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ABSTRACT. This paper deals with a conceptual simple approach for
an effective a posteriori error analysis for linear problems ranging from
Volterra equations to initial value problems for ordinary and partial
differential equations. The theoretical basis is described with an ap-
proach using integral equations. It is then demonstrated that this
concept leads to computable and safe error estimates for a wide class
of problems.
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REsuMEN. Este articulo trata una aproximacién conceptual simple para
un efectivo andlisis de error posterior de problemas lineales que se ex-
tienden desde la ecuacién de Voltera hasta problemas con valores ini-
ciales para ecuaciones diferenciales ordinarias y parciales. La teoria
bésica se describe aproximadamente usando ecuaciones integrales. En-
tonces se demostrd un concepto guiado al cdlculo y estimacién de e-
rrores para una clase amplia de problemas.
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1. Motivation

A severe drawback in contemporary scientific computing is the lack
of computable and safe error bounds. In this paper we derive a concept
to reach this goal for equations of the type

(1) L(z) = f,

where L is a linear operator from a normed space X; into a normed
space Xy. Let Z be an approximation for the solution z of (1). Then an
a posteriori error bound is given by

(2) lz = 2l < IL7H L) = £

The local behaviour of the error is estimated by the quantity
L(%)— f, whereas the factor || L~} seizes the influence of the global error.
Whereas a calculation of a bound on the residual L(Z) — f is feasible
in the framework of a precise computer arithmetic, the computation
of a bound on ||L7!|| poses in general, difficult theoretical questions,
hence as a matter of fact a common practice is to ignore this approach
in numerical analysis, because it is held that this is either impossible
or at least very hard to do. Thus the accuracy question is left to the
users of numerical softwarepackages and is therefore often ignored. To
overcome this difficulty we develop a method to compute reliable error
estimates for numerical solutions Z obtained by traditional schemes. A
great advantage of the method described here is its conceptual simplicity
and its independence from specific methods.

The paper is organized as follows. In the following section we sum-
marize some facts from interval analysis, which form the basis of the
validation step. Then we derive a method for computing bounds on
|L~1||, which is applied to a wide class of linear problems in the sub-
sequent paragraphs, whereas in the last section we discuss aspects of
realization and report about numerical tests.
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2. Foundations of interval analysis

For readers who are not familiar with interval arithmetic we sketch
the basic concepts and facts from interval analysis.

2.1. Real interval arithmetic and basic properties. A real interval
is a closed and bounded subset of the real numbers R. We write the
notation

[a] := [a,a] ={z € R|a <z <7},
where a and @ denote the lower and upper bounds of the interval [a],
respectively. The set of real intervals is denoted by IR. An interval
is called point interval if @ = @. We simply write a in this case. The
elementary real operations x € {+,—,-,/} are extended to IR by [a]
[b] :== {a * bla € [a],b € [b]}. In the case of division 0 ¢[b] is assumed.
Since the function f(a,b) = a*b, a € [a], b € [b], ¥ € {+,—,-,/} is
continuous, [a] *[b] is contained in IR. By using monotonicity properties
we obtain the following rules for the four operations.

[a] 4 [b] = [a + b,@ + b],

[a] = [b] = [a —b,@a -],
[a] - [t] = [min{ab, @b, ab, ab}, max{ab, ab, ab, ab}],

/i =1d- [5.5] 0 ¢ 1

Heindl [9] has shown that for * the number of multiplications in the
preceding formula can be reduced to three. We can reduce this number
to the multiplication of two real numbers in the case in which not si-
multaneously 0 € [a] and 0 € [b]. Let f : A C R — R be a real-valued
elementary function, which is continuous on every closed interval in its

domain A. Then for [a] C A we define the so-called unary operation in
IR

f(la]) = {f(a)|a € [a]}-
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Example 1. For [a] restricted to the domain of f holds for example

el = exp([a]) = [¢%, €],

Vial = /([a]) = [va, Va),

[a™,a™] if a > 0 or n is odd;
[a]" =< [a",a"] ifa <0 orn is even;
[0, max{|a|", |@|™}] if O € [a] and n is even.

f([a]) =[f(a), f(@a)], f € {arctan,arcsinh,ln,sinh}.

