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2005 Apuntes

Lecturas Matemáticas
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Resumen. Se realiza una revisión de cómo la homoloǵıa de Khovanov
se define a partir de un functor TQFT entre la categoŕıa de los (1 +
1)−cobordismos y la categoŕıa de los R−módulos. Luego se indica de
qué manera es posible obtener homoloǵıas del tipo Khovanov a partir
de sistemas de Frobenius

1. Introduction

The purpose of this paper is to define the special class of invariants of links
that we have called in the title Khovanov type homologies. Khovanov [10]
constructed an invariant of links which has attracted a lot of attention [15].
Bar–Natan in [3] showed how to compute it and found that it is a stronger
invariant than the Jones Polynomial. Lee [14] developed another homology
theory, which also can be computed explicitly, and has analogous underlying
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algebraic structures to Khovanov’s. Lee’s aim was to prove several con-
jectures formulated by Khovanov [10], Garoufalidis [7] and Bar–Natan
[3]. Later the work of Lee was used by Rasmussen [17] to define a knot
invariant with values in Z, which provided a lower bound for the slice genus
of knots. Subsequently, Bar–Natan [4] presented different homology theories
and Khovanov himself discussed the relations between them, and showed how
they were produced by Frobenius extensions.

Actually, any Frobenius extension gives rise to a Frobenius system, and
this to a chain complex whose homotopy type is the invariant we are going to
exhibit. Obviously, the homology of this chain complex is also an invariant of
links and this is the one we are referring to in the title. We explain this process
here and prove that there exist special conditions where a Frobenius system
produces a homology theory.

The work is organized as follows. In section 2, we present the restriction,
induction and coinduction functors, and use these concepts to introduce Frobe-
nius extensions. The reader can find an alternative way to do this in [9]. In this
section, we also prove that a necessary and sufficient condition to have such an
extension is the existence of two homomorphisms which lead to the definition of
a Frobenius system. Section 3 reviews the concepts of 2-dimensional cobordism
and (1 + 1)−TQFT and shows that there exists a one to one correspondence
between (1 + 1)−TQFT and Frobenius systems. We refer the reader to [2] and
[1] to study these concepts in depth. Section 4 is devoted to present the chain
complex used by Bar–Natan [4] and prove that this is an invariant of tangles,
and hence an invariant for links and knots. Finally, section 5 contains the main
theorem, where we apply a (1 + 1)−TQFT coming from a Frobenius system
to the cobordisms of section 3, and prove that, under special conditions, we
obtain a homology theory.

2. Frobenius systems

Given a ring R we use MR to denote the category of R−modules and
MR(M,N) to denote the set of R−module homomorphisms between M and
N . For the R−modules A and M , A ⊗R M denotes the tensor product of A
and M with scalars in the ring R, which is again an R−module. A⊗R M also
has a structure of A−module by defining a(b⊗R m) = ab⊗R m, where a, b ∈ A
and m ∈ M .

Definition 2.1. Let i : R → A be an injective commutative ring homomor-
phism such that i (1R) = 1A. The restriction functor, Res : MA → MR

assigns to every A−module M , the R−module MR which has the same under-
lying abelian group M , but with the scalar multiplication (·) defined as follows:
if x ∈ M and r ∈ R, then r · x = i (r) x.

The proof that M with this operation has an R−module structure is an easy
exercise.
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Proposition 2.2. The induction functor Ind : MR → MA defined by

Ind (M) = A ⊗R M

is left adjoint to the restriction functor Res .

Proof. The proof is based on the definition of left adjoint functor –see for
example [16]. Given M ∈ MR and N ∈ MA, we have to show that

a: there exists a bijection

η
MN

: MR (M,Res N) → MA (A ⊗R M,N)
b: for all f ∈ MR (M,M ′), the diagram

MR (M,Res N) MA (A ⊗R M,N)

MR (M ′,Res N) MA (A ⊗R M ′, N)

�η
MN

�
η

M′N

�
f∗

�
(Id⊗f)∗ (2.1)

is commutative.
c: for all g ∈ MA (N,N ′) the diagram

MR (M,Res N) MA (A ⊗R M,N)

MR (M,Res N ′) MA (A ⊗R M,N ′)

�η
MN

�

g∗

�

g∗

�
η

MN′

(2.2)

is commutative.

To prove (a), let us define the following functions

η
MN

: MR (M,Res N) → MA (IndM,N)

ρ
MN

: MA (IndM,N) → MR (M,Res N)
by the formulas

η
MN

(ϕ)

(∑
i

ai ⊗R wi

)
=
∑

i

aiϕ(wi).

and
ρ

MN
(φ) (x) = φ (1 ⊗R x) .

It is clear that η
MN

(ϕ) ∈ MA (IndM,N). Furthermore, if φ ∈ MA (IndM,N),
then ρ

MN
(ϕ) ∈ MR (M,Res N). Indeed, given x, y ∈ M

ρ
MN

(ϕ)(x + y) = φ(1 ⊗
R

(x + y)) = φ((1 ⊗
R

x) + (1 ⊗
R

y))

= φ(1 ⊗
R

x) + φ(1 ⊗
R

y) = ρ
MN

(ϕ)(x) + ρ
MN

(ϕ)(y)
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and for any r ∈ R

ρ
MN

(ϕ)(rx) = φ(1 ⊗
R

rx) = rρ
MN

(ϕ)(x).

