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Unmixed bipartite graphs

Grafos bipartitos sin mezcla
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Abstract. In this note we give a combinatorial characterization of all the

unmixed bipartite graphs.
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Resumen. En esta nota nosotros presentamos una caracterización combinatoria

de todos los grafos bipartitos no-mezcladas.
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1. Unmixed graphs

In the sequel we use [3] as a reference for standard terminology and notation
on graph theory.

Let G be a simple graph with vertex set V (G) and edge set E(G). A subset
C ⊂ V (G) is a minimal vertex cover of G if: (1) every edge of G is incident
with one vertex in C, and (2) there is no proper subset of C with the first
property. If C satisfies condition (1) only, then C is called a vertex cover of G.
Notice that C is a minimal vertex cover if and only if V (G) \ C is a maximal
independent set. A graph G is called unmixed if all the minimal vertex covers
of G have the same number of elements and it is called well covered [6] if all
the maximal independent sets of G have the same number of elements.
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The notion of unmixed graph is related to some other graph theoretical and
algebraic properties. The following implications hold for any graph without
isolated vertices [1, 3, 8]:

Cohen-Macaulay =⇒ unmixed =⇒ B-graph =⇒ vertex-critical.

Structural aspects of Cohen-Macaulay bipartite graphs were first studied in [2].
In loc. cit. it is shown that G is Cohen-Macaulay if and only if the simplicial
complex ∆G generated by the maximal independent sets of G is shellable.
The main result that we present in this note is the following combinatorial
characterization of all the unmixed bipartite graphs. Our result is inspired
by a criterion of Herzog and Hibi [4, Theorem 3.4] that describe all Cohen-
Macaulay bipartite graphs in combinatorial terms.

Theorem 1.1. Let G be a bipartite graph without isolated vertices. Then G is

unmixed if and only if there is a bipartition V1 = {x1, . . . , xg}, V2 = {y1, . . . , yg}
of G such that: (a) {xi, yi} ∈ E(G) for all i, and (b) if {xi, yj} and {xj , yk}
are in E(G) and i, j, k are distinct, then {xi, yk} ∈ E(G).

Proof. ⇒) Since G is bipartite, there is a bipartition (V1, V2) of G, i.e., V (G) =
V1 ∪V2, V1 ∩V2 = ∅, and every edge of G joins V1 with V2. Let g be the vertex
covering number of G, i.e., g is the number of elements in any minimal vertex
cover of G. Notice that V1 and V2 are both minimal vertex covers of G, hence
g = |V1| = |V2|. By König theorem [3, Theorem 10.2, p. 96] g is the maximum
number of independent edges of G. Therefore after permutation of the vertices
we obtain that V1 = {x1, . . . , xg}, V2 = {y1, . . . , yg}, and that {xi, yi} ∈ E(G)
for i = 1, . . . , g. Thus we have proved that (a) holds. To prove (b) take
{xi, yj} and {xj , yk} in E(G) such that i, j, k are distinct. Assume that xi

is not adjacent to yk. Then there is a maximal independent set of vertices
A containing xi and yk. Notice that |A| = g because G is unmixed. Hence
C = V (G) \ A is a minimal vertex cover of G with g vertices. Since xi and yk

are not on C, we get that yj and xj are both in C. As C intersects {x`, y`} in
at least one vertex for ` 6= j, we obtain that |C| ≥ g + 1, a contradiction.

⇐) Let C be a minimal vertex cover of G. It suffices to prove that C
intersects {xj , yj} in exactly one vertex for j = 1, . . . , g. Assume that xj and
yj belong to C for some j. If v ∈ V (G), we denote the neighbor set of v by
NG(v). Thus there are xi ∈ NG(yj) \ {xj} and yk ∈ NG(xj) \ {yj} such that
xi /∈ C and yk /∈ C. Notice that i, j, k are distinct. Indeed if i = k, then {xi, yi}
is an edge of G not covered by C, which is impossible. Therefore using (b) we

get that {xi, yk} is an edge of C, a contradiction. �X

Ravindra [7] has shown a characterization of well covered bipartite graphs.
Namely, G is well covered if and only if for every edge {x, y} in the perfect
matching, the induced subgraph 〈NG(x)∪NG(y)〉 is a complete bipartite graph.
The advantage of our characterization is that it admits a natural possible ex-
tension to hypergraphs and clutters with a perfect matching of König type
[5].
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As a consequence of Theorem 1.1 we recover the following result on the
structure of unmixed trees.

Corollary 1.1. [8, Theorem 2.4, Corollary 2.5] Let G be a tree with at least

three vertices. Then G is unmixed if and only if there is a bipartition V1 =
{x1, . . . , xg}, V2 = {y1, . . . , yg} of G such that: (a) {xi, yi} ∈ E(G) for all i,
and (b) for each i either deg(xi) = 1 or deg(yi) = 1.

References

[1] Berge, C. Some common properties for regularizable graphs, edge-critical graphs and
b-graphs. In Theory and practice of combinatorics, G. S. . J. T. A. Rosa, Ed., vol. 60.
North-Holland Math. Stud., Amsterdam, 1982, pp. 31–44.

[2] Estrada, M., and Villarreal, R. H. Cohen-Macaulay bipartite graphs. Arch. Math.

68 (1997), 124–128.
[3] Harary, F. Graph Theory. Addison-Wesley, 1972. Reading, MA.
[4] Herzog, J., and Hibi, T. Distributive lattices, bipartite graphs and Alexander duality.

J. Algebraic Combin. 22, 3 (2005), 289–302.
[5] Morey, S., Reyes, E., and Villarreal, R. H. Cohen-Macaulay, shellable and unmixed

clutters with a perfect matching of König type. J. Pure Appl. Algebra. To appear.
[6] Plummer, M. D. Some covering concepts in graphs. J. Combinatorial Theory 8 (1970),

91–98.
[7] Ravindra, G. Well-covered graphs. J. Combinatorics Information Syst. Sci. 2, 1 (1977),

20–21.
[8] Villarreal, R. H. Cohen-Macaulay graphs. Manuscripta Math. 66 (1990), 277–293.

(Recibido en julio de 2007. Aceptado en agosto de 2007)

Departamento de Matemáticas
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