fcos[f ](ξ) =

∞∫

0

f(x) cos xξdx ,

for which the following relations are valid:

Fsin [f ′] = −ξFcos[f ], Fcos [f ′] = f(0) + ξFsin[f ] ,

Fsin [f ′′] = ξf(0)− ξ2Fsin[f ], Fcos [f ′′] = f ′(0)− ξ2Fcos[f ] ,

F−1
sin (u(ξ)Fsin[v]) =

1
π

∞∫

0

v(y)

∞∫

0

u(ξ)[cos ξ(x− y)− cos ξ(x + y)]dξdy ,

F−1
cos (u(ξ)Fsin[v]) =

1
π

∞∫

0

v(y)

∞∫

0

u(ξ)[sin ξ(x + y)− sin ξ(x− y)]dξdy ,

F−1
cos (u(ξ)Fcos[v]) =

1
π

∞∫

0

v(y)

∞∫

0

u(ξ)[cos ξ(x + y) + cos ξ(x− y)]dξdy .

Theorem 1. Let −→v 0(x) ∈ C∞0
(
R3

+

)
such that div−→v 0 = 0, and let ∂v0

1
∂x2

−
∂v0

2
∂x1

= 0. Then, the solution of the problem (1′), (2), (3) has the following
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46 ANDREI GINIATOULLINE & ÉDGAR MAYORGA

representation:

v1,2(x, t) = − 1

π

∞∫

0

∞∫

0

∫∫

R2

4v0
1,2(y)K1(x′ − y′, ξ3, t)[cos ξ3(x3 + y3) + cos ξ3(x3 − y3)]dy′dξ3dy3,

v3(x, t) = − 1

π

∞∫

0

∞∫

0

∫∫

R2

4v0
3(y)K1(x′ − y′, ξ3, t)[cos ξ3(x3 − y3)− cos ξ3(x3 + y3)]dy′dξ3dy3 ,

ρ(x, t) = − 1

π

∞∫

0

∞∫

0

∫∫

R2

4v0
3(y)K2(x′ − y′, ξ, t)[cos ξ3(x3 − y3)− cos ξ3(x3 + y3)]dy′dξ3dy3 ,

p(x, t) = − 1

π

∞∫

0

∞∫

0

∫∫

R2

∂v0
3(y)

∂y3
K2(x′ − y′, ξ, t)[cos ξ3(x3 − y3)− cos ξ3(x3 + y3)]dy′dξ3dy3 ,

where x′ = (x1, x2), y′ = (y1, y2), ξ′ = (ξ1, ξ2), ξ = (ξ1, ξ2, ξ3),

K1 (x′ − y′, ξ3, t) =
1

(2π)2

∫∫

R2

ei(ξ′,x′−y′) 1
|ξ|2 cos

( |ξ′|
|ξ| t

)
dξ′ , (4)

K2 (x′ − y′, ξ3, t) =
1

(2π)2

∫∫

R2

ei(ξ′,x′−y′) 1
|ξ||ξ′| sin

( |ξ′|
|ξ| t

)
dξ′ . (5)

Proof. We apply to the system (1′), the Fourier transform for x1, x2 and the
Laplace transform for t. Thus we obtain





λv̂1(ξ′, x3, λ)− v̂0
1(ξ′, x3) + iξ1p̂(ξ′, x3, λ) = 0 ,

λv̂2(ξ′, x3, λ)− v̂0
2(ξ′, x3) + iξ2p̂(ξ′, x3, λ) = 0 ,

λv̂3(ξ′, x3, λ)− v̂0
3(ξ′, x3) + ρ̂(ξ′, x3, λ) + ∂

∂x3
p̂(ξ′, x3, λ) = 0 ,

λρ̂(ξ′, x3, λ)− v̂3(ξ′, x3, λ) = 0 ,

iξ1v̂1(ξ′, x3, λ) + iξ2v̂2(ξ′, x3, λ) + ∂
∂x3

v̂3(ξ′, x3, λ) = 0 .