Now, suppose that ϕ ∈ MR (M,Res N). We claim that ρ
MN

(η
MN

(ϕ)) = ϕ,
which implies ρ

MN
η

MN
= IdMR(M,Res N). In fact

ρ
MN

(η
MN

(ϕ))(x) = η
MN

(ϕ) (1 ⊗
R

x) = 1ϕ(x) = ϕ(x).

On the other hand, if φ ∈ MA (Ind M,N), then ρ
MN

(φ) ∈ MR (M,Res N).
Hence it is possible to define η

MN
(ρ

MN
(φ)). Now we can claim that if a⊗

R
x ∈

Ind(M) = A ⊗
R

M , then

η
MN

(ρ
MN

(φ))(a ⊗
R

x) = aρ
MN

(φ) (x) = aφ(1 ⊗
R

x) = φ(a ⊗
R

x).

We have already proved that η
MN

(ρ
MN

(φ)) = φ, and η
MN

ρ
MN

= IdMA(Ind M,N).
Finally, we can conclude that η

MN
is a bijection.

To prove (b), regard M and M ′ as R−modules and f ∈ MR(M,M ′). If
ϕ ∈ MR(M,Res N), then η

MN
f∗ϕ = η

MN
ϕf . Hence for all a ⊗

R
x ∈ A ⊗

R
M

we have
η

MN
((f∗ϕ))(a ⊗ x) = a(f∗ϕ)(x) = aϕ(f(x)) .

Furthermore, (Id⊗
R
f)∗η

M′N (ϕ) = η
M′N (ϕ)(Id⊗

R
f) . Consequently, every

a ⊗
R

x ∈ A ⊗
R

M satisfies

(Id⊗
R
f)∗η

M′N (ϕ)(a ⊗
R

x) = η
M′N (ϕ)(Id⊗

R
f)(a ⊗

R
x)

= η
M′N (ϕ)(a ⊗

R
f(x))

= aϕ(f(x))

This shows that
η

MN
f∗ = (Id⊗

R
f)∗η

M′N

and so the diagram 2.1 commutes.
Finally, to prove the assertion (c), let us choose arbitrary A−modules N and

N ′, and let g ∈ MA (N,N ′). Thus for all φ ∈ MR (M,Res N), η
MN′ (g∗(φ)) =

η
MN′ gφ, and hence for all a ⊗

R
x ∈ A ⊗

R
M we obtain

η
MN′ (g∗(φ))(a ⊗

R
x) = a(gφ)(x) = ag(φ(x)) ,

Moreover,

g∗(ηMN
(φ))(a ⊗

R
x) = g(η

MN′ (φ)(a ⊗
R

x)) = g(aφ(x)) = ag(φ(x))

This proves that the diagram 2.2 commutes. ��

Proposition 2.3. The functor coinduction CoInd : MR → MA given by

CoInd (M) = HomR(A,M)

is right adjoint to the functor Res .
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Proof. As before, we must define a bijection ρ
MN

: MA (N,HomR(A,M)) →
MR (Res N,M), such that for all R−module homomorphisms f : N → N ′ and
g : M → M ′ the following diagrams commute:

MA (N,HomR(A,M)) MR (Res N,M)

MA (N ′,HomR(A,M)) MR (Res N ′,M)

�ρ
MN

�
ρ

MN′

�
f∗

�
f∗ (2.3)

MA (N,HomR(A,M)) MR (Res N,M)

MA (N,HomR(A,M ′)) MR (Res N,M ′)

�ρ
MN

�

(g∗)∗

�

g∗

�
ρ

M′N

. (2.4)

This is achieved by defining

[ρ
MN

(φ)] (x) = [φ (x)] (1).

It is easy to prove that η
MN

: MR (Res N,M) → MA (N,HomR(A,M)), de-
fined by η

MN
(ϕ) (x) (a) = ϕ (ax) is the inverse of ρ, and then conclude that ρ

is a bijection. The reason to use the symbol (g∗)∗ is justified since g∗ is already
the induced homomorphism between HomR(A,M) and HomR(A,M ′). ��

Now we are ready to state the main concept of this section and to prove the
principal proposition. In fact, it is interesting to compare the induction and
coinduction functors. In particular, we want to see what happens if they are
isomorphic.

Definition 2.4. An injective commutative ring homomorphism i : R → A
is called a Frobenius extension if the associated induction and coinduction
functors are isomorphic.

