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Resumen. Obtenemos una demonstración directa y simple del segundo teo-
rema de isomorfismo de Noether para categorías abelianas.
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Noether’s first isomorphism theorem for modules [6] asserts that, if R is a
unitary ring, A is a unitary left R-module and A1, A2 are two submodules of A
such that A1 ⊂ A2, then the quotient R-modules (A/A1)/(A/A2) and A2/A1

are isomorphic; proofs of its extension to arbitrary abelian categories may be
found in [1], [2] and [4].

Noether’s second isomorphism theorem for modules [6] asserts that if R is a
unitary ring, A is a unitary left R-module and A1, A2 are two submodules of A,
then the quotient R-modules A2/(A1 ∩A2) and (A1 + A2)/A1 are isomorphic;
proofs of its extension to arbitrary abelian categories may be found in [1], [2]
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and [4]. In this note we present a proof of Noether’s second isomorphism the-
orem for abelian categories, which only presupposes the rudiments on abelian
categories and is inspired by that of the classical case.

For the sake of clarity let us begin with some basic notions and facts con-
cerning categories, to be found in [1], [2], [3], [4] and [7], which will be needed
in the sequel.

Let C be a category and Ob(C) the class of objects of C. For A,B ∈ Ob(C),
1A shall denote the identity morphism of A and MorC(A,B) the set of mor-
phisms from A to B. Let u ∈ MorC(A, B). u is injective (resp. surjective)
if the relations C ∈ Ob(C), v1, v2 ∈ MorC(C,A) (resp. w1, w2 ∈ MorC(B,C)),
uv1 = uv2 (resp. w1u = w2u) imply v1 = v2 (resp. w1 = w2); u is bijective if
u is injective and surjective; u is an isomorphism if there exists a (necessarily
unique) u′ ∈ MorC(B, A) such that u′u = 1A and uu′ = 1B ; A and B are
isomorphic if there exists an isomorphism u : A → B. Every isomorphism is
bijective, but the converse is not true in general; see Example 3b below.

Let A ∈ Ob(C) be fixed. If u1 ∈ MorC(A1, A) and u2 ∈ MorC(A2, A) are
injective, we write (A1, u1) ≤ (A2, u2) (or A1 ≤ A2) to indicate the existence
of a v ∈ MorC(A1, A2) such that u1 = u2v; ≤ is a partial order in the class
of all such pairs (A1, u1). (A1, u1) and (A2, u2) as above are equivalent if
(A1, u1) ≤ (A2, u2) and (A2, u2) ≤ (A1, u1); in this case, A1 and A2 are iso-
morphic. In each class of equivalent pairs we choose a pair, called a subobject
of A. The class of subobjects of A is an ordered class under the relation ≤.
Dually, we consider a partial order ≤ in the class of all pairs (P, w), where
w ∈ MorC(A,P ) is surjective, and we choose a pair in each class of equivalent
pairs, called a quotient of A. The class of quotients of A is an ordered class
under the relation ≤.

A category C is additive if:

(a) for all A,B ∈ Ob(C), the product A×B and the direct sum A⊕B exist;

(b) for all A,B ∈ Ob(C), MorC(A,B) is an abelian group, whose identity
element shall be denoted by 0AB ;

(c) for all A, B,C ∈ Ob(C), the composition of morphisms

(u, v) ∈ MorC(A,B)×MorC(B, C) → vu ∈ MorC(A, C) ,

is a Z-bilinear mapping;

(d) there exists an A ∈ Ob(C) such that 1A = 0AA.

Obviously, every A′, A′′ as in (d) are isomorphic.
If C is a category satisfying conditions (b) and (c) above, then, for all

A,B ∈ Ob(C), the assumptions “A×B exists” and “A⊕B exists” are equivalent.
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If C is an additive category and u ∈ MorC(A,B), to say that u is injective
(resp. surjective) is equivalent to saying that the relations C ∈ Ob(C), v ∈
MorC(C, A) (resp. w ∈ MorC(B, C)), uv = 0CB (resp. wu = 0AC) imply
v = 0CA (resp. w = 0BC).

Let C be an additive category and u ∈ MorC(A,B). A pair (I, i) (where
i ∈ MorC(I, A)) is a generalized kernel of u if the following conditions hold:

(a) i is injective;

(b) ui = 0IB ;

(c) for each C ∈ Ob(C) and for each v ∈ MorC(C,A) with uv = 0CB , there
exists a w ∈ MorC(C, I) so that iw = v.

Two generalized kernels of u are equivalent. Therefore among them (if they
do exist) there is exactly one, denoted by (Ker(u), i) and called the kernel of u,
which is a subobject of A (the morphism i : Ker(u) → A is called the canonical
injection).

