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Resumen. En este art́ıculo se obtiene la existencia de soluciones débiles aco-

tadas globalmente para el problema de Cauchy de un sistema simétricamente

hiperbólico con una fuente, usando la teoŕıa de la compacidad compensada.

Este sistema surge en areas como la teoŕıa de la elasticidad, la magneto-hidro-

dinámica y el mejoramiento en la recuperación de petróleo.
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1. Introduction

In this paper, we are concerned with a symmetrically hyperbolic system of two
equations with source terms

{
ut + (uφ(r))x + g1(u, v) = 0
vt + (vφ(r))x + g2(u, v) = 0

, (1.1)
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and bounded measurable initial data

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) , (1.2)

where φ(r) is a nonlinear symmetric function of u, v with r = u2 + v2. In
the paper [9], Lu studied the homogeneous system of Cauchy problem (1.1)-
(1.2) with g1(u, v) = g2(u, v) = 0, this homogeneous system is interesting
because it arises from such areas as elasticity theory, magnetohydrodynamics,
and enhanced oil recovery (cf. [5, 6]). In this article we study a symmetrically
hyperbolic system with source terms, which is also interesting in mathematic
and fluid mechanics.

Let F be the mapping from R2 into R2 defined by

F : (u, v) → (uφ(r), vφ(r)) ,

then two eigenvalues of dF are

λ1 = φ(r), λ2 = φ(r) + 2rφ′(r) , (1.3)

with corresponding right eigenvectors

r1 = (−v, u)T , r2 = (u, v)T . (1.4)

By simple calculations,

∇λ1 · r1 = 0, ∇λ2 · r2 = 6rφ
′

(r) + 4r2φ
′′

(r) . (1.5)

Therefore, from (1.3) the strict hyperbolicity of system (1.1) fails at the
points where rφ′(r) = 0, and from (1.5) the first characteristic field is always
linearly degenerate and the second characteristic field is either genuinely non-
linear or linearly degenerate, depending on the behavior of φ.

In this article, we suppose that

φ ∈ C2
(
R+
)
, meas

{
r : 3rφ′(r) + 2r2φ′′(r) = 0

}
= 0 . (1.6)

Therefore the second characteristic field could be linearly degenerate on a set
of Lebesgue measure zero.

The study of the Cauchy problem (1.1)-(1.2) with g1(u, v)=g2(u, v)=0 by
using the compensated compactness method started from [1], where Chen first
considered the propagation and cancelation of oscillations for the weak solution.
Along the second genuinely nonlinear characteristic field, the initial oscillations
cannot propagate and are killed instantaneously as time evolves, but along the
first linearly degenerate field, the initial oscillations can propagate. Lu [9]
studied the homogeneous system of Cauchy problem (1.1)-(1.2) with g1(u, v) =
g2(u, v) = 0 and obtained the existence of bounded weak solutions for the
Cauchy problem of a symmetrically homogeneous hyperbolic system.

In this work, we study the system of Cauchy problem (1.1)-(1.2) and have
the same conclusion for some source terms.
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2. The main theorem

For studying the Cauchy problem (1.1)-(1.2), we consider the Cauchy problem
for the related parabolic system.

{
ut + (uφ(r))x + g1(u, v) = εuxx

vt + (vφ(r))x + g2(u, v) = εvxx
, (2.1)

with the initial data (1.2).
We suppose that the functions g1(u, v) and g2(u, v) satisfy the following

conditions:

(H1) Both g1(u, v) and g2(u, v) are local Lipchitz continuous functions,

(H2) ug1(u, v) + vg2(u, v) ≥ Cr + C̃ , where C, C̃ are constants.
(H3) g2(u, v) = vh(u, v), h(u, v) ∈ C

(
R2
)
.

(H4)
∣∣∣vg1(u,v)−ug2(u,v)

v2

∣∣∣ ≤ C1

∣∣u
v

∣∣+ C̃1. where C1, C̃1 > 0 are constants.

(H5) There exists a continuous function G(w), such that:

vg1(u, v) − ug2(u, v)

v2
= G

(u

v

)
,

and

G
′

(w) ≥ 0.

