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grupos

Diomedes Barcenasa, Walter Espinoza, Edixon Rojas

University of Los Andes, Mérida, Venezuela

Abstract. It is proved in this paper that several classical Banach algebras
are not isomorphic to a group algebra. These algebras includes C(K) algebras
where K is a compact Hausdorff space. In the case of amalgams, we give
conditions for an amalgam to be a group algebra.
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Resumen. En este art́ıculo se prueba que algunas álgebras de Banach clásicas
no son isomorfas a un álgebra de grupo. Estas álgebras incluyen a las álgebras
C(K) donde K es un espacio de Hausdorff Compacto. En el caso de las amal-
gamas, damos condiciones para que una amalgama sea un álgebra de grupo.

Palabras y frases clave. Amalgamas, propiedad de Dunford-Pettis, propiedad de
Radon-Nikodym.

1. Introduction

In [13] the authors posed and answered the question when an amalgam is a
convolution algebra, which led to the question when these algebras are a group
algebra, indeed, when these algebras are isomorphic to L1(G), where G is a
locally compact group equipped with a Haar measure. In this paper we answer
this question and furthermore we prove that many classical infinite dimensional
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Banach algebras are not isomorphic to L1(G) for any locally compact topologi-
cal group G. This goal is achieved by using some Banach spaces techniques like
weak completeness as well as the Radon Nikodym property and the Dunford
Pettis Property ([5], [8], and [9]).

The paper is organized as follows: Section 2 contains some definitions and
preliminary facts necessary for developing the remainder of the paper. In Sec-
tion 3 we give necessary and sufficient conditions for an amalgam to be a group
algebra, while Section 4 deals with the case of several classical Banach algebras.

2. Preliminaries

In this section we present some definitions and preliminary facts which will be
useful in next sections. Some omitted material regarding Banach algebras are
classical and may be found in [1], [5], [6].

A Banach space X is called weakly sequentially complete if and only if ev-
ery weakly Cauchy sequence is convergent. Examples of Banach spaces which
are not weakly sequentially complete are both c0 and C(K) for K an infinite
compact Hausdorff space [5], while L1(µ) spaces, and the spaces of countably
additive scalar measures are examples of weakly complete Banach spaces [4],
[8], [10].

A Banach space X has the Dunford Pettis Property if for every Banach
space Y, every weakly compact operator T : X −→ Y is completely continuous
[7]. It is well known that reflexive complemented subspaces of Banach spaces
with the Dunford Pettis Property are finite dimensional. It is also well known
that L1(µ) has the Dunford Pettis Property. We recall that a Banach space
X has the Radon Nikodym Property if the Radon Nikodym theorem holds for
the Bochner integral [9]. Among Banach spaces without the Radon Nikodym
Property are c0, C(K) and L1(µ) with µ a non-atomic countably additive scalar
measure. A useful Banach space with the Radon Nikodym Property is `1(Γ)
for any set Γ. Omitted terms and definitions on Banach algebras are classical
and may be found in the cited literature.

3. Amalgams

Let G1 and G2 be locally compact topological groups with G2 containing a
compact open subgroup H . Let m be the Haar measure on G2 normalized
such that m(H) = 1. Denote by µ the Haar measure of G1 and suppose
additionally that G1 contains an open set V with compact closure V such that

µ
(

V \V
)

= 0, G1 =

∞
⋃

n=−∞

(tnV ), tn ∈ G1, µ
(

tnV ∩ tmV
)

= 0 ∀n 6= m.
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Put U = V × H and Uα = α + U with α of the form (tn, s), where s ∈ G2

and tn as above. Then we can write

G = G1 × G2 =
⋃

α∈J

Uα, where J =
⋃

n∈Z

{tn} × G2.

Using the above representation and following [2], [11], [12], [13], we define the
amalgam (Lp, lq)(G) to be the space of functions f which are locally in Lp(µ)
such that

‖f‖p,q =

[

∑

α∈J

[
∫

Vα

|f(x)|p
]q/p

]1/p

< ∞ .

For p = ∞ we have

‖f‖∞,q =

[

∑

α∈J

sup
x∈Vα

|fα(x)|q

]1/q

.

As in [14] fα := fXV α

where XV α

denotes the characteristic function of

V α. It is noticed in [13] that for G compact, (Lp, lq)(G) = Lp(G), while
(Lp, lq)(G) = lq(G) for G−discrete.

It is the aim of this section to study the case of when an amalgam is a group
algebra.

Theorem 1. Let G be a locally compact group and p, q ∈ [1,∞]. The following

statements hold.

1)
(

L1, l1
)

(G) is always a group algebra.

2) (Lp, lp) (G), p > 1 is a group algebra if and only if G is finite.

3)
(

Lp, l1
)

(G), p > 1 is a group algebra if G is discrete.