Interval addition and multiplication are associative and commutative.
But interval arithmetic does not follow the same rules as the real arith-
metic (cf. Claudio et al [2]): For [a], [b], [c] € IR we have

[a] - ([B] + [¢]) < [a] - [b] + [a] - [B],

We call this property subdistributivity. In certain special cases, distribu-
tivity holds:

[a]([8] + [¢]) = [a][b] + [a][c] for [a] €R,
[a)([0] + [e]) = [al[b] + [a][] if [][c] > 0.

Radius, absolute value, midpoint and diameter (or width) of an interval
[a] are defined as

r(lal) = “5 2,
lo]] = max{|al, al},
ma]) = 232,
a(lo]) =7 -a.

The distance of two intervals [a] and [b] is defined as the real number

q([a], [b]) := max{|b — af, [b —al}.
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2.2. Interval arithmetic evaluation. A fundamental problem of in-
terval arithmetic is to compute an enclosure of the range of a function

f(a,b,...,z). The interval arithmetic evaluation or interval extension
of f is defined by f([a], [b],--. ,[#]). The following important rules hold
Inclusion monotonicity
1. If [a] C [a],[b] C [¥'],... ,[#] C [#'] then

f(la), 18], .- - [2] € £([a], [V, ..., ['D)

2. Inclusion property
Ifa€la],bebl,...,z €[z] then

fla,b,...,z) € f(lal, [b];-- -, [2]).
From the second rule we can see that the interval arithmetic evalua-
tion
f([al], 18], ,[2])
always contains the range R(f;[a],[b],...,[2]) of the real function f
defined on the Cartesian Product [a] x [b] X ... X [2]

R(f;[al,[b];-.- ,[2]) = {f(a;b,... ,2)|a € [a], bED],... 2z € [z]}
C f(la], (0], .- . ; [2])-

Since (IR, q) is a metric space, the concepts of convergence and con-
tinuity may be introduced in the usual manner (see Alefeld et al [1]).
Moore [13] has shown that under reasonable assumptions the following
inequality holds:

q(R(f;[=]), f([z])) < ~d([z]), ~ =0,

where [z] is contained in some fixed interval [z]°. This means that
the overestimation of R(f;[z]) by f([z]) goes linearly to zero with the
diameter of [z]. This holds also for functions of several variables.

Example 2. Let
flz) ==z -2, ze [37]0 = [0, 1]
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and

We have exact range of values:

ROl = |3 g

Nested form:

fi([z]) = [2](1 = [=]) = ;

[i—nz,(%—}—n)?] if n>%
interval evaluation:
1 1
folle) = [a] = o = |~ 20—, ]+ 2m 2],

q(R(f;[z]), f2([2]))) = max(2n,2n — n*) = 2n = v - d([z]),y = 1,

as predicted by Moore’s result.

It is possible to rearrange the variables of the given function in such a
manner that the interval arithmetic evaluation gives higher than linear
convergence to the range of values.

Theorem 3. (The centered form) Let the function f : R — R be rep-
resented in the so-called centered form

f(@) = f(@) + (z - 2) - h(x),
for some z € [z]. If h(z) has an interval arithmetic evaluation h([z])

then, under weak conditions on the arithmetic evaluation h([z]) for
f([z]) defined by,

f([2]) = f(2) + ([z] — 2) - h([z]),
it holds that
a) R(f;[=]) € f([=])

and
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b) q(R(f;[2]); £ (=) < v(d([z]))*.

Property b) is called quadratic approzimation property of the cen-
tered form. The centered form was introduced by Moore in [13] where
he conjectured that the quadratic approximation property holds. The
conjecture has been proved by Hansen in [8]. The question whether for
a given (rational) function there exists a representation f such that

q(R(f;[z]), f([=])) < y(d([=])™, ~>0,
with m > 2 is open. Up to now such representations are only known
under special assumptions.

Example 4. The function f(z) = z — 22, z € [0, 1] of Example 2 can
be written as

f(w):x—m2:%—<a:—%> (m—%) z€0,1],

ﬂmnz[i—na§+m] br[ﬂ:[%—m%+ny

and therefore
a(R(f5 1), £(12)) = v = 3 (d([a]))?,

which means that the distance goes quadratically to zero with d([z]).