The main result in this work is given as follows:

Theorem 2.1. (1) Suppose the initial data (u0(x), v0(x)) be bounded measur-
able and the conditions (H1)-(H2) are hold. Then for fixed ε > 0, the viscosity
solution (uε(x, t), vε(x, t)) of the Cauchy problem (2.1) and (1.2) exists and is
uniformly bounded with respect to the viscosity parameter ε.

(2) Moreover, if condition (1.6) holds, then there exists a subsequence of
rε = (uε)2 + (vε)2 (still labeled rε) which converges pointwisely to a function
l(x, t).

(3) If v0(x) ≥ c0 > 0 for a constant c0 , the total variation of u0(x)
v0(x) is

bounded in (−∞, +∞) and the conditions (H1)-(H5) are hold, then there exists
a subsequence of (uε, vε) (still denoted by (uε, vε)) which converges pointwisely
to a pair of functions (u(x, t), v(x, t)) satisfying l(x, t) = u2(x, t) + v2(x, t),
which, combining with 2., implies that the limit (u, v) is a weak solution of the
hyperbolic system (1.1) with the initial data (1.2).

Remark 2.1. Since (uε, vε) is uniformly bounded with respect to ε, its weak-
star limit (u, v) always exists. However, the strong limit l(x, t) of (uε)2 + (vε)2

need not equal u2(x, t)+ v2(x, t). If this equality is true, then, at least, (u, v) is
a weak solution of (1.1)-(1.2) without any more conditions, such as which are
given in part 3.

Remark 2.2. There are many functions g1(u, v) and g2(u, v) which are satis-
fied the conditions (H1)-(H2), but there are some functions g1(u, v) and g2(u, v)
which satisfy the conditions (H1)-(H5). For example, g1(u, v) = au + bv and
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g2(u, v) = cv satisfy the conditions (H1)-(H5), where a, b, c is constants and

a ≥ c. For another instance, g1(u, v) = α1

√
u2 + v2 + α2v and g2(u, v) = α3v

also satisfy the conditions (H1)-(H5), where αi ∈ R, i = 1, 2, 3 and α1 ≥ α3.

The proof of Theorem 2.1 will be given in Section 4.

3. Some lemmas

By using the theory of compensated compactness, BV compactness and the
maximum principle, the existence of global bounded weak solutions is obtained
for the Cauchy problem (1.1)-(1.2). To prove this conclusion, at first we intro-
duce some lemmas which are useful later in this paper.

Let us consider the following Cauchy problem for the general parabolic sys-
tem {

ut + f1(u, v)x + k1(u, v) = εuxx

vt + f2(u, v)x + k2(u, v) = εvxx
, (3.1)

with the initial data (1.2).

Lemma 3.1. Suppose that the initial data (u0(x), v0(x)) be bounded measurable
(that is |u0(x)| ≤ M , |v0(x)| ≤ M), fi(u, v) ∈ C1

(
R2
)

and ki(u, v) is locally
Lipschitz continuous function, i = 1, 2. Then

(1) The Cauchy problem (3.1) and (1.2) has unique solution (uε(x, t), vε(x, t))
∈ C∞(R × (0, t0)) for a small t0 > 0 which depends only on the L∞ norm of
the initial data, and

|uε(x, t)| ≤ 2M , |vε(x, t)| ≤ 2M , ∀ (x, t) ∈ R × [0, t0) .

(2) Moreover, if the solution (uε(x, t), vε(x, t)) has an a priori estimate for
arbitrary fixed T > 0

|uε(x, t)| ≤ M(T ) , |vε(x, t)| ≤ M(T ) , ∀ (x, t) ∈ R × [0, T ] ,

where M(T ) is a positive constant, being independent of ε for arbitrary fixed
T > 0, then the solution (uε(x, t), vε(x, t)) exists on R × [0, T ].