Dually, a pair (J, j) (where j ∈ MorC(B, J)) is a generalized cokernel of u
if the following conditions hold:

(a) j is surjective;

(b) ju = 0AJ ;

(c) for each C ∈ Ob(C) and for each w ∈ MorC(B, C) with wu = 0AC , there
exists a v ∈ MorC(J,C) so that w = vj.

Two generalized cokernels of u are equivalent. Therefore among them (if
they do exist) there is exactly one, denoted by (Coker(u), j) and called the
cokernel of u, which is a quotient of B (the morphism j : B → Coker(u) is
called the canonical surjection). If Coker(u) exists, we define the image of u
as Im(u) = Ker(Coker(u)), if Ker(Coker(u)) exists. And, if Ker(u) exists, we
define the coimage of u as Coim(u) = Coker(Ker(u)), if Coker(Ker(u)) exists.

Proposition 1. Let C be an additive category and let u ∈ MorC(A,B) be such
that Coim(u) and Im(u) exist. Then there exists a unique

u ∈ MorC(Coim(u), Im(u))

such that u = iuj, where i : Im(u) → B is the canonical injection and j : A →
Coim(u) is the canonical surjection.

A category C is abelian if it is additive and the following conditions hold:

(AB1) for all u ∈ MorC(A,B), Ker(u) and Coker(u) exist;
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(AB2) for all u ∈ MorC(A,B), the above-mentioned morphism u is an isomor-
phism.

If C is an additive category satisfying (AB1), then C is an abelian category
if, and only if, the conditions (α) and (β) below hold:

(α) for all u ∈ MorC(A,B), u is bijective;

(β) every bijection is an isomorphism.

Example 2. (a) Let R be a unitary ring. Then ModR, the category whose
objects are unitary left R-modules and whose morphisms are R-linear
mappings, is abelian. In particular, the category of abelian groups is
abelian.

(b) If p is a positive prime number, the category of finite abelian p-groups is
abelian.

(c) The category of vector bundles [8] is abelian.

(d) The category of sheaves of abelian groups on a topological space [5] is
abelian.

Example 3. (a) The category of free abelian groups is additive, but is not
abelian; see [6, p. 110].

(b) It is easily verified that Gt, the category whose objects are abelian topolog-
ical groups and whose morphisms are continuous group homomorphisms,
is additive and satisfies condition (α). But Gt is not abelian. In fact,
let A be the additive group of real numbers endowed with the discrete
topology, B the additive group of real numbers endowed with the usual
topology and u : A → B the identity mapping. Then A,B ∈ Ob(Gt),
u ∈ MorGt(A,B), u is bijective, but u is not an isomorphism. Hence
condition (β) is not satisfied and Gt is not abelian.

Proposition 4. Let C be an abelian category, A, B,C ∈ Ob(C), u ∈ MorC(A,B)
and v ∈ MorC(B, C). Then the following assertions hold:

(a) u is surjective if, and only if, Im(u) = B (that is, the canonical injection
Im(u) → B is an isomorphism);

(b) Ker(vu) ≥ Ker(u);

(c) vu = 0AC if, and only if, Im(u) ≤ Ker(v);

(d) If (A, u) is a subobject of B, then A = Im(u), that is, the morphism
A → Coim(u) u→ Im(u) is an isomorphism.
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Proposition 5. Let C be an abelian category and A ∈ Ob(C). Let S be the
class of subobjects of A and Q the class of quotients of A. For (A′, i) ∈ S and
(A′′, j) ∈ Q, the relations Coker(i) = A′′ and Ker(j) = A′ are equivalent and
establish a one-to-one correspondence between S and Q.

For each A′ ∈ S, A/A′ shall denote the corresponding element of Q.
If C is an abelian category and A ∈ Ob(C), it is well-known that the ordered

class of subobjects of A is a lattice. If A1, A2 are two subobjects of A, we put
A1 ∩ A2 := inf(A1, A2) and A1 ∪ A2 := sup(A1, A2). The next proposition is
Theorem 2.13 of [2]. We recall its proof (here in a slightly modified version)
since it will be used later on.

Proposition 6. Let C be an abelian category and A ∈ Ob(C). Then any two
subobjects of A admit an infimum.

Proof. Let (A1, i1) and (A2, i2) be two subobjects of A and let j1 : A → A/A1

be the canonical surjection. Put u = j1i2 and let (Ker(u), i) be the kernel of u.
Then (Ker(u), i2i) is a subobject of A such that Ker(u) ≤ A2. We claim that
Ker(u) ≤ A1. Indeed, since

0Ker(u)A/A1 = ui = (j1i2)i = j1(i2i) ,

and since Ker(j1) = A1 by Proposition 5, there exists a morphism w : Ker(u) →
A1 such that the diagram

Ker(u) i //

w

²²

A2

i2

²²
A1 i1

// A

is commutative. Thus Ker(u) ≤ A1.
Now, let (X, k) be a subobject of A such that X ≤ A1 and X ≤ A2.