Another interval extension of practical value is the mean value form.
Suppose f is differentiable on its domain D, then
f(x)=fle)+ f'(&)(z—¢)
with some fixed ¢ € D and & between z and c. Let ¢,z € [z], therefore
f@)=flc)+ f'()(x—c) € flc) + f([z])(z — )
C fe) + f'([=])([=]) —¢)
=: f([z])
this evaluation does not depend on the expression of f, but it depends

on the interval evaluation of f’. That means that different expressions
of f' lead to different values of f([z]).
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Remark 5. Interval arithmetic has been implemented in hardware and
in software on many different platforms and it is supported by powerful
programming languages. The XSC (eXtended Scientific Computation)
library provides powerful tools necessary for achieving high accuracy
and reliability. It provides a large number of predefined numerical data
types and operators to deal with uncertain data (see Hammer et al [7]).

3. Bounds on ||L7!|]

Here we look at an approach using integral equations, which can be
applied to a variety of problems. In (1) we choose especially L = I — K,
where I denotes the identity and K is a linear Volterra integral operator,
so problem (1) becomes

(3) (I -K)(z) = f,
if k(s,t) is the kernel function of K, then (3) is written in detail

S

() 2(s) — /k(s,t)m(t)dt —f(s), 0<s<a,

0
for notational simplicity, we choose, without loss of generality, the range
of the independent variable so that the lower integration bound is zero.
We assume that f and k& to be continuous on their domains of definition.
Here the spaces X7 and X5 coincide and (4) is dealt within the framework
of the space X = C[0, a], which is, equipped with the maximum norm
II-lloc, @ Banach space.

Theorem 6. We consider the operator L = I—K, where K is a Volterra
operator with a continuous kernel k(s,t), 0 < s,t < a. Let M be a
constant satisfying

(5) |k(s,t)| <M, 0<s,t<a.
Then a bound on the inverse L ! is given by
(6) IL7H] < e
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The solution z can be represented through a Neumann series
(7) w(s) =Y K"(f) =L7(f),
v=0

where K = I and K" is for v = 1,2,..., an integral operator with the
v-th iterated kernel k,(s,t) as kernel function:

k1(s,t) = k(s,t),

S
ky(s,t) = fk(s,’r)k,,_l(r, tydr, v=2,3,...
t

;From (5) we derive by induction
MVa"
7

(8) K7 < v=01,2,...,

and || K”||"/¥ tends to zero as v goes to infinity, so a bound on ||L~!| is
deduced from (7)
o0 o0
MYa"
=1y — v
0 =<3
v=0 v=0

and the proof is complete.

We want to stress that the foregoing results for scalar equations can be
extended without any difficulties to the case of vectorvalued functions.
We can also drop the restriction that s, ¢ are scalar variables. Let

[0,a] = ([0,a1],...,[0,a,]) CR"
be an interval, the notation ¢ = (¢1,... ,t,) € [0,a] means 0 < t; < a;,
1 =1,...,n. Then the Volterra equation has the form

S1

Sn
Z(S1,--- ,8n) —/ /k(31,... 2 Smytly e stn)T(t1, ... s tn)dt1, ... ,dty
0 0

= f(81,--- ,5n)
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or in short notation

o(s) = [ (s, )atidt = 1),
A
when denoting the domain {(s,t) : 0 <t; <s;,i=1,...,n} CR" with
A.
Integrodifferential equations, that are problems of the form

S S

2(s) = f(s) + g(s)a(s) + / (s, t)z()dt + / ks, )7 (H)dt,  (0) = mo
0 0

are reduced to a system of Volterra equations, by introducing the quan-

tities 1 := x, T9 = z’ yielding

S

:1:1(5) =x9 + /.’Bg(t)dt

0
s

12(s) = £(5) + g(s)1(s) + / Fy(s, )y (£)dt

0
s

+ kQ(S,t)LEQ(t)dt.
/

For equations of higher order, for each derivative a new unknown has to
be introduced.

4. Application to integral equations and initial value
problems

In this sequel we apply the results of the previous section obtaining
explicit estimates for various problems. All equations are assumed to be
in the canonical form (1) and we deal with several types of L. The basic
idea is to rewrite L(z) = f, if necessary, into an equivalent Volterra
equation of the form I — Q.