Proof. We will give a sketch of the proof; for details see [3, 7, 12].
(1) The Cauchy problem (3.1) and (1.2) is equivalent to the following integral

equations:

u(x, t) =

+∞∫

−∞

u0(y)Gε(x − y, t)dy

+

t∫

0

+∞∫

−∞

[
f1(u(y, τ), v(y, τ))Gε

y(x − y, t − τ)

− k1(u(y, τ), v(y, τ))Gε(x − y, t − τ)
]
dydτ .
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v(x, t) =

+∞∫

−∞

v0(y)Gε(x − y, t)dy

+

t∫

0

+∞∫

−∞

[
f2(u(y, τ), v(y, τ))Gε

y(x − y, t − τ)

− k2(u(y, τ), v(y, τ))Gε(x − y, t − τ)
]
dydτ .

The existence of the local solution can be easily obtained by applying the
contraction mapping principle to above integral representation for a solution.
Following the standard theory of semilinear parabolic systems, we get unique
solution (uε(x, t), vε(x, t)) ∈ C∞(R × (0, t0)) for a small t0 > 0 which depends
only on the L∞ norm of the initial data.

(2) Since the solution (uε(x, t), vε(x, t)) has an a priori estimate M(T ) for
arbitrary fixed T > 0 and t0 > 0 depends only on the L∞ norm of the initial
data, we can use (u(x, t0), v(x, t0)) as new initial data on the line t = t0 and
above a priori estimate M(T ), we have a smooth solution on t0 ≤ t ≤ t0 + τ

for the Cauchy problem (3.1) and (1.2). So we repeat this process to find a
solution on t0 ≤ t ≤ t0 + 2τ , and eventually after a finite number of steps we
obtain a solution on 0 ≤ t ≤ T . �X

Lemma 3.2. Suppose that u(x, t) is a solution for the Cauchy problem of the
parabolic equation

ut + a(u, x, t)ux + g(u, x, t) = uxx , (3.2)

and the initial data

u(x, 0) = u0(x) . (3.3)

Also suppose that the functions u0(x) and g(u, x, t) satisfy the following con-
ditions: |u0(x)| ≤ M , |g(u, x, t)| ≤ C|u| + C̄, where C, C̄ > 0 and a(u, x, t) is
bounded. Then for any T > 0, there exists M(T ) > 0 such that |u(x, t)| ≤ M(T )
on R × [0, T ].

Proof. Multiplying equation (3.2) by 2u, we have
(
u2
)
t
+ a(u, x, t)

(
u2
)
x

= 2uuxx − 2ug(u, x, t)

≤ (2uux)x − 2u2
x + 2|u|

(
C|u| + C̄

)

≤
(
u2
)
xx

+ (2C + 1)u2 + C̄2.

Let w =
(
u2 + C̄2

2C+1

)
e−(2C+1)t. Direct calculations show that

wt + a(u, x, t)wx ≤ wxx . (3.4)

Since the initial data u0 ≤ M , so w(x, 0) = (u0)
2 + C̄2

2C+1 ≤ M2 + C̄2

2C+1 . Using

the maximum principle [11] to (3.4), we get w(x, t) ≤ M 2 + C̄2

2C+1 , from the
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relationship between w(x, t) and u(x, t), we obtain the following L∞ estimates
of u(x, t):

|u(x, t)| ≤ M(T ) , (x, t) ∈ R × [0, T ] ,

where M(T ) =
[(

M2 + C̃2

2C+1

)
e(2C+1)t

] 1

2

. �X

From Lemma (3.2), we have

Corollary 3.1. Suppose that u(x, t) ≥ (≤)0 satisfies

ut + a(u, x, t)ux + g(u, x, t) ≤ (≥)uxx ,

and |u(x, 0)| ≤ M , g(u, x, t) ≥ (≤)Cu + C̄, where C, C̄ ∈ R and a(u, x, t) is
bounded. Then for any T > 0, there exists M(T ) > 0 such that u(x, t) ≤
M(T )(u(x, t) ≥ −M(T )) on R × [0, T ].