Proposition 2.5. The injective R−module homomorphism i : R → A is a
Frobenius extension if and only if there exists an A−bimodule homomorphism
∆ : A → A ⊗R A and a R−module homomorphism ε : A → R such that

(Id⊗
R
ε)∆ = Id = (ε ⊗

R
Id)∆ (2.5)

The morphisms ∆ and ε are known respectively as the comultiplication and
counit. The last proposition is equivalent to ensure that ∆ and ε allow the
commutativity of the following diagram.
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R ⊗
R

A A ⊗
R

A A ⊗
R

R

A

�ε⊗Id �Id⊗ε

�
∆

�
�

�
���

∼=
�

�
�

���
∼=

Furthermore, it is possible to prove that if ∆ and ε satisfy the above propo-
sition, then ∆ is also coassociative and cocommutative. That is to say, the
commutativity of the following diagrams holds (see [6])

A A ⊗
R

A

A ⊗
R

A A ⊗
R

A ⊗ A

�∆

�
∆

�
∆⊗

R
Id

�
Id⊗

R
∆

A ⊗
R

A A ⊗
R

A

A

�τA,A

	
	
	

∆�

�
��
∆

where τ denotes the transposition operation.

Proof. If the map i : R → A is a Frobenius extension, by definition, it follows
that there exists a natural isomorphism η : Ind → CoInd, which means that
given a R−module homomorphism ϕ : M → M ′ the following diagram is
commutative

A ⊗
R

M HomR(A,M)

A ⊗
R

M ′ HomR(A,M ′)

�η
M

�
IdA⊗

R
ϕ

�
ϕ∗

�
η′

M

(2.6)

Obviously, η
M

: A⊗
R

M → HomR(A,M) is an A−module homomorphism and
η−1

M
: HomR(A,M) → A ⊗

R
M always exists.

First of all, we have to define ∆ and ε, and then prove the equality (2.5).
For each a ∈ A, define ϕa : A → A by ϕa(x) = ax. ϕa is an A−bimodule
endomorphism. Similarly, we have the same for the map f : A → HomR(A,A)
defined by f(a) = ϕa. Both M and M ′ in the diagram (2.6) can be replaced
by A, and then we define ∆ : A → A⊗

R
A by the formula ∆ = η−1

A
f . Since ∆

is the composition of two A−bimodule homomorphisms, it is an A−bimodule
homomorphism itself.

In the same way, we can replace in (2.6) M by R and M ′ by A, then we
obtain that the following diagram is commutative for all b ∈ A,

A ⊗
R

R HomR(A,R)

A ⊗
R

A HomR(A,A)

�η
R

�
IdA⊗

R
φb

�
φb∗

�η
A

(2.7)
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where the homomorphism φb : R → A is defined by φb(x) = bx. Since R⊗
R

A �
A � A⊗

R
R, then there exist isomorphisms g : A → A⊗

R
R and g′ : A → R⊗

R
A

such that g(1A) = 1A ⊗
R

1R and g′(1A) = 1R ⊗
R

1A. Thus, we can define
ε : A → R by ε = ηR(g(1A)) = ηR(1A ⊗

R
1R). To prove (2.5) it is enough to

verify the following equalities

1R ⊗
R

1A = (ε ⊗
R

Id)∆(1A) , (2.8)

1A ⊗
R

1R = (Id⊗
R
ε)∆(1A) . (2.9)

¿From the commutativity of the diagram (2.7) it follows that

ηA(Id⊗Rφb)(1A ⊗R 1R) = φbηR(1A ⊗R 1R) .

And by the definition of ε, this last assertion implies that ηA(1A ⊗R b) = φbε,
and hence for all a, b, c ∈ A

[ηA(a ⊗R b)](c) = ε(ac)b . (2.10)

In fact,

[ηA(a ⊗R b)](c) = [aηA(1A ⊗R b)](c) = [ηA(1A ⊗R b)](ac) = φbε(ac) .

Since ∆(1) ∈ A ⊗R A, we have ∆(1A) =
∑

i e1i ⊗R e2i, where each element
eij : j ∈ {1, 2} is an element of A. Applying (2.10) we conclude that for all i,
ηA(e1i ⊗R e2i)(1A) = ε(e1i)e2i. Therefore ηA(∆(1A))(1A) =

∑
i ε(e1i)e2i.

Now using the definition of ∆ we obtain

ηA(∆(1A))(1A) = ηAη−1
A (f(1A))(1A) = 1A .

So we have proved that ∑
i

ε(e1i)e2i = 1A .

This last equality allows us to compute the following

(ε ⊗R Id)∆(1A) = (ε ⊗R Id)(
∑

i

e1i ⊗R e2i) =
∑

i

(ε ⊗R Id)(e1i ⊗R e2i)

=
∑

i

ε(e1i) ⊗R e2i = g′(
∑

i

ε(e1i)e2i) = g′(1A) = 1R ⊗R 1A ,

which proves (2.8).
To prove (2.9), we take again the diagram (2.6), and use the fact that η is a

natural isomorphism so that η−1 exists, and then replace M by A, M ′ by R,
and ϕ by ε, to obtain

HomR(A,A) A ⊗
R

A

HomR(A,R) A ⊗
R

R

�
η−1

A

�
ε∗

�
IdA⊗

R
ε

�
η−1

R
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Applying this to IdA = f(1A) ∈ HomR(A,A) we obtain

(IdA ⊗Rε)η−1
A (f(1A)) = η−1

R ε IdA .

Therefore
(IdA ⊗Rε)∆(1A) = η−1

R ε = g(1A) = 1A ⊗R 1R .