CONSTRUCTIVE ERROR ANALYSIS FOR LINEAR DIFFERENTIAL AND ... 79

4.1. Volterra equations. The first operator is associated with Volterra
integral equations of the second kind. The general form is

(10) Lz (3)) = a(s) - / (s, t)(t)dt,
A

the kernel is supposed to be continuous, with s,7 € R" and A is the
domain of integration. Then

(11) 1L loo < €12,
|Al is the area of A and M such that
(12) 1k(s,t)loo < M, (s,t) € A.

Next we treat the operator
S

(13) L@@»:/ﬁ@nﬂwﬁ,ogsgm
0

thus (1) is an ill-posed problem that is L~! is unbounded. In some cases
however the first kind equation

(14) /k@ﬂﬂﬂﬁzf@% 0<s<a,
0

can be recasted as second kind problem. Due to the nature of the prob-
lem we can only compute a bound on z and not a bound on L.

Theorem 7. Let k(s,t), 0 <t < s < a, be continuous and continuously
differentiable with respect to s. If k(s,s) # 0, 0 < s < a, then for the
solution z of (14) holds

(15) l|lz]| < My Mo,
where
f'(s)
< <s<
(16) ‘k(s,s) <M, 0<s<a
(17) 1) QY| < My,

v=0
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Q@ is an integral operator with kernel ﬁaké‘;’t) and Q¥ the integral

operator with the v—iterated kernel g, as kernel function.

The first kind problem L(z) = f is recasted as an second kind equa-
tion

(18) x@yﬁ/kéﬁaigﬂﬂﬂﬁ:k“sy 0<s<a,
0

the solution of both equations coincide cf Linz [11]. Aplying (7) to (18)
completes the proof.

Remark 8. A bound on the inverse of the integral operator occuring
in (18) is attained by (17).

4.2. Ordinary differential equations. In this section we turn our
attention to initial value problems

(19) z'(s) — A(s)z(s) = f(s),

z(0) = g

in which the vector valued function z(s) takes values within the space
R™, A(s) is a square matrix of order n with real valued continuous entries
and f(s) stands for a vector valued continuous function with values in
R™ defined on an interval [0,a], a € R, zy € R".

Note that every higher order problem can be turned into a first order
system, so (19) covers initial value problems of arbitrary order. The
operator corresponding to (19) is

(20) L(z) = — A(s)z(s).

Equation (19) is now converted by integration into a Volterra system
S S
(21) ﬂ@:m+/jwﬁ+/A@mmu
0 0

so that we can apply Theorem 6.
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4.3. Hyperbolic initial value problems. We consider the following
characteristic initial value problem, also known as Darboux problem:

L(u) = us — (a1(s,t)u(s,t) + az(s, t)us (s,t) + as(s, t)us (s,1))

(22) — f(s,1), (s,t) € A=1[0,¢1] x [0, ).

U(S,O) = g(S) ,y S € [Oacl]
(23) 9(0) = h(0),
u(0,8) = h(t) , te0,c]

We assume that inhomogeneity and coefficient functions are continuous
and g and h continuously differentiable. We are looking for classical
solutions, that are functions with u, us, us, usy € C(A). The initial value
problem is formulated first as integrodifferential equation by integrating
(22) on both sides, and afterwards rewritten with the techniques of §3
to a Volterra system, setting u; := w, us := ug, ug := uy

u1(s,t) = g(s) + h(t) +f3 f(5,t)dsdt
0

o o

s t 3
+ [ [ ai(s, t)ui(s, t)dsde,
(24) 0 0 =1

us(s,t) -I-ftf t)dt + a;(s,t)ui(s,t)dt
0

1

-~
Il

o
o

a;i(3,t)u;(3,t)ds.

S
us(s,t) = h'(t) + [ f(5,t)ds +
0
Denoting the nonhomogeneous terms on the right hand sides with

b1 (S, t), bg(s, t), bg(s, t)

o
e

Il
—

2

respectively, the corresponding integral operators with Li1, Lo, ... , L33
respectively, then (24) is written as

3
(25) ui(s,t) = bi(s, ) + ZLU (ui(s, 1)), i=1,23,
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or using vector notation, in short form

(26) (I-Qu=b

Applying a slight modification of Theorem 6 yields

(27) (I - Q)7 < eMA]
where

(28)  max, |1 Liill < M,
and

(29) |A| = ¢y - 1.