Lemma 3.3. Suppose that (uε(x, t), vε(x, t)) is a solution for Cauchy problem
(2.1) and (1.2). Also suppose that the conditions v0(x) ≥ c0 > 0, (H1) and
(H3) are hold. If |uε(x, t)| ≤ M(ε, c0, T ), |vε(x, t)| ≤ M(ε, c0, T ) on R× [0, T ],
then the solution vε(x, t) ≥ c(t, c0, ε) > 0 on R × [0, T ], where c(t, c0, ε) could
tend to zero as c0, ε tend to zero or t tends to infinity.

Proof. Let ω = log v, we rewrite the second equation of the related parabolic
system (2.1) as follows:

ωt + φ(r)ωx + φ(r)x + h(u, v) = ε
(
ωxx + ω2

x

)
, (3.5)

then

ωt = εωxx + ε

(
ωx − φ(r)

2ε

)2

− φ(r)x − φ2(r)

4ε
− h(u, v) .

The solution ωε of (3.5) with initial data ω0(x) = log v0(x) can be represented

by a Green function Gε(x − y, t) = 1√
4πεt

exp
{
− (x−y)2

4εt

}
:

ωε =

∞∫

−∞

Gε(x − y, t)ω0(y)dy +

t∫

0

∞∫

−∞

[
ε(ωx − φ(r)

2ε
)2 − φ(r)x

− φ2(r)

4ε
− h(u, v)

]
[Gε(x − y, t − s)] dyds . (3.6)

Since,

∞∫

−∞

Gε(x − y, t)dy = 1 ,

t∫

0

∞∫

−∞

∣∣Gε
y(x − y, t − s)

∣∣ dyds = 2

√
t

πε
, (t > 0),

Volumen 42, Número 2, Año 2008



EXISTENCE OF GLOBAL WEAK SOLUTIONS 227

it follows from (3.6) that

ωε ≥ log c0 +

t∫

0

∞∫

−∞

(
−φ(r)x − φ2(r)

4ε
− h(u, v)

)
Gε(x − y, t − s)dyds

= log c0 +

t∫

0

∞∫

−∞

[
φ(r)Gε

y(x − y, t − s)

−
(

φ2(r)

4ε
+ h(u, v)

)
Gε(x − y, t − s)

]
dyds

≥ log c0 − 2M1

√
t

πε
− M2t = −C(t, c0, ε) > −∞ .

Thus vε(x, t) has a positive lower bound c(t, c0, ε). �X

Let us consider the Cauchy problem for scalar conservation laws

ut + f(u)x = 0 , (3.7)

and bounded measurable initial data

u(x, 0) = u0(x) . (3.8)

The following lemmas are about the BV compactness and the compensated
compactness frameworks for Cauchy problem of scalar conservation laws (3.7)-
(3.8).

Lemma 3.4. (See [12]) Suppose that a sequence of function uε(x, t) satisfies

|uε|L∞ ≤ C|u0|L∞ , TV (uε) ≤ CTV (u0) ,

where uε(x, t) is a viscosity approximate solution of Cauchy problem (3.7)-
(3.8), the constant C is independent of ε and TV (u) is the total variation of
u. Then there exists a subsequence {uεk}∞k=1 such that

uεk(t, x) → u(t, x) , a.e., as, k → ∞ .

This limiting function u(t, x) is a bounded weak solutions for Cauchy problem
of scalar conservation laws (3.7)-(3.8).

Remark 3.1. The role of BV norms is indicated by Glimm’s theorem [12] for
hyperbolic systems (also see [10, 4, 14]).

Lemma 3.5. (See [2]) Suppose that a sequence of function uε(x, t) satisfies

|uε(x, t)|L∞ ≤ M ,
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where uε(x, t) is a viscosity approximate solution of Cauchy problem (3.7)-(3.8),
and for two entropy pairs

(η1(u), q1(u)) = (u − k, f(u) − f(k))

(η2(u), q2(u)) =


f(u) − f(k),

u∫

k

f ′(y)2dy


 ,

satisfies

ηi (uε(x, t))t + qi (uε(x, t))x is compact in W
−1,2
loc

(
R × R+

)
,

where k ∈ R, i = 1, 2. Then
(1) There exists a subsequence {uεk}∞k=1 such that

w∗ − lim
k→∞

uεk = u, w∗ − lim
k→∞

f(uεk) = f(u) .