(6)

Now, for the variable x3, we apply the sine-Fourier transform to the third and
the fourth equations of (6), and the cosine-Fourier transform to the rest of the
equations of (6). In that way, the system (6) transforms into





λ
•
v1 −

•
v0
1 +iξ1

•
p = 0 ,

λ
•
v2 −

•
v0
2 +iξ2

•
p = 0 ,

λ
••
v3 −

••
v0
3 +

••
ρ −ξ3

•
p = 0 ,

λ
••
ρ − ••

v3 = 0 ,

iξ1
•
v1 +iξ2

•
v2 +ξ3

••
v3 = 0 ,

(7)
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where the following notation is assumed:

•
f= f̂(ξ1, ξ2, ξ3, λ) = F cos

x3→ξ3
[Fx1→ξ1 [Fx2→ξ2 [Lt→λ[f(x1, x2, x3, t)]]]] ,

••
f = f̂(ξ1, ξ2, ξ3, λ) = F sin

x3→ξ3
[Fx1→ξ1 [Fx2→ξ2 [Lt→λ[f(x1, x2, x3, t)]]]] .

Solving the system (7), we obtain

•
vi =

λ2|ξ|2
•
v0

i

λ(λ2|ξ|2 + |ξ′|2) , i = 1, 2,
••
v3 =

λ2|ξ|2
••
v0
3

λ2|ξ|2 + |ξ′|2 ,

••
ρ =

|ξ|2
••
v0
3

λ2|ξ|2 + |ξ′|2 ,
•
p =

ξ3

••
v0
3

λ2|ξ|2 + |ξ′|2 .

Applying the inverse Laplace transform to the previous relations, we have

•
vi (ξ, t) =

•
v0

i (ξ) cos
( |ξ′|
|ξ| t

)
, i = 1, 2,

••
v3 (ξ, t) =

••
v0
3 (ξ) cos

( |ξ′|
|ξ| t

)
,

•
p (ξ, t) =

••
v0
3 (ξ)

ξ3

|ξ||ξ′| sin
( |ξ′|
|ξ| t

)
,

••
ρ (ξ, t) =

••
v0
3 (ξ)

|ξ|
|ξ′| sin

( |ξ′|
|ξ| t

)
.

From the Fourier transform properties, for i = 1, 2, we obtain

•
vi (ξ, t) = −

•
4v0

i (ξ)
1
|ξ|2 cos

( |ξ′|
|ξ| t

)
.

Using the convolution relation

Fcos
x3→ξ3

[vi(x, t)] = −
∫∫

R2

•
4v0

i (y′, ξ)K1(x′ − y′, ξ3, t)dy′ ,

we finally have

vi(x, t) = − 1
π

∞∫

0

∞∫

0

∫∫

R2

4v0
i (y)K1 (x′ − y′, ξ, t)

[
cos ξ3(x3 + y3)+

+ cos ξ3(x3 − y3)
]
dy′dξ3dy3 ,

where K1 is given by (4).
In the same way, we can represent

••
v3 (ξ, t) = −

••
4v0

3 (ξ)
1
|ξ|2 cos

( |ξ′|
|ξ| t

)
,
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and thus obtain

v3(x, t) = − 1
π

∞∫

0

∞∫

0

∫∫

R2

4v0
3(y)K1(x′ − y′, ξ3, t)

[
cos ξ3(x3 − y3)−

− cos ξ3(x3 + y3)
]
dy′dξ3dy3 .

The representations for ρ and p can be obtained analogously. Thus, the
Theorem is proved. ¤X

The initial condition of the absence of curl component in (x1, x2) does
not restrict the generality, since it was assumed only to represent the Fourier
transform of −→v as a product of the Fourier transform of −→v 0 and the function
cos

(
|ξ′|
|ξ| t

)
, rather than a lineal combination of the Fourier images of the coor-

dinates v0
i , i = 1, 2, 3. It can be easily seen that K1 = ∂K2

∂t . To establish the
t-asymptotic, in Section 3 we will find an explicit from of the kernel K1.