Conversely, let us assume that there exists an A−bimodule homomorphism
∆ : A → A ⊗R A and a R−module homomorphism ε : A → R satisfying 2.5.
We have to show that there exists a natural isomorphism η : Ind → CoInd.

For all N ∈ MR, we define η
N

: A ⊗R N → Hom
R

(A,N) by

η
N

(a ⊗R n) (b) = ε(ba)n .

Clearly η
N

(a ⊗R n) (b) ∈ Hom
R

(A,N). Thus, we will begin proving that η is
a natural transformation. Let h : N → N ′ be a R−module homomorphism,
then

h[ηN (a ⊗R η)(b)] = h[ε(ba)n] = ε(ba)h(n)

and
ηN ′(IdA ⊗Rh)(a ⊗R n)(b) = ηN ′(a ⊗R h(n))(b) = ε(ba)h(n) .

This proves that the diagram

A ⊗
R

N HomR(A,N)

A ⊗
R

N ′ HomR(A,N ′)

�η
N

�
IdA⊗

R
h

�
h∗

�
η

N′

is commutative and so η defines a natural transformation.
To prove that η is a natural isomorphism, we only need to show that η has

an inverse. We define ρ
N

: Hom
R

(A,N) → A ⊗R N in the following way

ρ
N

(ϕ) =
∑

i

e1i ⊗R
ϕ (e2i) .

Remember that e1i and e2i are defined so that ∆(1A) =
∑

i e1i ⊗ e2i. It is
easily noticed that ρN (ϕ) ∈ A ⊗R N . Moreover the diagram

HomR(A,N) A ⊗
R

N

HomR(A,N ′) A ⊗
R

N ′

�ρ
N

�
h∗

�
IdA⊗

R
h

�
ρ

N′

commutes, and consequently ρ is a natural transformation. ¿From equation
(2.5), and the isomorphism between A, A ⊗R R and R ⊗R A, we obtain∑

i

ε(e1i)e2i =
∑

i

e1iε(e2i) = 1A . (2.11)
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Then for all ϕ ∈ HomR(A,N) and for all a ∈ A

[ηNρN (ϕ)] (a) =

[
ηN

(∑
i

e1i ⊗R ϕ(e2i)

)]
(a)

=

[∑
i

ηN (e1i ⊗R ϕ(e2i))

]
(a)

=
∑

i

ε(ae1i)ϕ(e2i)

= ϕ(
∑

i

ε(ae1i)e2i)

= ϕ(a) .

This last equality follows from the equation (2.11). We have already proved
that ηNρN = IdHomR(A,N). Moreover, for all a ⊗R n ∈ A ⊗R N we have that

ρN (ηN (a ⊗R n)) =
∑

i

e1i ⊗R ηN (a ⊗R n)(e2i) =
∑

i

e1i ⊗R ε(ae2i)n

= a ⊗R

∑
i

e1iε(e2i)n .

Therefore ρN (ηN (a⊗R n)) = a⊗R n, which proves that ρNηN = IdA⊗RN . ��

Definition 2.6. Given a Frobenius extension i : R → A, a Frobenius system
is an ordered quadruple F = (R,A, ε,∆) where ε and ∆ are chosen in such a
way that they satisfy proposition (2.5)

A Frobenius system is more than two sets with two operations. In fact, it
is important to consider the R−module homomorphism i and the multiplica-
tion in the ring A. This last operation defines clearly another A−bimodule
homomorphism m : A ⊗R A → A.

2.1. Examples of Frobenius systems. It is easy to prove that thethe fol-
lowing three examples are Frobenius systems. The first two were studied by
Khovanov [10]. The last one was studied by Lee [14]

• F1 = (R1, A1, ε1,∆1) with R1 = Z, and A1 = Z[X]/〈X2〉

ε1(1) = 0; ε1(X) = 1; ∆1(1) = 1 ⊗ X + X ⊗ 1; ∆1(X) = X ⊗ X

• F2 = (R2, A2, ε2,∆2) with R2 = Z[c], A1 = Z[X, c]/〈X2〉

ε2(1) = −c ∆2(1) = 1 ⊗ X + X ⊗ 1 + cX ⊗ X

ε2(X) = 1 ∆2(X) = X ⊗ X
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• F3 = (R3, A3, ε3,∆3) with R3 = Q, A3 = Q[X]/〈X2 − 1〉
ε3(1) = 0 ∆3(1) = 1 ⊗ X + X ⊗ 1

ε3(X) = 1 ∆3(X) = X ⊗ X + 1 ⊗ 1

3. The category of two dimensional cobordisms and TQFT functors

Topological quantum field theories (TQFTs) were introduced by Atiyah
in [2] and their relations to Frobenius systems were described by Abrams in
[1]. A TQFT is a functor between the category of 2-dimensional cobordism
and the category of R−modules, so we will initially present the category of
2-dimensional cobordisms, which is denoted here by 2-Cob.