(2) Furthermore, if there is no interval in which the flux function f(u) is
linear, then the sequence uε(t, x) is compact in L1

loc (R × R+). That is, if f ∈
C2(R × R+) and meas {u : f ′′(u) = 0} = 0, then uεk(t, x) → u(t, x), a.e as
k → ∞. This limiting function u(t, x) is a bounded weak solutions for Cauchy
problem of scalar conservation laws (3.7)-(3.8).

Remark 3.2. The simple proof of this lemma can see [2, 8]. A rigorous proof
by using infinite entropy pairs was first given by Tartar [13].

4. Proof of Theorem 2.1

In this section we proof Theorem 2.1 by using the compensated compactness
method and BV compactness frameworks.

Proof. (1) According to Lemma 3.1, to prove the existence of the viscosity
solution in Theorem 2.1, it is sufficient to get the uniform L∞ bound. Multi-
plying the first and second equations of the parabolic system (2.1) by 2u and
2v, respectively, then adding the result, we have

rt + φ(r)rx + 2r(φ(r))x + 2ug1(u, v) + 2vg2(u, v) = εrxx − 2ε
(
u2

x + v2
x

)
. (4.1)

By using the condition (H2), we get the following inequality

rt + f(r)x + 2Cr + 2C̃ ≤ εrxx , (4.2)

where f(r) =
∫ r

0
φ(s) + 2rφ′(s)ds.

Since the initial data (u0(x), v0(x)) is bounded measurable, we have

r(x, 0) = u2(x, 0) + v2(x, 0) ≤ M .

Using Corollary 3.1 to (4.2), we obtain the following L∞ estimates of rε(x, t)

rε = (uε)2 + (vε)2 ≤ M(T ), (x, t) ∈ R × [0, T ] , (4.3)

where M(T ) is a positive constant, being independent of ε, this implies the uni-
form boundedness of (uε, vε). According to Lemma 3.1, the viscosity solutions
exists on R × [0, T ].
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(2) To prove the strong convergence of rε, we multiply (4.1) by a test function
Φ, where Φ ∈ C∞

0 (R × R+) satisfies ΦK = 1, 0 ≤ Φ ≤ 1, and S = supp Φ for
an arbitrary compact set K ⊂ S ⊂ R × R+. Then, we have that

∞∫

0

∞∫

−∞

2ε
(
(uε

x)
2

+ (vε
x)2
)

Φdxdt =

∞∫

0

∞∫

−∞

[
εrxx − rt − f(r)x

− ug1(u, v) − vg2(u, v)
]
Φdxdt

=

∞∫

0

∞∫

−∞

εrΦxx + rΦt + f(r)Φxdxdt

+

∞∫

0

∞∫

−∞

(−ug1(u, v) − vg2(u, v))Φdxdt

≤ M(Φ) , (4.4)

and hence

ε(uε
x)2 and ε(vε

x)2 are bounded in L1
loc

(
R × R+

)
. (4.5)

Let (η(r), q(r)) be any pair of entropy-entropy fluxes of the scalar equation

rt + f(r)x + 2ug1(u, v) + 2vg2(u, v) = 0 ,

and multiply (4.1) by η′(r). Then

η(r)t + q(r)x = ε (η′(r)rx)x − εη′′(r)r2
x − 2εη′(r)

(
u2

x + v2
x

)

− η′(r)(2ug1(u, v) + 2vg2(u, v))

= I1 − I2 − I3 − I4 , (4.6)

where I2 + I3 are bounded in L1
loc(R×R+), I4 is in L∞ (R × [0, T ]), and since

I1 is compact in W
−1,2
loc (R × R+), then I4 is bounded in L 1

loc (R × R+), and

hence I1 − I2 − I3 − I4 are compact in W
−1,α
loc (R×R+) for α ∈ (1, 2), by (4.5).