3. Uniqueness of the solutions

Dot-multiplying the first three equations of (1′) by −→v , and the fourth equation
by ρ, we will have

∂

∂t

(
1
2
|−→v |2

)
+−→v ∇p + ρv3 = 0 ,

∂

∂t

(
1
2
ρ2

)
− ρv3 = 0 ,

from which, using the fifth equation of (1′) and the relation −→v ∇p = div (p−→v )−
p div−→v , we can easily obtain the energy conservation law

∂

∂t
E + div

−→
D = 0 , (8)

where E = 1
2

(
|−→v |2 + ρ2

)
,
−→
D = p−→v . Integrating (8) over R3

+ and using the
Gauss theorem, we obtain

d

dt

∫

R3
+

−→
Edx−

∫

x3=0

pv3dx1dx2 = 0 .

By condition (3) the second term in the last equation is zero. Thus, for every
t > 0 the following relation holds:

∫

R3
+

E(x, t)dx =
∫

R3
+

E(x, 0)dx . (9)
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In terms of L2-norms, we can write (9) as follows:

‖−→v (x, t)‖2L2(R3
+) + ‖ρ(x, t)‖L2(R3

+) =
∥∥−→v 0(x)

∥∥
L2(R3

+) , (10)

Since −→v 0 ∈ C∞0
(
R3

+

)
, all the norms in (10) are finite. The relation (10),

evidently, determines the uniqueness of the solutions in L2(R3
+). However, we

would like to establish the uniqueness of the solutions of (1′), (2), (3) in a
broader class of increasing functions. Now, we will apply the results of [4]
to the domain Q+ := {x ∈ R3

+ | 0 ≤ t ≤ T}, using the unilateral Fourier
transform.

Definition 1. Let g, ϕ ∈ C([0,∞)) −→ R be a pair of positive strictly growing

functions such that lim
r→∞

g(r)
r → 0,

∞∫
1

r
ϕ(r)dr = ∞. The set of locally bounded

and measurable functions {−→v , ρ, p} is called a weak solution of (1′), (2), (3)
if it satisfies (1′), (2), (3) in sense of generalized functions. We denote as
K+

ϕ,g, the class of uniqueness of the weak solutions, which is determined by
the inequalities:

sup
x3∈R1

+

|−→v (x, t)| ≤ C1 exp{ϕ(|x′|)}

sup
x3∈R1

+

|ρ(x, t)| ≤ C1 exp{ϕ(|x′|2)}

sup
x3∈R1

+

|p(x, t)| ≤ g(|x′|)

almost everywhere in R2 × [0 ≤ t ≤ T ]

Theorem 2. The weak solution is unique in the class K+
ϕ,g.

Proof. Under the zero initial conditions we will prove that the solution is

zero for all t > 0. We denote
∗
f (x′, ξ3, t) = Fcos

x3→ξ3
[f(x, t)],

∗∗
f (x′, ξ3, t) =

Fsin
x3→ξ3

[f(x, t)]. In this way, after applying the sine-Fourier transform in x3 to
the third and the fourth equations of (1′), and the cosine-Fourier transform to
the rest of the equations of (1′), we will have





∂
∗
v1
∂t + ∂

∗
p

∂x1
= 0 ,

∂
∗
v2
∂t + ∂

∗
p

∂x2
= 0 ,

∂
∗∗
v3
∂t +

∗∗
ρ −ξ3

∗
p = 0 ,

∂
∗∗
ρ

∂t −
∗∗
v3 = 0 ,

∂
∗
v1

∂x1
+ ∂

∗
v2

∂x2
+ ξ3

∗∗
v3 = 0 .

(11)
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Without loss of generality, just as in [4], we assume {−→v , ρ, p} ∈ C3
(
R2

x′ × Rt

)
.

By consecutive differentiation and elimination of the functions −→v , ρ, we can
reduce the problem (1′),(2),(3) to the problem





∂2

∂t2

(
42

∗
p −ξ2

3

∗
p
)

+42

∗
p = 0 ,

(
42

∗
p −ξ2

3

∗
p
) ∣∣∣∣

t=0

=
(
42

∗
pt −ξ2

3

∗
pt

)∣∣∣∣
t=0

= 0 ,
(12)

where 42 = ∂
∂x1

+ ∂
∂x2

.