The objects in 2-Cob are disjoint unions of orientable, compact 1-manifolds
embedded in R2 × {0} or R2 × {1}. Given two objects O1 and O2 in 2-Cob
a morphism C : O1 → O2 is an oriented topological surface embedded in
R2 × [0, 1], equipped with an orientation preserving homeomorphism from the
boundary ∂C to the disjoint union O1

⊔
O2. The following figures can be used

to exemplify what a cobordism is. The boundaries typify the objects of the
category and the surfaces represent morphisms between objects.

��

��

(a) (b)

Figure 1. Examples of 2−cobordisms

If C1 : O1 → O2 and C2 : O2 → O3 are morphisms, the composition C1 ◦ C1 :
O1 → O3 is produced by placing C1 atop C2. 2-Cob is in fact a tensor category
whose monoidal structure is given by the disjoint union, which is denoted here
by the symbol

⊔
. The cobordism identity for the 1-manifold O is the cylinder

O×I symbolized by IdO. The empty 1-manifold is denoted by ∅. Furthermore,
it can be easily proved ([1] and [13]) that 2-Cob is generated by only five
cobordisms. That is to say, every connected 2-cobordism can be formed by the
composition and the disjoint union of the following five cobordisms

(a) (b) (c) (d) (e)

Figure 2. The generators of 2-Cob
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Given a commutative ring R, a (1 + 1)−dimensional topological quantum
field theory ((1 + 1)−TQFT), is a monoidal functor (it preserves the monoidal
structure) between the category of 2-Cob of the 2-dimensional cobordisms and
the category MR. That means that the following statements are verified:

T 1: T (O × I) = IdT O
T 2: T (C′ ◦ C′′) = (T C′) ◦ (T C′′)
T 3: T (O′ 	 O′′) = T O′ ⊗R T O′′ , T (C′ 	 C′′) = T C′ ⊗R T C′′

T 4: T ∅ = R

The first two statements express that T is a functor, the last two state that T
is monoidal

Proposition 3.1. There exists a one-to-one correspondence between the
(1 + 1)−TQFTs and Frobenius systems.

Proof. Let T be a (1 + 1)−TQFT. By definition we have a R−module A
assigned to the circle S1. Applying T 3, T 4, and the fact that every compact
non-empty 1-manifold is the disjoint union of copies of S1, it is possible to
complete the assignations for the objects in the category, in the following way:

∅ −→ R

© −→ A

©© −→ A ⊗R A, etc.

Naturally, there also exists an assignation for the generating cobordisms. Be-
cause of T 1, the assignation for S1 × I is IdA. The assigned homomorphisms
for the other generators can be named by ε, i, m and ∆. From T 2, T 3 and
the relation displayed in the Figure (3), it follows that the relation (2.5) holds.
Figures (5) and (6) imply that m is associative and commutative, and that ∆
is coassociative and cocommutative. Hence, (R,A,∆, ε) defines a Frobenius
system.

→ ε : A → R
→ i : R → A

→ m : A ⊗R A → A

→ ∆ : A → A ⊗R A

→ IdA : A → A

Figure 3. Correspondence between the generating 2−cobordisms
and morphisms in the Frobenius Algebra

Conversely, if we have a Frobenius system (R,A,∆, ε), we can assign R
to ∅, and A to S1, and, by Figure (3), complete the assignations for all the
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� �

Figure 4. Cobordism correspondence for (Id⊗Rε)∆ = Id =
(ε ⊗R Id)∆

�
�

Figure 5. The equalities for these cobordisms show that m(m⊗R

Id) = m(Id⊗Rm) and (∆ ⊗R Id)∆ = (Id⊗R∆)∆

other generating cobordisms. We assign the composition and disjoint sum of
cobordisms to the composition and tensor product of morphisms in MR to
obtain in this way a TQFT. It only remains to prove that the assignations are
well defined. That is, we need to prove that given two equivalent cobordisms
we will obtain the same morphism in MR. We can do that by proving that
every relation in the 2-Cob category leads to a relation in MR. Some of these
relations and their equivalencies in the Frobenius system are displayed in figures
3, 5, 6 and 10. But there are more relations in 2-Cob. For a completed list
of them, see [13]. We only have to translate every equality in 2-Cob to the
language of MR and prove that the resulting equality holds

�
�

Figure 6. These equalities show that m is commutative and ∆ is
cocommutative. ��

4. The Khovanov invariant

As we did in [5], we are going to work with tangles considered in the sense of
[12]. Given an even integer n, an n-tangle T is a proper embedding of the union
of n/2 arcs and a finite number of circles into a 3-ball B. The n ends of the
arcs are the only points of T that are in ∂B. A (0)-tangle with k embedded
circles is a k component link, and a link with one component is a knot. Thus,
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in defining an invariant for tangles, we are also defining an invariant for knots
and links.

To explain the Khovanov invariant, consider a link with n crossings, denote
respectively with n+ and n− the number of positive crossings and negative
crossings. In Figure (7), we observe the Khovanov bracket of the figure eight
knot. This knot is drawn in the upper left corner of the figure. We could
use simpler examples like the trefoil knot or the Hopf link, but these examples
have been used before in several papers, see for example [10], [3] or [4]. Below
the knot we can find the ordered pair (n+, n−) = (2, 2) revealing that there
are 2 positive and 2 negative crossings. The graph is called the associated n
dimensional cube (4 dimensional, in our case). The sixteen nodes of this graph,
vertices, are marked by the strings of four characters, each of them is either
equal to 0 or to 1 and corresponds to a crossing of the knot. Every edge of the
cube is marked with the same characters, 0’s or 1’s and exactly one *, which
indicates the coordinate change from zero to one in the given edge. To each
edge we assign a sign: (−) if the number of 1’s before * is odd, (+) otherwise.