4) (Lp, lq) (G), p ≥ 1, q > 1 is a group algebra if G is finite.

5) (L∞, lq) (G), q > 1 is not a group algebra.

Proof. In [13] was proved that

‖f ∗ g‖p,1 ≤ C‖f‖p,1.‖g‖p,1,

which proves that (Lp, l1)(G) is a Banach algebra under convolution.
We want to know for which case (Lp, lq) (G) is a group algebra under con-

volution; indeed, under which conditions there is a locally compact group G′

such that (Lp, lq) (G) is a Banach algebra isomorphic to L1 (G′).
In the case p = q we have that (Lp, lq) (G) = Lp(G). Which implies that

(

L1, l1
)

(G) is always a convolution algebra, so statement 1) is obtained.
Now, for p > 1, it is known that Lp(G) is algebra if and only if G is compact.

So, if there is a locally compact group G′ such that Lp(G) is isomorphic to
L1(G′), it implies that L1(G′) is reflexive, because so is Lp(G) (recall p > 1).
Therefore L1(G′) is finite dimensional, which implies that G′ a finite group
and consequently we have the following conclusion: for p > 1, (Lp, lp)(G) is a
group algebra if and only if G is finite therefore statement 2) is proved.
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On the other hand, for p > 1, q = 1,
(

Lp, l1
)

(G) is always an algebra and

(

Lp, l1
)

(G) =
∑

n∈Z

[
∫

Vn

|f(x)|p
]1/p

,

which contains a complemented copy of Lp(V1). This implies that Lp(V1) is
complemented in L1(G′). Since L1(G′) enjoys the Dunford Pettis Property,
being p > 1, Lp(V1) is a reflexive complemented subspace of L1(G′), which
implies Lp(V1) finite dimensional. Therefore V1 is a finite set. Since V1 is open,
we conclude that G is discrete. In this way we obtain 3).

Now we consider the case p ≥ 1 and q > 1. In this case we have (Lp, lq)(G)
is an algebra if G is compact (see [15]). Since

(Lp, lq) (G) =

{

f : G −→ C measurable :

∞
∑

n=1

[
∫

Vn

|f(x)|p
]1/p

< ∞

}

,

we see that (Lp, lq) (G) contains a complemented copy of Lp(V1). So applying
the same argument as in the case of

(

Lp, l1
)

(G), p > 1, we see that Lp(V1) is
finite dimensional and therefore G is discrete. G being discrete and compact,
it is a finite group, i.e. the conclusion in 4).

Finally, we will consider p = ∞. From [11] we know that (L∞, lq) (G) ⊃
L∞(V ) which is not weakly sequentially complete; since L1(G′) is weakly se-
quentially complete we conclude that (L∞, lq) (G) cannot be isomorphic to

L1(G′) for which the theorem is done. �X

Remark 1. The case p < 1, q < 1, is out of the range of this paper because the
amalgams (Lp, lq) (G) are not Banach algebras.

4. The case of other Banach algebras

Proposition 2. c0 is not isomorphic to a group algebra.

Proof. It is well known that c0 is not weakly sequentially complete. Since
for every G′, L1(G′) is weakly sequentially complete, then there is not any

isomorphism between c0 an L1(G). �X

Several consequences from above proposition:

Theorem 3. None of the algebras L∞(µ), the disk algebra A(D), C(K) with K

an infinite Hausdorff compact set, commutative C∗−algebras, H∞, and B(H),
the algebra of bounded linear operator on a Hilbert space H, are group algebras.

Proof.

a) L∞(µ), the disk algebra A(D) nor C(K), K an infinite compact set
are group algebras because all of them contain copy of c0.

b) Commutative C∗−algebras are not group algebras, because they are
isomorphic to spaces of continuous functions.
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c) H∞ is not a group algebra because according to [15, III.E.4], it contains
a copy of l∞, which contains a copy of c0.

d) B(H) is not a group algebra. In fact, if T ∈ B(H) and T ∗ denotes the
adjoint operator of T , then the Banach algebra generated by {I, T, T ∗}
is isomorphic to a C∗−algebra.

�X

Examples of C∗−algebras which are important in Modern Harmonic Analysis
may be found in [3].

We denote by R(G) the algebra obtained by adding a unit to L1(G) and
by B(G) the convolution algebra of all Borel measures on G [1] . With these
notations we have the following result:

Theorem 4. R(G) and B(G) are group algebras if and only if G is discrete.

Proof. R(G) is a group algebra if and only if R(G) is isomorphic to L1(G′) for
some locally compact group G′. Since R(G) has an unit [1], so does L1(G′).
This happens if and only if G is discrete, if and only if G′ is discrete. The proof
for B(G) is similar, because it has an unit. �X
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