Since p ∈ K+
ϕ,g, then the function q(ξ, t) := |ξ|2Fx′→ξ′

[∗
p (x′, ξ3, t)

]
, belongs

to S′
(
R2

ξ′

)
. In this way, after applying the Fourier transform (12), we will have

{
∂2q(ξ,t)

∂t2 + |ξ′|2
|ξ|2 q(ξ, t) = 0 ,

q|t=0 = qt|t=0 = 0 , t ∈ [0, T ] .
(13)

The solution of problem (13) is unique in S′
(
R2

ξ′

)
if the solution of the adjoint

problem




∂2

∂t2 ψ(ξ, t) + ξ′|2
|ξ|2 ψ(ξ, t) = 0 ,

ψ(ξ, t0) = ψ0(ξ′, ξ3) ,

ψt(ξ, t0) = ψ1(ξ′, ξ3) , t ∈ [0, t0] , t0 ∈ (0, T ] .

(14)

belongs to S′
(
R2

ξ′

)
, ξ3 ∈ R1

+ for every ψ0, ψ1 ∈ S
(
R2

ξ′

)
([4]).

Since the function exp
(
i |ξ

′|
|ξ (t− t0)

)
defines a bounded multiplication op-

erator in S′
(
R2

ξ′

)
, then, evidently, ψ ∈ S

(
R2

ξ′

)
. By that way, p(ξ′, ξ3, t) ≡ 0

and p∗(x′, ξ3, t) ≡ 0 for all t ∈ [0, T ], ξ3 ∈ R1
+. Following the results of [4], we

thus may conclude that
∗∗
ρ≡ •

v1≡ •
v2≡••v3≡ 0. Thus, the Theorem is proved. ¤X

4. Asymptotic behavior for large t

Theorem 3. Suppose −→v 0(x) ∈ C∞0 (R3
+). Then, the solution of the problem

(1′), (2), (3), decays as 1√
t
for t →∞.

Proof. As it can be seen from Theorem 1, we can limit our study to the in-
vestigation of the asymptotic behavior of the kernel function K3, which can be
defined as follows:

K3(z, t) :=

∞∫

0

K1 (z′, ξ3, t) cos(ξ3z3)dξ3 .
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Using polar coordinates and the formulas

1
2π

2π∫

0

cos (|x′|R sin ϕ) dϕ = J0 (|x′|R) , and

∞∫

0

J0(aR) cos(bR)dR =

{
1√

a2−b2
si a > b ,

0 si a < b ,

we calculate the kernel K3(x, t) as follows.

K3(x, t) =
1

(2π)3

∞∫

−∞
ei(ξ,x) 1

|ξ|2 cos
|ξ′|
|ξ| tdξ =

=
1

(2π)3

∞∫

−∞
eix3ξ3

∫∫

R2

ei(x′,ξ′)

|ξ′|2 + ξ2
3

cos

(
|ξ′|t√
|ξ′|2 + ξ3

)
dξ′dξ3 =

=
1

(2π)3

∞∫

−∞
eix3ξ3 · 2

∞∫

0

π∫

0

[
R

R2 + ξ2
3

cos(|x′|R sin ϕ)

cos

(
Rt√

R2 + ξ3

)
dϕdRdξ3

]
=

=
1

2π2

∞∫

0

∞∫

0

R

R2 + ξ2
3

J0(|x′|R) cos

(
Rt√

R2 + ξ2
3

)
cos(ξ3x3)dξ3dR =

=
1

2π2

∞∫

0

π/2∫

0

J0(|x′|R) cos(x3R tan ϑ) cos(t cosϑ)dϑdR =

=
1

2π2|x|

1∫

λ

w√
1− w2

cos(tw)√
w2 − λ2

dw , λ = |x3|/|x| . (15)