As we go from the left corner to the cube to the right, the labels on the
vertices change from 0000 to 1111. For every vertex of the cube we define its
height, which is the sum of its coordinates. In our example the height of every
vertex is a number between 0 and 4. The cube is drawn in such a way that
the vertices of height r are projected down to the point marked by r−n− over
a line below the cube. Finally, every vertex of the cube of a link L supports
a 1−manifold that we will call the resolution of L. A resolution in a vertex
labeled by a combination of bits A is obtained replacing every crossing in the
diagram of L, by a 0-resolution or by a 1-resolution depending if there is a 0 or
a 1 in A. These type of resolutions are defined in the next figure. For example,
if the vertex is marked by 0110, then the corresponding resolution of the knot
assigned to this vertex will be one that has a 0-resolution for the first and last
crossings, and a 1-resolution for the second and the third crossings. A diagram
of a tangle L with n crossing has 2n resolutions.

4.1. The category Kob and the chain complex. Now we follow [4] and
interpret the mentioned cube, as a chain complex. To do that, let us define
the abelian category we are going to work in, and name this category Kob.
The objects in this category are column vectors whose elements are formal Z-
linear combinations of resolutions with the same height. These resolutions are
1-manifolds possibly with boundary. Given two objects in this category

O =




O1

O2

...
On


 O1 =




O1
1

O1
2
...

O1
m



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Figure 7. The Khovanov bracket for the figure 8 knot.

�������������������� ������������

Figure 8. Resolutions for a crossing

The morphisms between these objects will be matrices whose entries are formal
sums of cobordisms between them, that is, 2-manifold embeddings in R2× [0, 1]
and boundaries entirely in R2×{0, 1}

⋃
E×[0, 1], where E is the boundary of the

objects in R2×{0} or R2×{1}. The upper boundary is the resolution Oi and the
lower boundary is the resolution O1

j . The morphisms in this abelian category
are added using the usual matrix addition and the morphism composition is
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modeled by matrix multiplication. The following figure is useful to understand
this situation:

Figure 9. Morphisms in Kob and their composition

Given two morphisms F = (Fik) and G = (Gkj) between objects of this
category, then F ◦G is well defined, if the number of columns of F is the same
as the number of rows in G, and

FG =
∑

k

FikGkj ,

where FikGkj is realized as in the previous section, putting the second cobor-
dism Gjk on top of Fij , just as the following figure displays.

Furthermore the morphisms in Kob satisfy the following three relations.

(1) Relation S. If a cobordism has a sphere, this cobordism can be replaced
by zero. This is: C

⊔
S = 0, where C represents any cobordism and S

is a sphere. For example � �

(2) Relation T . If a torus appears in a cobordism, it is possible to re-
move the torus and write down the rest of the cobordism multiplied
by 2. This is C

⊔
T = 2C. Here T denote a torus. For example,

� �

(3) Relation 4Tu.
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� � �� � � � � � � � � � � � � � � �

� � � ���������

This relation may be stated as follows. Given a Cobordism C, mark
four disks on it and label them by 1,2,3,4. Denote by Cij the cobordism
formed by removing the disk marked with i and j and joining the
boundaries of the resulting holes with a tube, as shown in the figure.
Then the 4Tu relation says that C12 + C34 = C13 + C24

It is an easy exercise to prove that Kob is in fact a category.
It is also not difficult to show that if a resolution in a cube with height

r has k circles, then all the resolutions with height r + 1 will have either
k + 1 or k − 1 circles. We can now regard the cube as a chain complex in
the following way: The r-th object of the complex is going to be the vector of
all resolutions with height r. Each edge in the cube corresponds to a cobordism
between the resolutions at its extreme points. This cobordism is always the
identity composed with a single saddle cobordism. For example if O′

i =
and O′

k = then the cobordism C : O′
i → O′

k between them will

be , the differential d of the cube will be determined by matrices

of cobordisms. A composition of two consecutive edges, FikGkj and FilGlj ,
corresponds to the addition of two one-handles. Since handles of he same
index can be added in any order, this means that two-dimensional faces of the
cube commute. Figure (10) shows a possible case, when we have consecutive
edges in the resolution of a link. Now we assign to this cobordism the sign of

�

� ��� � � � ��� ��

Figure 10. Composition of cobordisms when the difference of the
number of their circles, that are central objects, is 2

the corresponding edge. Clearly, the number of cobordisms with sign (−) in
each face of the cube is going to be odd, then the equality obtained is

FikGkj = −FilGlj ,

and the differential defined in the cube satisfies

d2 =
∑

k

FikGkj = 0 .
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Therefore, we have a chain complex. For a tangle T we denote its associated
chain complex by [[T ]]. It is called the Khovanov bracket of T .