Other problems of interest are the Cauchy problem and the Goursat
problem leading to integral formulations similar as (24) (cf. Copson [3]).

5. Aspects of realization and numerical tests

In this section we discuss first some aspects of implementation. The
underlying problem is assumed to be given in the form

(30) L(z) = f

where L is one of the operators considered previously and B denotes
the corresponding function space. In the framework of Theorem 6, the
necessary computational steps are:
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STEP OPERATION ARITHMETIC
1 Recast (30) as equivalent second kind integral
equation
(31) L(z) =g,

where L = I — K, with k(s, t) as kernel of the
operator K.

2 Compute an approximation Zp at discrete
points using a suitable numerical method. floating point
4 Compute [d(s)] = L(Z) — g. interval
5 Determine [ry, o] with range (k(s,t)) C[ri,r2] | interval
M :=max{|r, |2},
IZ7H] < e
6 Establish a tolerance limit and check if the interval

criterion is satisfied. If so then,

z(s) € 2(s) + M. [d(s)] =: Z(s) + E(s),
otherwise go to step 2 by diminishing the
stepsize or employing another method.

We provide here some simple results to illustrate that the bound ob-
tained from Theorem 6 is reliable.

Example 9. The equation
s
z(s) =¢€° — /e(s_t)x(t)dt, 0<s<1,
0
has exact solution z(s) = 1 (cf. Linz [11]). The errors in the approximate

solution by the trapezoidal method are shown in the table for the stepsize
h=9.7e —4:

Z(0.5) E(0.5) | average error
9.999999603e — 1 | 8.478e — 7| 9.849e — 7
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Example 10. Numerical results for the equation

S
1 ™ 1. (1-s 1 z(t)
- TR o BY g 0<s<,
)= 55 T8 4sm(1+s> 4/\/1+3+t =9=
0

obtained by the trapezoid method are displayed in the following table:

n = 1024
s z(s) E(s)
0.25 | 1.0857 | 3.2160e — 3
0.5 | 1.0238 | 1.21178e — 2
0.75 1 0.9757 | 2.1960e — 2
1.0 | 0.9348 | 3.0933e — 2

Example 11.

L]

1 1
z(s):m—2/ma}(t)dt, 0<s<5,

(cf. Delves/Mohamed [4]). The results computed with a trapezoidal
rule are shown in the columns of

n = 1024
s Z(s) E(s)
1.25 | 5.3444e — 2 | 1.0106e — 6
2.5 [1.8918e —2 | 7.0381e — 7
3.75 1 9.2349¢ — 3 | 4.7951e — 7
5.0 |5.4700e — 3 | 3.4197e — 7

Example 12. The Volterra system

z1(s) + gg es~txy (t)dt + 0fs(:os(s — t)xo(t)dt = cosh(s) + ssin(s)

za(s) + Ofses+t:v1(t)dt + Ofs s cos(t)za(t)dt = 2sin(s) + s(sin®(s) + e*),
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(0 < s < 1), has been approximated by a trapezoidal rule with the
stepsize h = 1.95e — 3. With this example we demonstrate that a small
defect without knowledge of a bound for the inverse operator is not
helpful

s | defect in first equation | defect in second equation
0.25 3.2168¢ — 7 2.1518¢ — 8
1.0 1.4989%¢ — 6 4.3032e — 3

in this case ||L || is bounded by 1.636e — 3.
Example 13. The first kind problem

S
/cos(s —t)z(t)dt = sin(s), 0<s<1,
0

has the exact solution z(s) = 1, the following table gives the computed
result.

h maximum error

9.765e — 4 3.4247e — 8

Example 14. We integrate the initial value problem
z'(s) = 2sx(s) + s, z(0) =1,
with Euler’s method and get

n =512
s | Z(s) E(s)
0.5 | 1.4260 | 1.1650e — 5
1.0 | 3.5774 | 6.9350e — 5
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