Thus,

K2(x, t) =
1

2π2|x|

1∫

λ

1√
1− w2

sin(tw)√
w2 − λ2

dw, λ = |x3|/|x|. (16)

The expressions (15), (16) are convenient for studying the asymptotic behavior
of the solution as t → ∞. For obtaining the differentiability properties of
solutions, it seems appropriate to use a different expression for the kernels K1,
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K2:

K2(x− y, t) =
1
4π

1
r

t∫

0

J0(t− τ)J0

(ρτ

r

)
dτ , (17)

where ρ2 = (x3 − y3)2, r2 =
∑3

k=1(xk − yk)2, and J0 is the Bessel function of
order zero. Let us show first that the expressions (16) and (17) are equivalent.

For the function T (t, λ) =
∫ t

0
J0(t− τ)J0(λτ)dτ , 0 ≤ λ ≤ 1, we consider the

Laplace transform with respect to t and denote it as T̃ (p, λ). Thus we have

T̃ (p, λ) =
1√

(p2 + 1)
√

(p2 + λ2)
.

On the complex plane of the variable p the function T̃ (p, λ) is multi-valued,
having ramification points ±i, ±iλ. We cut the plane along the two segments
of the imaginary axis, the first connecting the points i and iλ, and the second,
connecting the points −i and −iλ and choose the branch of the function T̃ (p, λ)
for which T̃ (0, λ) = 1/λ. Thus the chosen branch of T̃ (p, λ) will be a one-valued
analytic function of p.

Now let us consider the inverse Laplace transform (the Mellin transform):

T (t, λ) =
1

2iπ

a+i∞∫

a−i∞

T̃ (p, λ)e−ptdp , a > 0 .

Since T̃ behaves as 1/|p|2 for |p| → ∞, we can reduce the domain of above
integral to the segments which unite the ramification points of the integrand.
Thus, putting p = ik along the cuts, we can transform the last integral as

T (t, λ) =
1
iπ

1∫

λ

eikt

√
1− k2

√
k2 − λ2

dk − 1
iπ

−1∫

−λ

eikt

√
1− k2

√
k2 − λ2

dk .

Now, changing the variables from k to −k in the last integral, we finally obtain
that

T (t, λ) =

t∫

0

J0(t− τ)J0(λτ)dτ =
2
π

1∫

λ

1√
1− w2

sin(tw)√
w2 − λ2

dw .

Thus we can conclude that the expressions (16) and (17) represent the same
function. We observe that, for λ = 1 the function T is expressed as

T (t, 1) =

t∫

0

J0(t− τ)J0(λτ)dτ = sin t . (18)
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For the integral (15), the asymptotic can be obtained by the stationary phase
method. As it can be seen in [2], the main term of the asymptotic expansion
has the form

K3(x, t) =
(√

π

2λ(1− λ2)

) (
cos

(
tλ− π

4

)

2π2|x|√t

)
+ O

(
t−1

)
.

Thus, the Theorem is proved. ¤X

Remark 1. For λ = 0 we have K3(x, t) = 1
2π2|x|

∫ 1

0
cos(tw)√

1−w2 dw. Using the
results of [2], we can extend Theorem (3) to this case.

Using (17), (18) for λ = 1 we get

K3(x, t) =
cos t

4π|x| , λ = 1 .

The last relation means that on the vertical axis (λ = 1), the solution acts as
a stationary wave with no limit for t →∞.

Remark 2. Summing up the obtained results for the solutions as t → ∞, we
may conclude that the solution reveals its irregular, non-uniform character. It
tends to zero as a stationary wave with vanishing amplitude for λ = 0. It is
a stationary wave which has no limit for λ = 1. And, finally, it represents the
following remarkable wave process for 0 < λ < 1. The equiphase surfaces of the
wave (wave peaks), are described by the relation λ = |x3|/|x| = Const× t−1 and
are represented by conic surfaces with the vertex in the origin and the vertical
axis which increase their opening with the growth of t, approaching the plane
x3 = 0. This geometric situation explains the lack of limit of the solution as
t →∞ for λ = 1 (on the vertical axis).
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