4.2. Invariance by the Reidemeister moves. Our goal now is to show that
given a tangle T , the chain complex

[[T ]] = (· · · 0 −→ [[T ]]−n−) −→ · · · −→ [[T ]]n+) −→ 0 · · · )

is an invariant of tangles, if it is regarded as a complex in the category Kob.
That is, given two equivalent tangles their associated chain complexes are ho-
motopically equivalent. Now we will explain the details which were not given
in [4].

4.3. First move. We need to show that the associated chain complex for the
diagrams in the first Reidemeister move are homotopically equivalent. This is

[[ ]]∼ [[ ]]. We have :

[[ ]]=(0 −→ −→ 0)

[[ ]]=(0 −→ −→ −→ 0)

To prove the homotopical equivalence of these complexes we have to find mor-

phisms F :[[ ]]−→[[ ]] and G :[[ ]]−→[[ ]]. such that FG is

homotopic to the identity map of [[ ]] and GF is homotopic to the identity

of [[ ]]. We have the following diagram.

0 0 0

0 0

�d−1
a

�

F−1

�d0
a

�
F 0

�d1
a

�

F 1

�

F 2

�
d−1

b

�
G−1

�
d0

b

�
G0

�
d1

b

�
G1

�
G2

Clearly F−1, G−1, F 1, G1, F 2, G2, d−1
a , d−1

b , d1
a and d1

b are the zero morphism
and hence the first and the third square are commutative.

Define:

F 0 = ; G0 = and d0
b =
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We have that F 1d0
a = 0 and

d0
b ◦ F 0 = o







= = 0 .

This proves that the second square of the diagram is also commutative, so that
F is a morphism of complexes. Since in every case

Gi+1di
b = di

aGi = 0

G is clearly a morphism of complexes.
To prove the equivalence between the two complexes, it only remains to

show that:

GF ∼ Ia (4.1)

and

FG ∼ Ib (4.2)

where Ia and Ib denote the identities of [[ ]] and [[ ]] respectively.
To prove 4.1 we have to show that there exists hr

a such that GrF r − Ir =
hr+1

a ◦ dr
a + dr−1

a hr
a. We see that dr

a = 0 for all r; then we just have to show
that GrF r = Ir. Which is trivial for r �= 0. For r = 0 we have

d0
bF

0 = o







=
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= 2 = I0
a

In order to prove 4.2, let hr
b = 0 for every r �= 1, and let

h1
b = –

Clearly, F r Gr − Ir
b = hr+1

b dr
b + dr−1

b hr
b = 0, when r �= 0, 1. For r = 1, we have

that F 1G1 = 0 = h2
bd

1
b and

d0
bh

1
b = o


 –


 = – = −I1

b

and hence we obtain F 1G1 − I1
b = h2

bd
1
b + d0

bh
1
b . We have d−1

b h0
b = 0. Thus, for

r = 0, we just have to prove that F 0G0 − I0
b = h1

bd
0
b . But

F 0G0 =





 o

=

I0
b =
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h1
bd

0
b = −

Therefore
F 0G0 − I0

b − h1
bd

0
b = C12 − C13 − C24 + C34 = 0

This last equality is obtained applying the relation 4Tu to the cobordism

4.4. Second move. We have to prove that the diagrams involved in the sec-
ond Reidemeister movement give rise to complexes that are equivalent under
homotopy

�� � �

�� � �

� �

� � � �

� �

��

���

���

��

� �
�

��
�

�

The two complexes displayed above are:

[[ ]]=(0 −→ −→ 0)

[[ ]]=(0 −→ T−1 −→ T 0 −→ T 1 −→ 0)

where

T−1 =
[ ]

; T 0 =

[ ]
and T 1 =

[ ]



Khovanov type homologies and Frobenius extensions 77

Then, dr
a = 0 for all r, dr

b = 0 if r �= −1, 0 and

d−1
b =







d0
b =


 -




Define F in the following way: F r = 0 if r �= 0 and

F 0 =







It can be seen from the graphic that, if r �= 0, then dr
b ◦ F r = F r+1 ◦ dr

a = 0.
Moreover F 1 ◦ d0

a = 0 and

d0
b ◦ F 0 = − = 0

Then, it has been proven that each of the squares from this complex is com-
mutative, and hence F is a morphism of complexes.

Let us define G : [[ ]] → [[ ]] in the following way: Gr = 0 if
r �= 0 and

G0 =


 -



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Clearly, Grdr−1
b = dr−1

r Gr−1 for all r �= 0. Furthermore d−1
a G−1 = 0 and

G0d−1
b = − + = 0

Therefore, every square determined by G in the complex is also commutative
and hence G is a complex morphism.

Now we must show that the two complexes are actually equivalent by ho-
motopy. That is, that there exist complex morphisms ha : [[ ]]r →

[[ ]]r−1 and hb : [[ ]]r → [[ ]]r−1 such that

GrF r − Ir
a = hr+1

a dr
a + dr−1

a hr
a (4.3)

and

F rGr − Ir
b = hr+1

b dr
b + dr−1

b hr
b . (4.4)

It should be noticed that, if r �= 0, then GrF r = 0 = Ir
a and hr+1

a dr
a+dr−1

a hr
a.