Noticing that η(r)t + q(r)x is bounded in W −1,∞, and using Murat’s theorem
(cf. [13]), we get the proof that

ηi (rε(x, t))t + qi(r
ε(x, t))x are compact in W

−1,2
loc

(
R × R+

)
, (4.7)

for i = 1, 2, where

(η1(r), q1(r)) = (r − k, f(r) − f(k)) , (4.8)

and

(η2(r), q2(r)) =


f(r) − f(k),

r∫

k

(f ′(s))
2
ds


 , (4.9)

and k is an arbitrary constant. Similar Lemma 3.5, if we consider that r is
an independent variable, noticing the condition (1.6) on f , we get the proof of
rε(x, t) → l(x, t), almost everywhere.

Revista Colombiana de Matemáticas
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(3) Now we are going to prove the third part of Theorem 2.1. First, using
Lemma 3.3, we get vε ≥ c(t, c0, ε) > 0 when the conditions v0(x) ≥ c0 > 0,
(H1)and (H3) are hold. Second, we prove the strong convergence of (uε, vε) →
(u, v). By simple calculations, from system (2.1) we have that
(u

v

)
t
+ λ1

(u

v

)
x

= ε
(u

v

)
xx

− ε

(
2u

v3
v2

x − 2

v2
uxvx

)

−
(

vg1 (u, v) − ug2 (u, v)

v2

)
(4.10)

= ε
(u

v

)
xx

+ 2ε
vx

v

(u

v

)
x
−
(

vg1 (u, v) − ug2 (u, v)

v2

)
,

where, for simplicity, we omit the superscript ε in the viscosity solutions (uε, vε).
Using the condition (H4) and the maximum principle for (4.10), similar the

proof of Lemma 3.2, we get that uε

vε is uniformly bounded with respect to ε.
According to the BV compactness frameworks Lemma 3.4, for obtaining that

the total variation of
(

uε

vε

)
x

is bounded in (−∞,∞), we differentiate (4.10) with

respect to x and then multiplying the sequence of smooth functions m′ (θ, α)

by the result, where θ =
(

uε

vε

)
x

and α is a parameter, we have

m (θ, α)t + (λ1m (θ, α))x + (m′ (θ, α) θ − m (θ, α)) λ1x =

= εm (θ, α)xx − εm′′ (θ, α) θ2
x +

(
2ε

vε
x

vε
m (θ, α)

)

x

+

(
2ε

vε
x

vε

)

x

(
m′ (θ, α) θ − m (θ, α)

)
(4.11)

− m′ (θ, α)

(
vεg1 (uε, vε) − uεg2 (uε, vε)

(vε)
2

)

x

.

Choosing m(θ, α) such that m′′(θ, α) ≥ 0, m′(θ, α) → sign θ, m(θ, α) → |θ| as
α → 0, we have from (4.11)

|θ|t + (λ1|θ|)x ≤ ε|θ|xx +

(
2ε

vε
x

vε
|θ|
)

x

(4.12)

− sign θ

(
vεg1 (uε, vε) − uεg2 (uε, vε)

(vε)
2

)

x

.

Using the condition (H5), we have

|θ|t + (λ1|θ|)x ≤ ε|θ|xx +

(
2ε

vε
x

vε
|θ|
)

x

− G′

(
uε

vε

)
|θ| , (4.13)

hence

|θ|t + (λ1|θ|)x ≤ ε|θ|xx +

(
2ε

vε
x

vε
|θ|
)

x

. (4.14)
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Integrating (4.14) in R × [0, t], we have
∞∫

−∞

|θ(x, t)|dx ≤
∞∫

−∞

|θ(x, 0)|dx ≤ M . (4.15)

Since

TV

(
uε(x, t)

vε(x, t)

)
=

∞∫

−∞

|θ(x, t)|dx ,

we have

TV

(
uε(x, t)

vε(x, t)

)
≤ TV

(
uε(x, 0)

vε(x, 0)

)
≤ M .

According to Lemma 3.4, this implies the pointwise convergence of a subse-
quence of vε

vε . Combining this with the result in the second part of Theorem
2.1, we get the pointwise convergence of a subsequence of (vε, vε) → (u, v),
where the limit (u, v) is a global bounded weak solution of the Cauchy problem

(1.1)-(1.2). Thus we complete the proof of Theorem 2.1. �X
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