We claim that X ≤ Ker(u). Indeed, since X ≤ A1, there exists a morphism
θ1 : X → A1 such that the diagram

X
k //

θ1

²²

A

A1

i1

>>}}}}}}}

is commutative. And, since X ≤ A2, there exists a morphism θ2 : X → A2

such that the diagram

X
k //

θ2

²²

A

A2

i2

>>}}}}}}}
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is commutative. On the other hand,

uθ2 = (j1i2)θ2 = j1(i2θ2) = j1(i1θ1) = (j1i1)θ1 = 0A1A/A1θ1 = 0XA/A1 .

Hence there exists a morphism t : X → Ker(u) such that the diagram

X
t //

θ2

²²

Ker(u)

i{{xxxxxxxx

A2

is commutative. Consequently,

k = i2θ2 = i2(it) = (i2i)t ,

proving that X ≤ Ker(u). Therefore the subobjects (A1, i1) and (A2, i2) of A
admit an infimum, namely, (Ker(u), i2i). This completes the proof. ¤X

Now, let us state Noether’s second isomorphism theorem for abelian cate-
gories [2, p. 59, 2.67]:

Theorem 7. Let C be an abelian category and A ∈ Ob(C). If A1, A2 are two
subobjects of A, then A2/(A1 ∩A2) and (A1 ∪A2)/A1 are isomorphic.

In order to prove Theorem 7 we shall need two auxiliary lemmas.

Lemma 8. Let C be an abelian category. If u ∈ MorC(A,B) is such that
Ker(u) = A, that is, if the canonical injection i : Ker(u) → A is an isomor-
phism, then u = 0AB.

Proof. Let i′ ∈ MorC(A,Ker(u)) be such that ii′ = 1A and i′i = 1Ker(u). Since
ui = 0Ker(u)B , we obtain

u = u1A = u (ii′) = (ui)i′ = 0Ker(u)Bi′ = 0AB .

¤X

Lemma 9. Let C be an abelian category and A ∈ Ob(C). If A1, A2 are two
subobjects of A, consider the sequence

A2
k→ A1 ∪A2

l→ (A1 ∪A2)/A1 ,

where k is the canonical injection and l is the canonical surjection. Then v = lk
is surjective.
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Proof. Let C ∈ Ob(C) and w ∈ MorC((A1∪A2)/A1, C) be such that wv = 0A2C .
We have to show that w = 0(A1∪A2)/A1C . But, since l is surjective, it suffices
to show that wl = 0(A1∪A2)C . So, let us prove that wl = 0(A1∪A2)C . Indeed,
the relation

(wl)k = w(lk) = wv = 0A2C

and Proposition 4(c) furnish Im(k) ≤ Ker(wl). Thus, by Proposition 4(d),
A2 ≤ Ker(wl). On the other hand, Ker(wl) ≥ Ker(l) = A1, in view of Proposi-
tions 4(b) and 5. Consequently, A1 ∪A2 ≤ Ker(wl). Since Ker(wl) ≤ A1 ∪A2,
we get Ker(wl) = A1 ∪ A2, and therefore wl = 0(A1∪A2)C by Lemma 8. This
completes the proof. ¤X

Now, let us turn to the proof of Theorem 7:

Proof. Clearly we may suppose that A = A1 ∪ A2. Let v be as in the proof of
Lemma 9. By the proof of Proposition 6, Ker(v) = A1 ∩A2, and hence

Coim(v) = Coker(Ker(v)) = Coker(A1 ∩A2) = A2/(A1 ∩A2) .

Since C is abelian,
v : A2/(A1 ∩A2) → Im(v)

is an isomorphism. Moreover, Im(v) = (A1 ∪A2)/A1, in view of Lemma 9 and
Proposition 4(a). Then A2/(A1∩A2) and (A1∪A2)/A1 are isomorphic, as was
to be shown. ¤X

Corolary 10. Let R be a unitary ring, A ∈ Ob(ModR) and A1, A2 two sub-
modules of A. Then the quotient R-modules A2/(A1 ∩ A2) and (A1 + A2)/A1

are isomorphic.

Proof. The result follows immediately from Theorem 7, because A1 + A2 =
A1 ∪A2. ¤X

Acknowledgment: The authors are grateful to the referee for his valuable
report.
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