Therefore the equation 4.3 is trivially obtained. Furthermore

G0F 0 = − + = = I0
a

which implies that 4.3 is true for every r.
To prove 4.4 define hr

b in the following way: hr
b = 0, if r �= 0, 1 and

h0
b =


 - 0


 h1

b =




0




Then F−1G−1 = 0, d−2
b h−1

b = 0 and

h0
bd

−1
b = − = −I−1

b
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Therefore, we have that F−1G−1−I−1
b = h0

bd
−1
b +d−2

b h−1
b . In addition we have

that

F 0 ◦ G0 =




-

-




h1
b ◦ d0

b =




-

0 0




d−1
b ◦ h0

b =




- 0

- 0




I0
b =




- 0

0



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and clearly, F 0 ◦G0 − I0
b = h1

b ◦ d0
b + d−1

b ◦ h0
b . The equality for the element in

the upper left corner is obtained applying the 4Tu relation to the cobordism

. The equalities for the other elements are trivial.

4.5. Third move. We have to prove that [[ ]] ∼ [[ ]]. As Bar–Natan

says in [4], “this is the easiest and the hardest move”. We only have to draw
the complexes, use the obvious cobordism, and apply only isotopies. It does
not require the use of the S, T and 4Tu relations. But, because it involves
more crossings, the work is long and tedious, although easy to carry out. For
an alternative shorter proof see [4].

5. The homology theory

In the previous section we presented a homotopy type invariant for links.
The resolutions of a link being always closed 1-manifolds, we can then apply
a (1 + 1)−TQFT functor to the subcategory of Kob generated by the closed
1-manifolds, to get a chain complex in the category MR. We expect that the
obtained chain complex of R−modules will be a homotopy type invariant for
links. Actually, since a (1 + 1)−TQFT preserves the composition and disjoint
union our hope to get that invariant is very high . Unfortunately, in the previous
section, we used not only the properties of a functor, but also the S, T and 4Tu
relations. Then, to prove that we obtain an invariant of links we need to prove
that the functor also preserves these relations. This is possible, as is expressed
in the following theorem

Theorem 5.1. Let A be a commutative ring with two generators 1 and X,
and let F = (R,A,∆, ε) be a Frobenius system satisfying ε(1) = 0 and ∆(1) =
1 ⊗ X + X ⊗ 1. Then F defines an invariant of links.

Proof. It must be shown that when a (1 + 1)−TQFT is applied to this F the
relations S, T , and 4Tu are respected. We are going to use 1R for the unit
of R and simply 1 for the unit of A. Let C

⊔
S a cobordism formed by the

� �

a b

Figure 11. The sphere and the torus are regarded as a composi-
tion of fundamental (generating) cobordisms
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disjoint union between an arbitrary cobordism C and a sphere S. As suggested
by figure (11a), we apply the (1 + 1)−TQFT T to obtain

T (C
⊔

S) = T (C) ⊗ εi .

But εi(1R) = ε(1) = 0, and so

T (C
⊔

S) = 0 . (5.1)

Let C
⊔

T a cobordism formed by the disjoint union between an arbitrary
cobordism C and a torus T . Figure (11b) shows that in applying the
(1 + 1)−TQFT T we obtain

T (C
⊔

T ) = T (C) ⊗ εm∆i .

But εm∆(1) = ε(m(1 ⊗R X + X ⊗R 1)) = 2, so

T (C
⊔

S) = 2T (C) . (5.2)

Finally, to prove that the relation 4tu is preserved. Indeed, in Kob we have

� � � � �

Figure 12. One term in the relation 4Tu is regarded as a com-
position of fundamental (generating) cobordisms

the equality C12 +C34 = C13 +C24, as in section (4.1). Applying T to the left
side of the equality we obtain

[∆i ⊗R i ⊗R i + i ⊗R i ⊗R ∆i](1R)

= ∆(1) ⊗R 1 ⊗R 1 + 1 ⊗R 1 ⊗R ∆(1)
= 1 ⊗R X ⊗R 1 ⊗R 1 + X ⊗R 1 ⊗R 1 ⊗R 1

+ 1 ⊗R 1 ⊗R 1 ⊗R X + 1 ⊗R 1 ⊗R X ⊗R 1

Applying T to the right member of the equality we obtain
[(Id ⊗R i ⊗R Id)∆i ⊗R i + i ⊗R (Id ⊗R i ⊗R Id)∆i](1R)

= (Id ⊗R i ⊗R Id)(1 ⊗R X + X ⊗R 1) ⊗R 1

+ 1 ⊗R (Id ⊗R i ⊗R Id)(1 ⊗R X + X ⊗R 1) .

So we obtain the same result. This, together with equations (5.1) and (5.2),
proves that T preserves the three relations and hence the chain complex ob-
tained in the category MR is an invariant of knots and links. ��

Obviously, the homology of this chain complex is an invariant of links. From
this, we can conclude that this is the case, when the Frobenius system is either
example number (1) or example (3) from section 2.1.
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